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What is a Random Variable?
• Random Experiment
• Sample Space

• Def: A random variable X is a function that 
assigns a number of X(ζ) to each outcome ζ in the 
sample space of S of the random experiment

S

ζ
real linex

X(ζ) = x
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Set Functions
• Define Ω as the set of all possible outcomes
• Define A as set of events
• Define A as an event – subset of the set of all 

experiments outcomes
• Set operations:

• Complement Ac: is the event that event A does not 
occur

• Intersection A ∩ B : is the event that event A and B 
occur 

• Union A ∪ B: is the event that event A or B occur
• Inclusion A ⊆ B:  An event A occurring implying 

events B occurs
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Set Functions
• Note:

• Set of events A is closed under set operations
• Φ – empty set
• A ∩ B = Φ are mutually exclusive or disjoint 
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Axioms of Probability
• Let P(A) denote probability of event A:

1. For any event A belongs A, P(A)  ≥ 0;
2. For set of all possible outcomes Ω, P(Ω) = 1;
3. If A and B are disjoint events, P(A un B) = P(A) + 

P(B)
4. For countably infinite sets, A1, A2, … such that Ai ins 

Aj = Φ for i≠j
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Additional Properties

• For any event, P(A) ≤ 1
• P(AC) = 1 – P(A)
• P(A ∪ B) = P(A) + P(B) – P(A ∩ B)
• P(A) ≤ P(B) for A ⊆ B
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Conditional Probability

• Conditional probability is defined as
P(A ∩ B)

P(A/B) = -------------
P(B)

• P(A/B) probability of event A conditioned on the 
occurrence of event B

• Note: 
• A and B are independent if P(A ∩ B) = P(A)P(B) P(A/B) = 

P(A)
• Independent IS NOT EQUAL TO mutually exclusive
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The Law of Total Probability

• A set of events Ai, i = 1, 2, …, n partitions the set of 
experimental outcomes if

and 

Then we can write any event B in terms of Ai, i = 1, 2, …, 
n as

Furthermore,
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Bayes’ Rule
• Using the total law of probability and applying it to 

the definition of the conditional probability, yields
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Example: Binary Symmetric 
Channel

• Given the binary symmetric channel depicted in 
figure, find P(input = j / output = i); i,j = 0,1. Given 
that P(input = 0) = 0.4, P(input = 1) = 0.6.

0

1

input
0

1

output
P(out=0/in=0) = 2/3

P(out=1/in=1) = 3/4

P(out=0/in=1) =
 1/4

P(out=1/in=0) = 1/3

Solution:

Do it yourself!

7/30/2005 Dr. Ashraf S. Hasan Mahmoud 12

The Cumulative Distribution 
Function
• The cumulative distribution function (cdf) 

of a random variable X is defined as the 
probability of the event {X ≤ x}:

FX(x) = Prob{X ≤ x}    for -∞<x< ∞

i.e. it is equal to the probability the variable X 
takes on a value in the set (- ∞,x]

• A convenient way to specify the 
probability of all semi-infinite intervals
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Properties of the CDF
• 0 ≤ FX(x) ≤ 1

• Lim   FX(x) = 1  
x ∞

• Lim   FX(x) = 0  
x -∞

• FX(x) is a nondecreasing function if a < b FX(a) ≤ FX(b)

• FX(x) is continuous from the right for h > 0, 
FX(b) = lim FX(b+h) = FX(b+)

h 0

• P[a < X ≤ b] = FX(b)  - FX(a)

• P[X = b] = FX(b) - FX(b-) 
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Example 1: Exponential Random 
Variable
• Problem: The transmission time X of a 

message in a communication system obey 
the exponential probability law with 
parameter λ, that is

Prob [X > x] = e- λx x > 0

Find the CDF of X. Find Prob [T < X ≤ 2T] 
where T = 1/ λ
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Example 1: Exponential Random 
Variable – cont’d
• Answer: 
The CDF of X is 
FX(x) = Prob {X ≤ x} = 1 – Prob {X > x}

= 1 - e- λx x ≥ 0
= 0             x < 0

Prob {T < X ≤ 2T} = FX(2T) - FX(T)
= 1-e-2 – (1-e-1)
= 0.233
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Example 2: Use of Bayes Rule
• Problem: The waiting time W of a 

customer in a queueing system is zero if 
he finds the system idle, and an 
exponentially distributed random length of 
time if he finds the system busy. The 
probabilities that he finds the system idle 
or busy are p and 1-p, respectively. Find 
the CDF of W
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Example 2: cont’d
• Answer: 
The CDF of W is found as follows:

FX(x) = Prob{W ≤ x}

= Prob{W ≤ x/idle}p + Prob{W ≤ x/busy}(1-p)

Note Prob{W ≤ x/idle} = 1 for any x > 0 

FX(x) = 0                             x < 0
= p+(1-p)(1- e- λx)   x ≥ 0
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Types of Random Variables
• (1) Discrete Random Variables

• CDF is right continuous, staircase function of x, 
with jumps at countable set x0, x1, x2, …

x0 1 2 3

1/8

1/2

7/8
1

FX(x)

x0 1 2 3

1/8

3/8

pmfX(x)

