

Example: Problem 6-5 - solution (2)

Let the bit duration be T. Then a frame is 12T long. Let a clock period be T'. The last bit (bit 12) is sampled at 11.5T'.

For a fast running clock, the condition to satisfy is

$$11.5T' > 11T \implies \frac{T}{T'} < \frac{11.5}{11} = 1.045 \implies f_{clock} < 1.045 f_{bit}$$

For a slow running clock, the condition to satisfy is

$$11.5T' < 12T \implies \frac{T}{T'} > \frac{11.5}{12} = 0.958 \implies f_{clock} > 0.958 f_{bit}$$

Therefore, the overall condition: 0.958 $f_{bit} < f_{clock} < 1.045 f_{bit}$

11/29/2007

Dr. Ashraf S. Hasan Mahmoud

8

Error Detection – cont'd		
Hence, for a frame	of F bits,	
Prob [frame is corr	ect] = Prob [0 bits in error] = (1-BER) ^F	
Prob [frame is erroned	us] = Prob[1 OR MORE bits in error] = 1 - Prob[0 bits in error] = 1 - (1-BER) ^F	
Prob [frame is erroned	bus] = Prob [1 bit in error] + Prob[2 bits in error] + + Prob[F bits in error] = 1 - Prob[0 bits in error] = 1 - $(1-BER)^{F}$	
11/29/2007	Dr. Ashraf S. Hasan Mahmoud	12

