King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 540 –Computer Networks
Term 071

Dr. Ashraf S. Hasan Mahmoud

Rm 22-148-3

Ext. 1724

Email: ashraf@kfupm.edu.sa

9/10/2007

Dr. Ashraf S. Hasan Mahmoud

Lecture Contents

- 1. Historical Overview
- 2. Messages and Switching
- 3. Layering
 - a. The OSI model
 - b. The TCP/IP model

9/10/2007

Dr. Ashraf S. Hasan Mahmoud

Reading Assignment

- You are required to read the following chapters:
 - Chapter 1 of Gallager's textbook
 - Chapter 1 of Kurose's textbook
- The material is an overview of the field and serves as very "basic" introductory text.
- The material is required for subsequent quizzes and exam

9/10/2007

Dr. Ashraf S. Hasan Mahmoud

3

Historical Overview

- Forms of data networks
 - Smoke signals ?
 - Telegraphy 19s century
- Very primitive manual "signal" encoding

9/10/2007

Dr. Ashraf S. Hasan Mahmoud

,

Historical Overview (2)

- Time-shared Processors
 - 1950s
 - Proliferation of communication links
 - Peripheral devices (printers, terminals, etc.) connect to the "expensive" CPU.
- Note that the central CPU is also managing the communication links!

Printer

Central Processor

printer

terminal

terminal

5

printer

9/10/2007

Dr. Ashraf S. Hasan Mahmoud

Historical Overview (3)

- Time-shared Processors cont'd
- To relief the processor a specialized "front end" processor is attached to the central processor to handle all communications
- Centralized system!

 Multiplexer terminal

 Central

 Central

 Front

 printer

 printer
- Note the central processor is still at the center of the network

9/10/2007

Dr. Ashrar derminal Mahmoud Mahmoud 6

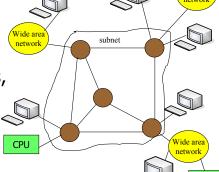
Multiplexer

terminal

Multiplexer

Historical Overview (4)

- ARPANET and TYMNET ~70s
- General purpose data-networks
- Geographically distributed computer systems
- **Interface Message Processors** (IMPs) – computers specialized in routing messages
 - Routers/Switches
 - Connected using communication links
- Note, the "subnet" is now at the center of the network and CPU


9/10/20 not the shared computer Hasan Mahmoud

Historical Overview (5)

- Network of interconnected networks
- Explosive growth of wide area networks and local area networks
- The need for control algorithms or PROTOCOLs to handle data, gateways, bridges, etc.
- This shown network is similar to today's

Internet!

Dr. Ashraf S. Hasan Mahmoud

subnet

CPU

Historical Overview (6)

- What do think future networks will look like?
 - High speed (broadband)?
 - Integrated services: voice, data, multimedia, etc.
 - Quality of service (QoS) capable networks
 - Seamless services
 - Ubiquitous
 - Etc.

9/10/2007

Dr. Ashraf S. Hasan Mahmoud

9

Factors

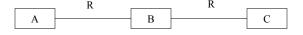
- Technological and economy
 - Thanks to advances in VLSI, CPU prices are halved every sixto-twelve months with more processing power built in
 - Computers can do more network has to cope
- Communication Technology
 - Evolution of link speeds: 2.4, 4.8, 9.6 and 56 kb/s
 - New links 64 kb/s, 1.5 Mb/s, 45 Mb/s, etc.
 - Bandwidth sharing
 - Cost for media TP versus optical
- Applications for data networks
 - Remote access of "super" computers early
 - Email, FTP, HTTP now (killer application?)
 - (distributed) database access
 - Etc.

9/10/2007

Dr. Ashraf S. Hasan Mahmoud

Messages and Switching

- What is a message? give a definition
- Depend on the application/context
 - Email document or file
 - Interactive system transaction
- Representation of messages
 - String of bits
 - Compression how?
- Is transferring long messages between network entities efficient? Why?
- Usually, long message are broken into "packets"
- The network must "switch" or direct packets to the destination


9/10/2007

Dr. Ashraf S. Hasan Mahmoud

11

Exercise:

- Consider the simple network shown in figure. One file
 of K>>1 bits must be sent from A to C. The file is
 decomposed into packets of P bits each. Each packet
 contains 16 error-control bits 32 bits of address and
 sequence number, in addition to the P data bits. The
 transmission rate is R bits/sec. Each packet is first sent
 from A to B and then from B to C.
 - a) Find the value of P that minimizes the transmission time from A to C, neglecting the propagation time.
 - b) Repeat the problem when the file must go through N communication nodes between A and C.