Pmf: probability mass function
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Types of Random Variables
• (2) Continuous Random Variables

• CDF is continuous for all values of x Prob { X 
= x} = 0 (recall the CDF properties)

• Can be written as the integral of some non 
negative function

∫
∞

∞−

= dttfxFX )()(

Or

dx
xdFtf X )()( =

f(t) is referred to as the probability density function or PDF
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Types of Random Variables
• (3) Random Variables of Mixed Types

FX(x) = p F1(x) + (1-p) F2(x)
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Probability Density Function
• The PDF of X, if it exists, is define as the 

derivative of CDF FX(x):

dx
xdFxf X

x
)()( =
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Properties of the PDF
• fx(x) ≥ 0

∫=≤≤
b

a
x dxxfbxaP )(}{•

• ∫
∞−

=
x

xX dttfxF )()(

∫
∞

∞−

= dttf x )(1•
A valid pdf can be formed from any nonnegative, piecewise 
continuous function g(x) that has a finite integral:

∫
∞

∞−

∞<= cdxxg )(

By letting fX(x) = g(x)/c, we obtain a function that satisfies the
normalization condition.
This is the scheme we use to generate pdfs from simulation 
results!



12

7/30/2005 Dr. Ashraf S. Hasan Mahmoud 23

Conditional PDFs and CDFs
• If some event A concerning X is given, then 

conditional CDF of X given A is defined by
P([X ≤ x] ∩ A)

FX(x/A) = ------------------- if P(A) > 0
P(A)

The conditional pdf of X given A is then defined by

d
fX(x/A) = --- FX(x/A)

dx
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Mean or Expected Value
• Expectation of the random variable X can 

be computed by

∫
∞

∞−

== dxxxfXE x )(][µ

∑
∀

===
i

ii xXPxXE ][][µ

for discrete variables, or

for continuous variables.
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Expectation of a Function of the 
Random Variable
• Let g(x) be a function of the random 

variable x, the expectation of g(x) is given 
by

∫
∞

∞−

= dttftgxgE x )()()]([

∑
∀

==
i

ii xXPxgxgE ][)()]([

for discrete variables, or

for continuous variables.
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Example 3:
• Problem: For X nonnegative r.v. show that

for continuous X:                                 , and 

for discrete X: 

( )∫
∞

−=
0

)(1][ dttFXE x

∑
∞

=

>=
0

)(][
k

kXPXE

Prove the above formulas
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Variance (σ2) – Standard Deviation (σ)
• For continuous X:

• For discrete X: 

• Standard deviation (σ) = √Var(x) = √σ2

• Variance or standard deviation is a measure of 
variability 

( ) ( )[ ] ( ) ( )∫
∞

∞−

−=−= dxxfxxExVar 22 µµ

( ) ( )[ ] ( ) [ ]∑
∀

=−=−=
i

ii xXxxExVar Pr22 µµ

7/30/2005 Dr. Ashraf S. Hasan Mahmoud 28

Coefficient of Variation (COV)
• COV = ratio of standard deviation to the 

mean

• COV is a measure of variability
• What does it mean if COV = 0, < 1, or > 1?

µ
σ

=COV
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Covariance
• Consider two random variables x and y, such that

• For independent x and y (i.e. E[xy] = E[x]E[y]) 

• Two variables are independent σ2
xy = 0, but the 

reverse it not always TRUE!!

( ) ( )( )[ ]yxxy yxEyxCov µµσ −−== 2,
( ) ( ) ( )yExExyE −=

02 =xyσ
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Correlation Coefficient
• Correlation Coefficient: normalized value of 

the covariance

• The normalization is with respect to what?
• What is the range for ρxy ?  

( )
yx

xy
xyyxnCorrelatio

σσ
σ

ρ
2

, ==
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Mean/Variance of Sums
• If x1, x2, …, xk are k r.v. and a1, a2, …, ak

are k arbitrary constants, then

• For independent variables:

( ) ( ) ( ) ( )kkkk xEaxEaxEaxaxaxaE +++=+++ LL 22112211

( ) ( ) ( ) ( )kkkk xVaraxVaraxVaraxaxaxaVar +++=+++ LL 22112211
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Quantile
• We know that FX(x) ∈[0, 1] ∀ x

• The value of x such that FX(x) = α is called 
the α-quantile or 100α-percentile

• Quantile – percentile – fractile – quartile?

[ ] ( ) ααα ==≤ xFxX XPr
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Median
• The 50-percentile (or 0.5 quantile) for the 

r.v.

• i.e. x0.5 such that

[ ] ( ) 5.0Pr 5.05.0 ==≤ xFxX X
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Mode
• Mode: is the most likely value

• x at which pmf or pdf is maximum

• i.e. xm such that (for continuous r.v.)

• Or (for discrete r.v.)

( ) ( ) xxfxf XmX ∀≥

ipp
im xx ∀≥
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Mean – Median - Mode
• Figure 12.1
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Normal Distribution - General
• More details on later slides
• One of the most commonly 

used distributions
• X ~ N(µ, σ) means 

• X is a random variables 
taking values ranging 
from -∞ to +∞

• X has a mean of µ and 
standard deviation of σ
i.e. E[X] = µ, and Var[X] 
= σ2.

