King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 341 - Data and Computer Communications

Term 061

Dr. Ashraf S. Hasan Mahmoud

Rm 22-148-3

Ext. 1724

Email: ashraf@ccse.kfupm.edu.sa

Dr. Ashraf S. Hasan Mahmoud

Lecture Contents

- 1. Protocols
 - a. Characteristics
 - b. Functions
- 2. OSI
 - a. The model
 - b. OSI layers
- 3. TCP/IP Protocol Suite

9/13/2006

Dr. Ashraf S. Hasan Mahmoud

Protocols - Definition

- What is a Protocol:
 - Convention between two communicating entities governing exchange of data
- Elements of Protocol:
 - Syntax: data format, signal levels, etc.
 - Semantics: control info coordination and error handling
 - Timing: matching speeds and sequencing (synchronization)

9/13/2006

Dr. Ashraf S. Hasan Mahmoud

3

Standards Organizations

- Internet Society (http://www.isoc.org/):
 - Internet Organization and RFC Publication
 - Internet Architecture Board (IAB)
 - Internet Engineering Task Force (IETF)
 - Internet Engineering Steering Group (IESG)
- International Organization for Standardization or ISO:
 - Open System Interface (OSI): communication architecture and reference model

9/13/2006

Dr. Ashraf S. Hasan Mahmoud

,

Standards Organizations

- International Telecommunication Union (ITU)
 - · United nations organization
 - ITU-T: Telecommunications Standardization Sector
 - Replaced International Telegraph and Telephone Consultative Committee (CCITT)
- ATM Forum:
 - 600 member companies

9/13/2006

Dr. Ashraf S. Hasan Mahmoud

5

Protocols - Characteristics

- Characteristics:
 - Direct/Indirect:
 - Direct: e.g for point-to-point communications, RS-232
 - Indirect: e.g devices connected through other nodes (internetwork, internet)
 - Monolithic/Structured
 - Monolithic: One package (SW and HW) performing all functions pertaining to the comm session
 - Structured: modular approach ← The focus of this course

9/13/2006

Dr. Ashraf S. Hasan Mahmoud

Protocols - Characteristics

- Characteristics cont'd:
 - Symmetric/Asymmetric
 - Symmetric: comm between peer entities
 - · Asymmetric: to keep one side simple
 - · E.g. client-server model, polling methods
 - Standard/Nonstandard
 - Standard: conforming to a single agreed upon standard
 - Nonstandard: no conformity
 - Clients vs. vendors ?

9/13/2006

Dr. Ashraf S. Hasan Mahmoud

7

Protocols - Functions

- Encapsulation
- Segmentation and Assembly
- Connection Control
- Ordered Delivery
- Flow Control
- Error Control
- Addressing
- Multiplexing
- Transmission Services

9/13/2006

Dr. Ashraf S. Hasan Mahmoud

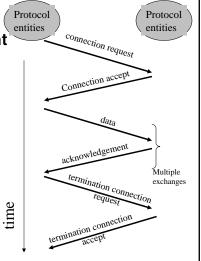
Protocols - Functions

- Encapsulation:
 - PDU: block of data exchanged between two entities
 - PDU = user data + overhead (addressing, error control, protocol control)
 - User data is referred to as SDU
- Segmentation and Reassembly:
 - Example: ATM (53 bytes cells) core with Ethernet LAN (frames up to 1526 bytes)

9/13/2006

Dr. Ashraf S. Hasan Mahmoud

9


Protocols - Functions

Connection Control:

Connection establishment

Data transfer

Connection termination

9/13/2006

Dr. Ashraf S. Hasan Mahmoud

Protocols - Functions

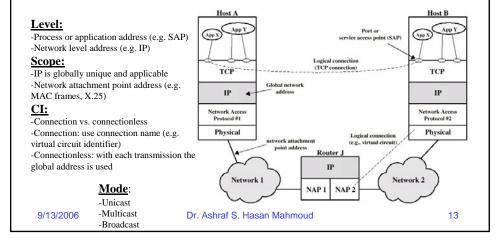
- Ordered Delivery
 - Ordered delivery of PDUs
 - Requires buffering, sequence numbers
- Flow control:
 - Limit amount of flow e.g stop and wait procedure – receiving entity must acknowledge block before transmitter sends the next one in line