9/10/2007

Dr. Ashraf S. Hasan Mahmoud

Sessions

- What is a session?
- Connection versus connectionless services
- Think of a "voice" session or an "HTTP" session
- What the characteristics for connection-oriented communication?
- What the characteristics for connectionless communication?
- Modeling of Traffic/Arrivals
 - Messages arrive at random points in time
 - Poisson process approximations
 - Accuracy of model voice (good), data (?)
 - On/Off models

9/10/2007

Dr. Ashraf S. Hasan Mahmoud

important topic

13

Characteristics of Sessions

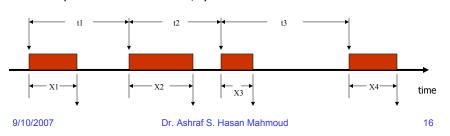
- Message arrival rate and variability of arrivals
- Session holding time
- Expected message length and length distribution
- Allowable delay
- Reliability
- Message and packet ordering

9/10/2007

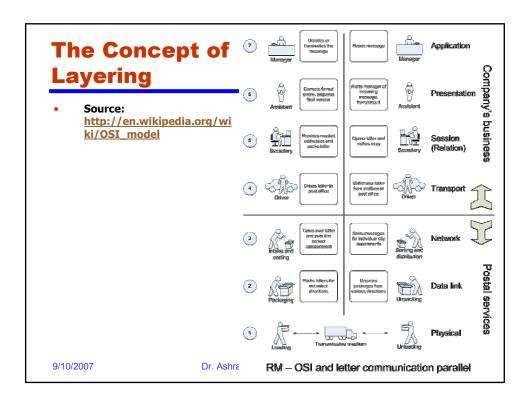
Dr. Ashraf S. Hasan Mahmoud

Circuit Switching versus Store-and- Forward Switching

- Circuit switching:
 - A dedicated path is established between two ends
 - Resources are reserved for session justified when link utilization is expected to be high
 - Usually FDM, TDM, or CDMA based
 - Appropriate for CBR type traffic rarely used for data
 - Eg. Telephony
 - Involves: call setup, data exchange, call termination
- Store-and-Forward switching:
 - The processing is done on the packet level
 - Intermediate nodes receive and process (switch) packets
 - Different packets may go different routes
 - No call setup
 - Resources are not reserved but utilized as required
 - Appropriate for VBR type traffic


9/10/2007

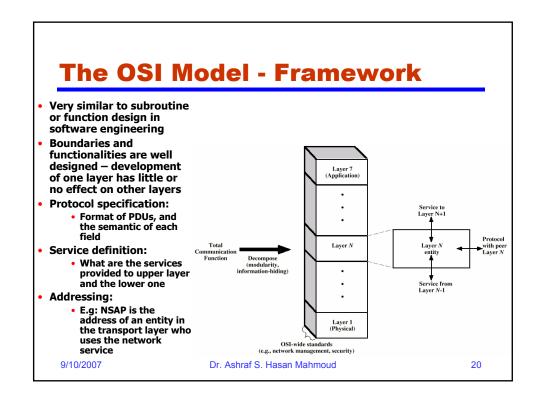
Dr. Ashraf S. Hasan Mahmoud

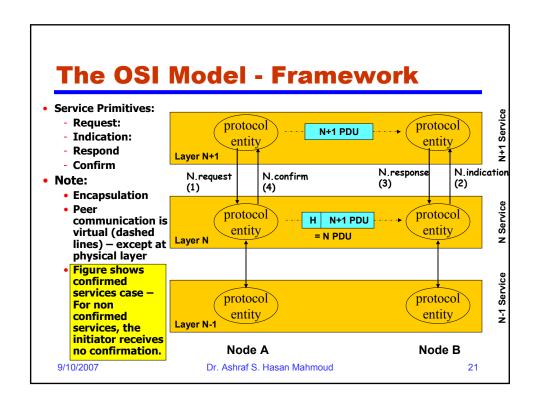

15

Link Utilization

- Variables of interest:
 - t1, t2, t3, ...: interarrival times
 - X1, X2, X3, ... : message duration
- Arrival rate, λ = E[ti]
- Link utilization, $\rho = \lambda E[Xi] = E[Xi]/E[ti]$
 - $\rho << 1 \rightarrow low utilization,$
 - $\rho = 1 \rightarrow 100\%$ utilization
 - ρ > 1 → unstable link/system

More on this topic to be covered when queueing theory is discussed.


Protocols - Definition


- What is a Protocol:
 - Convention between two communicating entities governing exchange of data
- Elements of Protocol:
 - Syntax: data format, signal levels, etc.
 - Semantics: control info coordination and error handling
 - Timing: matching speeds and sequencing (synchronization)
- What is a "communicating entity"?
 - Node,
 - Module,
 - Process,
 - Etc.