• The corresponding 
probability density 
function is given by

fX(x)

x
+∞-∞ µ

+∞≤≤∞−= −− xexf x
X

)2/()( 22

2
1)( σµ

σπ

σπ
µ

2
1)( =Xf
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Normal Distribution – Zero Mean 
and unity Variance
• Referred to as Unit 

Normal or Standard 
Normal Distribution

• µ = 0, and σ = 1 
• Z ~ N(0, 1)

• The corresponding 
probability density 
function is given by

fZ(z)

z
+∞-∞ 0

( ) +∞≤≤∞−= − zezf z
Z

2/2

2
1
π

π2
1)0( =Zf
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Normal Distribution – Zero Mean 
and unity Variance – cont’d
• If X ~ N(µ, σ), then (X- µ)/σ is a standard 

normal distribution, i.e

Pr[(x - µ)/σ ≤ zα] = α
Or 

Pr[x ≤ µ + σ zα] = α
• Prob [0 ≤ Z≤ z] is listed in table A.1 (or 

evaluated to using Q-function or erfc
function)

Show the PQRS tool
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Why is the Normal Distribution 
Important
• Two reasons:

• The sum of n independent normal variates is 
a normal variate, 
• i.e, if x1, x2, …, xn are n independent r.v. (xi

~N(µi, σi), then
• Y = Σaixi is also a normal variable with Y ~ N(µ, 
σ), where µ = Σai µ i and σ2 = Σai

2σi
2

• The sum of a large number of independent
observations from any distribution tends to 
have a normal distribution – central limit 
theorem
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Summarizing Data by a Single 
Number
• Referred to by an “average” of the data

• Should be representative of the major part 
of the data set

• Choices (indices of central tendencies):
• Mean
• Median
• Mode

• Which one to choose? 
• Depends on the problem and the figure of 

interest
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Common Misueses of Means
• Using mean of significantly different 

values
• Using mean without regard to skewness of 

Distribution (refer to table 12.1)
• Multiplying means to get the mean of a 

product (Example 12.1)
• Taking the mean of a ratio with different 

bases
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Example 12.1
• Problem: On a time sharing system, the total 

number of users and the number of subprocesses
for each user are monitored. The average number 
of users is 23 while the average number of 
subprocesses per user is 2. What is the average 
number of subprocesses?

• Solution: The answer is NOT 23 X 2 = 46!
The average number of subprocesses per user is 
dependent on the load or the number of users in 
the system i.e. the two r.v. are correlated and 
therefore E[xy] ≠ E[x]E[y]!
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Geometric Mean
• The geometric mean for n values x1, x2, …, xn is given by

• Another notation: 

• The mean dealt with previous is called the arithmetic mean

• When to use?
• When the product of the observations is meaningful

• The multiplicative property: The geometric mean of a ratio 
is the ratio of the geometric means of the numerator and 
denominator

nn

i
ixx

1

1
⎟
⎠

⎞
⎜
⎝

⎛
= ∏

=

&

( )nxxxgmx ,,, 21 L& =
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Example 12.2
• Problem: The performance improvements in the 

latest version of seven layers of a new networking 
protocol was measured separately for each layer. 
The observations are as listed below. What is the 
average improvement per layer? 

51

282

103

84

115

136

187

Performance 
Improvement (%)

Protocol 
Layer• Solution: The improvements work in a 

multiplicative manner
Average improvement per layer  

= 
[(1.18)(1.13)(1.11)(1.08)(1.10)(1.28)(
1.05)]^(1/7) – 1

= 0.13

i.e average improvement per layer = 13%
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Harmonic Mean
• We are interested in finding the average 

response time for a CPU
• We run n benchmarks of sizes: m1, m2, …, 

mn – Let the elapsed time be t1, t2, …, tn
• The average CPU response time is given by

where the numorator is the total size of all 
benchmarks and the denominator 
represents the total time

∑∑
==

=
n

i
i

n

i
i tmx

11

&&
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Harmonic Mean – cont’d
• The previous expression can be written as

where:
- wi = mi/(Σmj)
- xi = mi/ti

• Note that w1+w2+ …+ wn = 1 
• The above called the weighted harmonic mean for 

the data set xi

• How would the above expression looklike if the 
weights for the n samples are equal?

12211

1
xwxwxw

x
n+++

=
L

&&
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Mean of a Ratio – 1st Case
• Given a set of n ratios – How would you 

summarize them in ONE number
• It depends on the physical meaning of the 

numbers involved

• However, the above is suitable only if the 
numerator and the denominator do not 
follow the multiplicative property (i.e. ai ≈
c bi where c is a constant).
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Example: Mean of a Ratio – 1st Case
• Problem: The CPU utilization of a system 

as measured over five different intervals is 
as shown in table. What is the average CPU 
utilization

≠200/5 or 
40%

Mean

200%sum

20100

451

451

451

451

CPU Busy 
(%)

Measureme
nt Duration• Solution:

sum of CPU busy times
Mean CPU utilization = ------------------------------------

sum of measurement duration
0.45 + 0.45 + 0.45 + 0.45 + 20

= -------------------------------------
1 + 1 + 1 + 1 + 100

= 21%
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Mean of a Ratio – 2nd Case
• If the numerator and the denominator do 

follow the multiplicative property (i.e. ai ≈
c bi where c is a constant), then the 
geometric mean is used!
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Example: Mean of a Ratio – 2nd Case
• A number of benchmarks were run through a 

program optimizer. The static size of the program 
as measured before and after the optimization 
are shown in table. What is the mean 
optimization ratio?