9/13/2006

Dr. Ashraf S. Hasan Mahmoud

11

Protocols - Functions


- Error Control
 - To combat corruption of transmitted data
 - Transmitters inserts overhead info to detect corruption
 - Receiver checks overhead bits and finds outs if block is corrupted or not
 - Corrupted may be correctable or request another copy
 - OK accept block

9/13/2006

Dr. Ashraf S. Hasan Mahmoud

Protocols - Functions

- Addressing:
 - Level, Scope, Connection Identifiers, and Mode

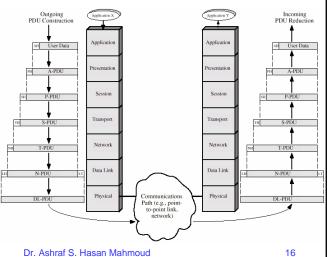
Protocols - Functions

- Multiplexing:
 - Multiple virtual circuits on one physical link (e.g X.25 – from one end system to another)
 - Mapping connections from one level (layer) to another:
 - E.g. Multiple service points carried on one virtual circuit (called upward or inward multiplexing)
 - Downward multiplexing: one high level connection is split or served by multiple lower level connections (for reliability and performance issues)

9/13/2006

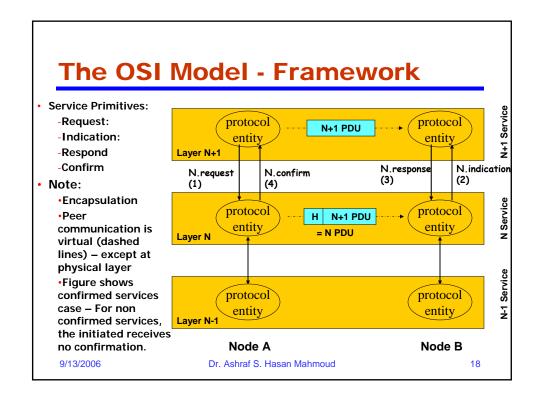
Dr. Ashraf S. Hasan Mahmoud

The OSI Model


- Software model and abstraction
- Defines set of layers and the services at these layers necessary to perform communication
- Promotes compatibility of network designs
- Logical partitioning:
 - Manageability and scalability

9/13/2006

Dr. Ashraf S. Hasan Mahmoud


The OSI Model - Environment

- Layer i establishes a PEER relationship with layer i on the target node
- This means Layer i requires service from layer i-1
- And so on
- The use of the PDUs
- No direct communication except for the physical layer - all other communication is indirect or virtual
- Encapsulation of user data
- Each layer may segment SDU to accommodate its own requirement - These are reassembled at the other end

9/13/2006

The OSI Model - Framework Very similar to subroutine or function design in software engineering **Boundaries and** functionalities are well designed - development Layer 7 (Application) of one layer has little or no effect on other layers Protocol specification: Format of PDUs, and the semantic of each field Protocol with peer Layer N Layer N Service definition: Decompose (modularity, information-hiding) What are the services provided to upper layer and the lower one Addressing: • E.g: NSAP is the address of an entity in the transport layer who Layer 1 (Physical) uses the network OSI-wide standards (e.g., network management, security) 9/13/2006 Dr. Ashraf S. Hasan Mahmoud 17

The OSI Model - Physical Layer

- Specifications:
 - •Mechanical: dimensions, connectors, etc.
 - Electrical: signal levels, rates of change, etc
 - •Functional: functions performed by each circuit
 - Procedural: steps required to transport bits from one end to the other
- Provides service to do "transmission of raw bits"

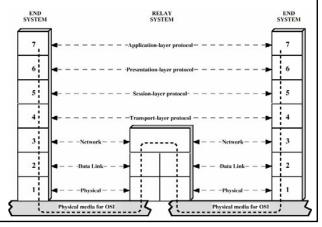
9/13/2006

Dr. Ashraf S. Hasan Mahmoud

19

The OSI Model - Data Link Layer

- Coverts the raw bit stream service provided by the physical layer to a reliable stream:
 - Performs error detection and error control
- Examples: HDLC, LAPB, LLC, etc


9/13/2006

Dr. Ashraf S. Hasan Mahmoud

The OSI Model - Network Layer

- Service: transfer of information between two end systems across communication network – End to end delivery of packets
- Two end systems may be connected by:
 - Point-2-point: no need for network layer
 - Same network (see figure)
 - Different network

