

Example 12.2 • <u>Problem</u> : The performance improvements in the latest version of seven layers of a new networking protocol was measured separately for each layer. The observations are as listed below. What is the average improvement per layer?								
Average improve	ment per layer	7	18					
= [(1.18)(1.13)(1 1.05)]^(1/7) -	111/1 00//1 10//1 20//	6	13					
	1	5	11					
= 0.13		4	8					
i.e average improv	vement ner laver = 13%	3	10					
		2	28					
		1	5					
7/30/2005	Dr. Ashraf S. Hasan Mahmou	ıd	44					

are	shown in table. What i	s the m	optimi: ean	zation	
opti	mization ratio?	Program	Code Size		Ratio
			Before	After	_
 Solution: Note: progration 	on:	BubbleP	119	89	0.75
		IntmmP	158	134	0.85
	program sizes vary a lot (2 orders	PermP	142	121	0.85
	and PuzzleP)	PuzzleP	8612	7579	0.88
•	and PuzzleP) The after Size is expected to be a scaled version of the before size	PuzzleP QueenP	8612 7133	7579 7072	0.88
•	and PuzzleP) The after Size is expected to be a scaled version of the before size	PuzzleP QueenP QuickP	8612 7133 184	7579 7072 112	0.88 0.99 0.61
There	and PuzzleP) The after Size is expected to be a scaled version of the before size fore, geometric mean is used	PuzzleP QueenP QuickP SieveP	8612 7133 184 2908	7579 7072 112 2879	0.88 0.99 0.61 0.99

Example: Sa	mples f	rom (U(0,1)	_	
cont'a		i	q _i = (i-0.5)/n	y _i	x _i
		1	0.0625	0.1080	0.0625
 Form the following the followin	owina	2	0.1875	0.1820	0.1875
tabla	J	3	0.3125	0.2909	0.3125
Lable		4	0.4375	0.4930	0.4375
		5	0.5625	0.5985	0.5625
	-	6	0.6875	0.7363	0.6875
 Plot (x_i, y_i) pa 	airs	7	0.8125	0.9310	0.8125
		8	0.9375	0.9375	0.9375
 Since the relation of the second secon	ition is r – The ear to be tributed	1 0.9 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7			
7/30/2005	Dr. Ashraf S. Hasa	n Mahmoud	I I I I I I I I 0.2 0.3 0.4 0.5 0. uniform quantile	east-sq 6 0.7 0.8	0.82 1

Example: Confidence Interval for the Mean

Example: Confidence Interval for the Mean – cont'd (Matlab Code)

Example: Unpaired Observations -Comparing Two Alternatives – cont'd (Matlab Code - 2)

Example: Confidence Interval for Proportions – cont'd

<u>Solution</u>: For 90% confidence:

Sample proportion = 0.010 n*p = 10.000 >= 10 is satisfied Confidence level 100(1-a) = 90% ==> a = 0.100 and 1-a/2 = 0.9500 confidence interval for proportion = 0.0100 +- za * sqrt(0.010 * 0.990 / 1000) confidence interval for proportion = 0.0100 +- za * 0.003 the 0.9500-quantile of the normal-variate z = 1.6449 The 90% confidence interval is given by (0.0048, 0.0152)

For 95% confidence:

the 0.9750-quantile of the normal-variate z = 1.9600
The 95% confidence interval is given by (0.0038, 0.0162)

7/30/2005

Dr. Ashraf S. Hasan Mahmoud

99