AfterBefore

0.9928792908SieveP

0.82Geometric 
Mean

Towers

QuickP

QueenP

PuzzleP

PermP

IntmmP

BubbleP

Program

433

184

7133

8612

142

158

119

Code Size

0.71307

0.61112

0.997072

0.887579

0.85121

0.85134

0.7589

Ratio

• Solution: 
• Note: 

• program sizes vary a lot (2 orders 
of magnitude between BubbleP
and PuzzleP)

• The after Size is expected to be a 
scaled version of the before size

• Therefore, geometric mean is used
Geo Mean = 0.82
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Summarizing Variability
• Summarizing a data set

• Mean (discussed in the previous slides) –
not enough

• Variability of the data set

• Indeces of Dispersion
• Range – min and max of observed Data
• Variance
• 10- and 90- percentiles
• Semi-interquantile range
• Mean absolute deviation
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Sample Variance
• For a set of n oberservation {x1, x2, …, xn}
• Sample variance, s2

• Sample mean,

• Sample standard deviation, s = √s2

• Coefficient of variation (COV) relates these two 

• Mean absolute deviation:

( )∑
=

−
−

=
n

i
i xx

n
s

1

22

1
1
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=
n

i
ix
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i
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Percentile
• A popular option for specifying dispersion

• e.g. 5-percentile and 95-percentile
• A quantile equal to α is equal to αX100 

percentile 

• Quantile = fractile
• The percentiles at multiples of 10% are 

called deciles (e.g. first decile = 10% 
percentile)

• Quartiles: dividing the data into four parts 
at 25%, 50%, and 75%.
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How to Estimate the α-Quantile?
• Sort the observations
• Take the [(n-1)α+1]th element in the 

ordered set
• [x] is the nearest integer to x
• For quantiles exactly halfway between two 

integers, use the lower integer
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Semi-Interquartile Range (SIQR)
• Interquartile range – range between Q3 

and Q1
• SIQR – half the interquartile range

22
13 25.075.0 xxQQSIQR −

=
−

=
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Example: 12.4
• In an experiment, which was repeated 32 

times, the measured CPU time was found 
to {3.1, 4.2, 2.8, 5.1, 2.8, 4.4, 5.6, 3.9, 3.9, 
2.7, 4.1, 3.6, 3.1, 4.5, 3.8, 2.9, 3.4, 3.3, 
2.8, 4.5, 4.9, 5.3, 1.9, 3.7, 3.2, 4.1, 5.1, 
3.2, 3.9, 4.8, 5.9, 4.2}

• Calculate the 10-percentile?
• Calculate the 10-percentile?
• Calculate Q1, Q2 and SIQR?
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Example: 12.4
• Solution:
• The sorted set = {1.9     2.7     2.8     2.8 2.8 2.9     3.1     

3.1 3.2     3.2 3.3     3.4     3.6     3.7     3.8     3.9     3.9
3.9 4.1     4.1 4.2     4.2 4.4     4.5     4.5 4.8     4.9     
5.1     5.1 5.3     5.6     5.9}

• The 10-percentile is given by [(32-1)*0.1+1] = 4th element 
= 2.8

• The 90-percentile is given by [(32-1)*0.9+1] = 29th

element = 5.1
• The 1st quartile (Q1) is given by [(32-1)*0.25+1] = 9th

element = 3.2
• The 2st quartile (Q2 or median) is given by [(32-1)*0.5+1] 

= 16th element = 3.9
• The 3rd quartile (Q3) is given by [(32-1)*0.75+1] = 24th

element = 4.5

• Thus SIQR = (Q3-Q1)/2 = (4.5 – 3.2)/2 = 0.65
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Which Dispersion Index to Use?
• If variable is bounded – use range
• Else

• If distribution is unimodal symmetric – use 
COV (mean and standard deviation)

• Else use percentiles

• See figure 12.4
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Determining the Distribution of 
Data
• Two methods:

• Histograms
• Quantile-Quantile plot

• The Histogram method:
• Determine maximum and minimum
• Divide range into subranges (cells or buckets)
• Determine count of observations in each subrange
• Normalize counts by dividing by the number of all 

observations
• Plot cell frequencies as column charts

• Problems with histogram: How to determine cell 
size

• Too small cell size – low count (in accurate)
• To large cell size – details of histogram are lost
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Quantile-Quantile Plots
• Good for small sample size
• A plot of observed quantiles versus theoretical 

quantiles
• Procedure:

• If y(i) is the observed qi
th quantile –

• Using the theoretical distribution, the qith quantile xi
is computed

• Plot the points (xi, y(i)) 
• If the assumed distribution is correct – the plot will 

be linear
• How to use the theoretical distribution to get the 

qth quantile? 
• Refer to slide 32
• By definition qi = F(xi) xi = F-1(qi) – i.e. we need to 

find the CDF inverse (refer to table 28.1 for CDF 
inverses for popular distributions)
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Example: Samples from U(0,1)
• Check whether the following samples follow the 

uniform distribution U(0,1). The samples are 
{0.1820    0.4930    0.2909    0.7363    0.9375    
0.9310    0.1080    0.5985}

• Solution:
The sorted samples are {0.1080    0.1820    
0.2909    0.4930    0.5985    0.7363    0.9310    
0.9375}.
For the U(0,1), the PDF is given by f(x) = 1, while 
the CDF is given by F(x) = x for x in (0,1)
This means the qi

th quantile is given by 
xi = F-1(qi) = qi
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Example: Samples from U(0,1) –
cont’d
• Form the following 

table

• Plot (xi, yi) pairs

• Since the relation is 
close to linear – The 
samples appear to be 
uniformly distributed

yiqi = (i-0.5)/n

0.81250.93100.81257
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i
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Example: Samples from U(0,1) –
cont’d
• The following Matlab code is used to generate this example:
0001 clear all
0002 %U(0,1)
0003 N = 8;
0004 y = rand(1,N);
0005 y_sorted = sort(y);
0006 qi = ([1:N]-0.5)/N;
0007 xi       = qi;
0008 [P S] = polyfit(xi, y_sorted,1); % find the linear least squares fit
0009 Ye    = polyval(P, xi);      % evaluate the fitted polynomial
0010 figure(1);
0011 h = plot(xi,y_sorted,'*', xi, Ye,'-');
0012 set(h, 'LineWidth', 2);
0013 axis([0 1 0 1]);
0014 grid
0015 xlabel('uniform quantile');
0016 ylabel('Residual quantile');
0017 legend('observations', 'least-squares fit',4);
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Example: Samples from Exp(1)
• Check whether the following samples follow the 

exponential distribution Exp(1). The samples are 
{0.5956    0.3293    0.8846    1.0637    0.9959    
0.1007    0.1867    0.4457}

• Solution:
The sorted samples are {0.1007    0.1867    
0.3293    0.4457    0.5956    0.8846    0.9959    
1.0637}.
For the Exp(1), the PDF is given by f(x) = exp(-x), 
while the CDF is given by F(x) = 1-exp(-x) for x in 
(0,∞)
This means the qi

th quantile is given by 
xi = F-1(qi) = -ln(1-qi)
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Example: Samples from Exp(1) –
cont’d
• Form the following 

table

• Plot (xi, yi) pairs

• Since the relation is 
close to linear – The 
samples appear to be 
exponentially 
distributed

yiqi = (i-0.5)/n

1.67400.99590.81257
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Example: Samples from Exp(1) –
cont’d
• The following Matlab code is used to generate this example:
0001 clear all
0002 %E(1)
0003 N = 8;
0004 y  = -1*log(rand(1,N));
0005 y_sorted = sort(y);
0006 qi = ([1:N]-0.5)/N;
0007 xi       = -log(1-qi);
0008 [P S] = polyfit(xi, y_sorted,1); % find the linear least squares fit
0009 Ye    = polyval(P, xi);      % evaluate the fitted polynomial
0010 figure(1);
0011 h = plot(xi,y_sorted,'*', xi, Ye,'-');
0012 set(h, 'LineWidth', 2);
0013 %axis([0 1 0 1]);
0014 grid
0015 xlabel('exponential quantile');
0016 ylabel('Residual quantile');
0017 legend('observations', 'least-squares fit',4);

This the same code for the previous example excepts for:
-Line 4 – the generation of the samples
-Line 7 – the calculation of the qi

th quantile
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Example: 12.5 (from the textbook)
• The difference between values measured 

on a system and those predicted by a 
model is called the modeling error. The 
modeling error for eight predictions of a 
model were found to be -0.4, -0.19, 0.14, -
0.09, -0.14, 0.19, 0.04, and 0.09.

• Does these sample appear to come from a 
normal (~N(0,1)) distribution?
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Example: 12.5 – cont’d
• Solution:

to find the qth quantile for N(0,1) – we need to invert the CDF 
which is already not a closed form – the qi

th quantile can be 
approximated by xi = F-1(qi) ≈ 4.19[qi^0.14 – (1-qi)^0.14]

Therefore, one can build the following table and obtain the 
corresponding plot 

• From the figure, the errors DO APPEAR to be normally distributed.

yiqi = (i-0.5)/n

0.8850.140.81257
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Sample Versus Population
• Sample {x1, x2, …, xn} 

• Sample mean = µs

• Population mean = µ

• When n is extremely large, then sample 
mean approaches population mean

• Population characteristics ~ parameters
• Sample estimates ~ statistics
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Confidence Interval for the Mean
• It is NOT possible to get a perfect estimate of the 

population mean from a finite number of finite 
size samples

• The best we can do is get PROBABILISTIC bounds
• For example: Prob[ c1 ≤ µ ≤ c2] = 1 – α