9/13/2006

The OSI Model - Transport Layer

- Service: mechanism of exchanging data (or messages) between the two end systems:
 - For connection oriented networks:
 - Error-free delivery
 - Ordered delivery
 - No loss or duplication
 - Attempts to provide a certain quality of service (QoS) {certain max error rate, delay jitter, etc) through optimizing the the network layer services
- Example: TCP (connection oriented), UDP (connectionless)

9/13/2006

Dr. Ashraf S. Hasan Mahmoud

The OSI Model - Session Layer

- Service: mechanism of controlling the dialogue between applications at end systems
 - Dialogue Discipline
 - Grouping
 - Recovery

9/13/2006

Dr. Ashraf S. Hasan Mahmoud

23

The OSI Model - Presentation

 Service: defines format of data (format, encryption, and compression) to be exchanged between applications

9/13/2006

Dr. Ashraf S. Hasan Mahmoud

The OSI Model - Application

 Service: A means for user applications (email, ftp, etc) to access the services provided by the OSI model

9/13/2006

Dr. Ashraf S. Hasan Mahmoud

25

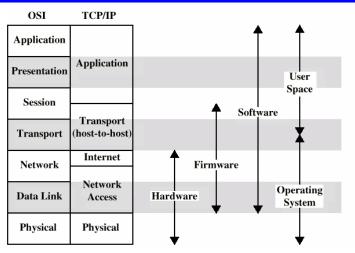
The TCP/IP Model

- TCP/IP is the result of R&D conducted on experimental packet switched network (ARPANET) and funded by Defense Advanced Research Agency (DARPA)
- TCP/IP is NOW the dominant commercial architecture – The foundation of the internet and its applications

9/13/2006

Dr. Ashraf S. Hasan Mahmoud

The TCP/IP Model


- Model has five independent layers:
 - Application layer: comm between processes or applications on separate hosts
 - Transport layer: end-2-end transfer service may include reliability mechanisms
 - Internet layer: routing data from source to destination through one or more networks
 - Network access layer: logical interface between end systems and the network
 - Physical layer: defines mechanism of transmitting raw bits depending on media characteristic

9/13/2006

Dr. Ashraf S. Hasan Mahmoud

27

The TCP/IP Model (using the OSI Model as a reference)

9/13/2006

Dr. Ashraf S. Hasan Mahmoud

Example of TCP/IP Communications

- A process (has port 1) on host A needs to communicate to another process: port 2 at host B
- The application layer on A hands the msg down to TCP with instructions to deliver it to (port2,host B)
- TCP hands msg down to IP with instructions to send it to host B:
 - The IP layer knows how to reach host B (or at least the first hop of the route) – does not care about port info
- IP hands down packets to network access (say Ethernet) with instructions to pass it to next router (first hop on the way to B)

9/13/2006

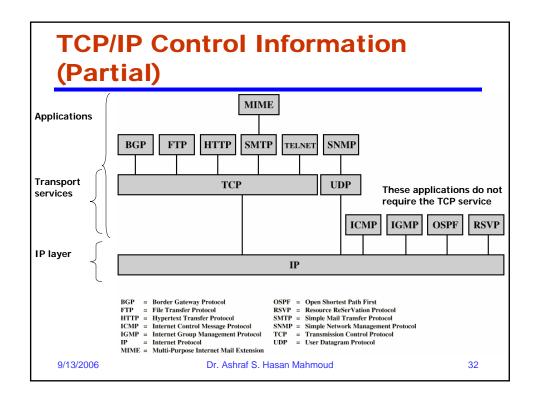
9/13/2006

Dr. Ashraf S. Hasan Mahmoud

29

30

Example of TCP/IP Communications Does not show Application User data byte stream segmentation (or fragmentation TCP in IP terms) TCP segment header process! IP datagram header Network-level Network header packet


Dr. Ashraf S. Hasan Mahmoud

TCP/IP Control Information (Partial)

- TCP control info:
 - Destination port number
 - Sequence number
 - Checksum
- IP control info:
 - IP address
- Network Access control info:
 - Destination network access address (this is not the IP!!)
 - Facilities request (e.g. priorities)

9/13/2006

Dr. Ashraf S. Hasan Mahmoud