9/10/2007

Dr. Ashraf S. Hasan Mahmoud

The OSI Model - Environment Laver i establishes a PEER relationship with layer i on the target node This means Layer i requires service from layer i-1 • And so on The use of the PDUs No direct communication except for the physical layer - all other communication is indirect Franspor or virtual **Encapsulation of user data** Network Network Each layer may segment SDU to accommodate its own requirement - These Data Link Data Link are reassembled at the other end 9/10/2007 Dr. Ashraf S. Hasan Mahmoud

The OSI Model – Physical Layer

- Specifications:
 - Mechanical: dimensions, connectors, etc.
 - •Electrical: signal levels, rates of change, etc
 - •Functional: functions performed by each circuit
 - •Procedural: steps required to transport bits from one end to the other
- Provides service to do "transmission of raw bits"

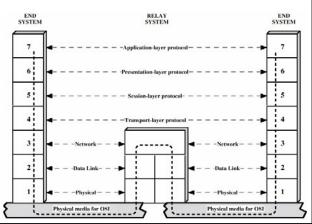
9/10/2007

Dr. Ashraf S. Hasan Mahmoud

The OSI Model – Data Link Layer

- Coverts the raw bit stream service provided by the physical layer to a reliable stream:
 - Performs error detection and error control
- Examples: HDLC, LAPB, LLC, etc

9/10/2007


Dr. Ashraf S. Hasan Mahmoud

23

The OSI Model – Network Layer

- Service: transfer of information between two end systems across communication network – End to end delivery of packets
- Two end systems may be connected by:
 - Point-2-point: no need for network layer
 - Same network (see figure)
 - Different network

9/10/2007

The OSI Model – Transport Layer

- Service: mechanism of exchanging data (or messages) between the two end systems:
 - For connection oriented networks:
 - Error-free delivery
 - Ordered delivery
 - No loss or duplication
 - Attempts to provide a certain quality of service (QoS) {certain max error rate, delay jitter, etc) through optimizing the the network layer services
- Example: TCP (connection oriented), UDP (connectionless)

9/10/2007

Dr. Ashraf S. Hasan Mahmoud

25

The OSI Model – Session Layer

- Service: mechanism of controlling the dialogue between applications at end systems
 - Dialogue Discipline
 - Grouping
 - Recovery

9/10/2007

Dr. Ashraf S. Hasan Mahmoud

The OSI Model - Presentation

 Service: defines format of data (format, encryption, and compression) to be exchanged between applications

9/10/2007

Dr. Ashraf S. Hasan Mahmoud

27

The OSI Model – Application

 Service: A means for user applications (email, ftp, etc) to access the services provided by the OSI model

9/10/2007

Dr. Ashraf S. Hasan Mahmoud

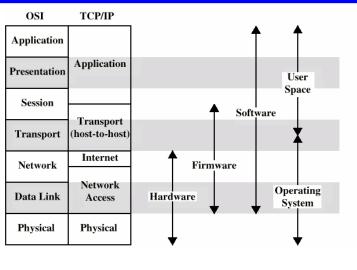
The TCP/IP Model

- TCP/IP is the result of R&D conducted on experimental packet switched network (ARPANET) and funded by Defense Advanced Research Agency (DARPA)
- TCP/IP is NOW the dominant commercial architecture – The foundation of the internet and its applications

9/10/2007

Dr. Ashraf S. Hasan Mahmoud

29


The TCP/IP Model

- Model has five independent layers:
 - Application layer: comm between processes or applications on separate hosts
 - Transport layer: end-2-end transfer service may include reliability mechanisms
 - Internet layer: routing data from source to destination through one or more networks
 - Network access layer: logical interface between end systems and the network
 - Physical layer: defines mechanism of transmitting raw bits depending on media characteristic

9/10/2007

Dr. Ashraf S. Hasan Mahmoud

9/10/2007

Dr. Ashraf S. Hasan Mahmoud

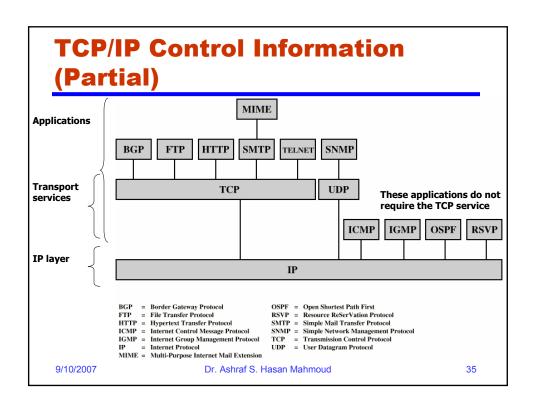
31

Example of TCP/IP Communications

- A process (has port 1) on host A needs to communicate to another process: port 2 at host B
- The application layer on A hands the msg down to TCP with instructions to deliver it to (port2,host B)
- TCP hands msg down to IP with instructions to send it to host B:
 - The IP layer knows how to reach host B (or at least the first hop of the route) – does not care about port info
- IP hands down packets to network access (say Ethernet) with instructions to pass it to next router (first hop on the way to B)

9/10/2007

Dr. Ashraf S. Hasan Mahmoud


Example of TCP/IP Communications Does not show Application User data segmentation byte stream (or fragmentation TCP in IP terms) TCP header segment process! IP IP datagram Network header Network-level packet 9/10/2007 Dr. Ashraf S. Hasan Mahmoud 33

TCP/IP Control Information (Partial)

- TCP control info:
 - Destination port number
 - Sequence number
 - Checksum
- IP control info:
 - IP address
- Network Access control info:
 - Destination network access address (this is not the IP!!)
 - Facilities request (e.g. priorities)

9/10/2007

Dr. Ashraf S. Hasan Mahmoud