• With probability 1- α, the population mean µ is 
between c1 and c2

• (c1,c2) – confidence interval
• α is the significance level
• 100(1- α) is confidence level
• 1- α is the confidence coefficient
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Confidence Interval for the Mean 
(2)
• Consider the sample {x1, x2, …, xn}

• Assuming large sample (i.e. n ~ 30)
• Independent samples 
• xi is has mean µ and standard deviation σ
• THEN sample mean µs ~ N(µ, σ/√n)  - using the central 

limit theorem
• Standard deviation of µs is called standard error
• Note as n increases, the standard error approaches zero
• Using the central limit theorem, a 100(1-α)% confidence 

interval for the population mean is given by
(µs – z1-α/2s /√n, µs + z1-α/2s /√n)

• µs is the sample mean,
• s is the sample standard deviation
• n is the sample size
• z1-α/2 is the (1- α/2)-quantile of the unit normal variable –

See table A.2 for listing of these quantiles
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Example: Confidence Interval for 
the Mean
• Problem: In an experiment, which was 

repeated 32 times, the measured CPU time 
was found to {3.1, 4.2, 2.8, 5.1, 2.8, 4.4, 
5.6, 3.9, 3.9, 2.7, 4.1, 3.6, 3.1, 4.5, 3.8, 
2.9, 3.4, 3.3, 2.8, 4.5, 4.9, 5.3, 1.9, 3.7, 
3.2, 4.1, 5.1, 3.2, 3.9, 4.8, 5.9, 4.2}

• Calculate the sample mean, the sample 
standard deviation and the 

• Calculate the 90% confidence interval for 
the mean.

• Repeat the calculations for 95% and 99% 
confidence interval for the mean.
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Example: Confidence Interval for 
the Mean
Solution:
Sample size, n = 32
Sample mean, µs = Σxi / n = 3.90
Sample standard deviation, s = √(Σ(xi- µs)2)/(n-1)

= 0.95
The 90% confidence interval significance level, α = 0.1, 

therefore, the required quantile z1- α/2 = z0.95

From table A.2, z0.95 = 1.645
Therefore, confidence interval

3.90 ±(1.645)(0.95)/√32
(3.62, 4.17)

• This means we take 100 samples and construct confidence 
interval for each sample, in 90% of cases the interval with 
include the population mean, and in 10% of the cases the 
interval would not include the population mean
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Example: Confidence Interval for 
the Mean – cont’d
Solution: cont’d
The 95% confidence interval significance level, α = 0.05, 

therefore, the required quantile z1- α/2 = z0.975

From table A.2, z0.975 = 1.960
Therefore, confidence interval

3.90 ±(1.960)(0.95)/√32
(3.57, 4.23)

The 99% confidence interval significance level, α = 0.01, 
therefore, the required quantile z1- α/2 = z0.995

From table A.2, z0.995 = 2.576
Therefore, confidence interval

3.90 ±(2.576)(0.95)/√32
(3.46, 4.33)
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Example: Confidence Interval for 
the Mean – cont’d (Matlab Code)
clear all

ConfidenceLevel = 99;
Samples = [3.1, 4.2, 2.8, 5.1, 2.8, 4.4, 5.6, 3.9, 3.9, ...

2.7, 4.1, 3.6, 3.1, 4.5, 3.8, 2.9, 3.4, 3.3, ...
2.8, 4.5, 4.9, 5.3, 1.9, 3.7, 3.2, 4.1, 5.1, ...
3.2, 3.9, 4.8, 5.9, 4.2];

n       = length(Samples);
Mue_s = mean(Samples);
Sigma_s = sqrt(var(Samples));

p   = 1-(1 - ConfidenceLevel/100)/2;
z_p = norminv(p, 0, 1);

Mue_L = Mue_s - z_p*Sigma_s/sqrt(n);
Mue_H = Mue_s + z_p*Sigma_s/sqrt(n);
fprintf('The %7.0f%% confidence interval for the mean = (%7.2f, %7.2f)\n', ...

ConfidenceLevel, Mue_L, Mue_H);

Note: norminv() is the matlab function 
for computing the required quantiles
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Example: Confidence Interval for 
the Mean – cont’d
Figure 13.1 –Meaning of the confidence 

interval
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Confidence Interval for the Mean 
(3)
• For small sample size (n < 30) and if the 

samples come from a normally distributed 
population, the 100(1-α)% confidence 
interval is given by
(µs – t[1-α/2;n-1]s /√n, µs + t[1-α/2;n-1]s /√n)

• t[1-α/2;n-1] are tabulated in the textbook 
(A.4)
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Example: Confidence Interval for 
the Mean
• Problem: The difference between values 

measured on a system and those predicted 
by a model is called the modeling error. 
The modeling error for eight predictions of 
a model were found to be -0.04, -0.19, 
0.14, -0.09, -0.14, 0.19, 0.04, and 0.09.

• Calculate the 90% confidence interval for 
the measured error
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Example: Confidence Interval for 
the Mean – cont’d
• Solution:

Sample mean, µs = 0
Sample size, n = 8
Sample standard deviation, s = 0.138
The 90% confidence interval significance level, 
α = 0.1, therefore, the required quantile t1- α/2 = 
t0.95,7

From table A.4, t0.95,7 = 1.895
Therefore, confidence interval

0 ±(1.895)(0.138)/√8
(-0.0926, 0.0926)
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Testing For A SPECIFIC Mean Value
• Is the population mean 

equal to a specific value 
θ?

• It depends on the 
confidence interval 

• If the confidence 
interval contains θ
Yes

• If the confidence 
interval doe not 
contains θ No

Mean

CI includes zero
Mean = 0

CI does not includes zero
Mean ≠ 0
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Example: Testing For A SPECIFIC 
Mean Value
• Problem: The difference in the processor 

times of two different implementations of 
the same algorithm was measured on 
seven similar workload. The differences 
are {1.5, 2.6, -1.8, 1.3, -0.5, 1.7, 2.4}

• Can we say with 99% confidence that one 
implementation is superior to the other?
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Example: Testing For A SPECIFIC 
Mean Value – cont’d
• Solution: 
Sample size, n = 7
Sample mean, µs = 1.03
Sample variance = 2.57 s = 1.60
Confidence interval = 1.03 ± t X 1.60 / √7

= 1.03 ± 0.605 t
100(1- α) = 99% α = 0.01 1- α/2 = 0.995
Therefore, t0.995,6 = 3.707

Hence, 99% confidence interval = (-1.21, 3.27) – includes the 
zero

Therefore, we can not say with 99% confidence that the 
mean difference is significantly different from zero
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Comparing Two Alternatives
• Often it is required to compare two or more 

systems
• If the requirement is to compare

• TWO SYSTEMS under
• Similar work loads
• Then we can use confidence intervals to perform 

the comparison
• ELSE use simulation techniques!!

• For two systems under similar work loads, the 
reading can be 

• Paired (i.e. follow the form (x,y))
• Unpaird
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Comparing Two Alternatives –
cont’d
• For two systems under similar work loads, the 

reading can be 
• Paired (i.e. follow the form (x,y))
• Unpaird

• For the paired case:
• Form the sample (x-y)
• If the confidence interval for the difference sample 

contain the zero, then the two systems are not 
significantly different!!

• See the matlab function “signtest( )”
• For the unpaired case 

• Perform the t-test – to be explained in the coming 
slides

• See the matlab function “ttest( )”
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Example: Paired Observations -
Comparing Two Alternatives
• Problem: Six similar workloads were used 

on two systems. The observations are 
({15.3, 19.1), (16.6, 3.5), (0.6, 3.4), (1.4, 
2.5), (0.6, 3.6), (7.3, 1.7)}

• Is one system better than the other?
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Example: Paired Observations -
Comparing Two Alternatives – cont’d
• Solution: 

The performance difference constitute a sample of six 
observations {-13.7, 13.1, -2.8, -1.1, -3.0, 5.6}

Following the same procedure for testing for a zero mean, 
results in:

Sample size               =   6
Sample mean               =  -0.317
Sample standard deviation =   9.034
Confidence level 100(1-a) =  90% ==> a = 0.100 and 1-a/2 = 0.9500
confidence interval for mean =  -0.317 +- tp *   9.034 / sqrt(  6)
confidence interval for mean =  -0.317 +- tp * (  3.688)
the 0.9500-quantile of the t-variate with  5 degrees of freedom t =  2.0150
The      90% confidence interval is given by ( -7.749,   7.115)
Confidence interval (  -7.75,    7.12) contains the zero

Therefore, the two systems are not different
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Example: Paired Observations -
Comparing Two Alternatives – cont’d 
(Matlab Code - 1)
• Code that can be used for solving examples in this section: 

0001 clear all
0002 %
0003 % Code for generating confidence intervals - can be used also for
0004 % - testing for a specific mean value
0005 % - comparing paired observations
0006 ConfidenceLevel = 90;   % required confidence level
0007 % put your samples here
0008 Samples = [-13.7, 13.1, -2.8, -1.1, -3.0, 5.6];
0009 n       = length(Samples);
0010 Mue_s = mean(Samples);
0011 Sigma_s = sqrt(var(Samples));
0012 
0013 p   = 1-(1 - ConfidenceLevel/100)/2;
0014 
0015 fprintf('Sample size               = %3d\n', n);
0016 fprintf('Sample mean               = %7.3f\n', Mue_s);
0017 fprintf('Sample standard deviation = %7.3f\n', Sigma_s);
0018 fprintf('Confidence level 100(1-a) = %3.0f%% ==> a = %4.3f and 1-a/2 

= %5.4f\n', ...
0019     ConfidenceLevel, 1- ConfidenceLevel/100, p);

Example_13_4.m
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Example: Paired Observations -
Comparing Two Alternatives – cont’d 
(Matlab Code - 2)
• Code that can be used for solving examples in this section – cont’d: 

0020 %
0021 % check whether to use the normal quantile or the t-distribution
0022 if (n>30)
0023     z_p = norminv(p, 0, 1);
0024     fprintf('confidence interval for mean = %7.3f +- zp * %7.3f / sqrt(%3d)\n', ...
0025         Mue_s, Sigma_s, n);
0026     fprintf('confidence interval for mean = %7.3f +- zp * (%7.3f)\n', ...
0027         Mue_s, Sigma_s/sqrt(n));
0028     fprintf('the %5.4f-quantile of the normal-variate z = %7.4f\n', p, z_p);
0029     Mue_L = Mue_s - z_p*Sigma_s/sqrt(n);
0030     Mue_H = Mue_s + z_p*Sigma_s/sqrt(n);
0031     fprintf('The %7.0f%% confidence interval is given by (%7.3f, %7.3f)\n', ...
0032          ConfidenceLevel, Mue_L, Mue_H);    
0033 else
0034     t_p = tinv(p, n-1);
0035     fprintf('confidence interval for mean = %7.3f +- tp * %7.3f / sqrt(%3d)\n', ...
0036         Mue_s, Sigma_s, n);
0037     fprintf('confidence interval for mean = %7.3f +- tp * (%7.3f)\n', ...
0038         Mue_s, Sigma_s/sqrt(n));
0039     fprintf('the %5.4f-quantile of the t-variate with %2d degrees of freedom t = %7.4f\n', ...
0040         p, n-1, t_p);
0041     Mue_L = Mue_s - t_p*Sigma_s/sqrt(n);
0042     Mue_H = Mue_s + t_p*Sigma_s/sqrt(n);
0043     fprintf('The %7.0f%% confidence interval is given by (%7.3f, %7.3f)\n', ...
0044          ConfidenceLevel, Mue_L, Mue_H);    
0045 end
0046 if (Mue_L*Mue_H < 0)
0047     fprintf('Confidence interval (%7.2f, %7.2f) contains the zero\n', ...
0048          Mue_L, Mue_H);
0049  else
0050      fprintf('Confidence interval (%7.2f, %7.2f) does NOT contain the zero\n', ...
0051           Mue_L, Mue_H);
0052  end
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Unpaired Observations - Comparing 
Two Alternatives
• t-test – refer to 

textbook
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Example: Unpaired Observations -
Comparing Two Alternatives
• Problem: The processor time required to 

execute a task was measured on two 
systems. The times on system A were 
{5.36, 16.57, 0.62, 1.41, 0.64, 7.26}. The 
times on system B were {19.2, 3.52, 3.38, 
2.5, 3.60, 1.74}

• Are the two system significantly different?
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Example: Unpaired Observations -
Comparing Two Alternatives – cont’d
• Solution: 

Following the procedure for the t-test:
System A:
Sample size               =   6
Sample mean               =   5.310
Sample standard deviation =   6.158
System B:
Sample size               =   6
Sample mean               =   5.657
Sample standard deviation =   6.674
Confidence level 100(1-a) =  90% ==> a = 0.100 and 1-a/2 = 0.9500
Mean difference Mue_A - Mue_B =  -0.347
Sigma for mean difference     =   3.707
Effective number of degrees of freedom, f =  11.910 ( 12)
confidence interval for mean  =  -0.347 +- tp *   3.707 
the 0.9500-quantile of the t-variate with 12 degrees of freedom t 

=  1.7823
The      90% confidence interval is given by ( -6.954,   6.261)
The two systems ARE NOT significantly different
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Example: Unpaired Observations -
Comparing Two Alternatives – cont’d 
(Matlab Code - 1)
• Solution: 

Matlab code for performing the t-test:
0001 clear all
0002 %
0003 % Code for t-test
0004 ConfidenceLevel = 90;   % required confidence level
0005 % put your samples here
0006 Samples_A = [5.36, 16.57, 0.62, 1.41, 0.64, 7.26];
0007 Samples_B = [19.2, 3.52, 3.38, 2.5, 3.60, 1.74];
0008 n_A = length(Samples_A);
0009 Mue_s_A = mean(Samples_A);
0010 Sigma_s_A = sqrt(var(Samples_A));
0011 
0012 n_B = length(Samples_B);
0013 Mue_s_B = mean(Samples_B);
0014 Sigma_s_B = sqrt(var(Samples_B));
0015 
0016 Mean_Difference = Mue_s_A - Mue_s_B;
0017 Sigma_Mean_Difference = sqrt(Sigma_s_A*Sigma_s_A/n_A + Sigma_s_B*Sigma_s_B/n_B);
0018 Effective_number = (Sigma_Mean_Difference^4)  / ...
0019     ((Sigma_s_A*Sigma_s_A/n_A)^2/(n_A+1) + (Sigma_s_B*Sigma_s_B/n_B)^2/(n_A+1)) ...
0020     - 2;
0021 Effective_number_rounded = round(Effective_number);
0022 
0023 p   = 1-(1 - ConfidenceLevel/100)/2;
0024 t_p = tinv(p, Effective_number_rounded);
0025 
0026 fprintf('System A:\n');
0027 fprintf('Sample size               = %3d\n', n_A);
0028 fprintf('Sample mean               = %7.3f\n', Mue_s_A);
0029 fprintf('Sample standard deviation = %7.3f\n', Sigma_s_A);
0030 fprintf('System B:\n');
0031 fprintf('Sample size               = %3d\n', n_B);
0032 fprintf('Sample mean               = %7.3f\n', Mue_s_B);
0033 fprintf('Sample standard deviation = %7.3f\n', Sigma_s_B);

If n > 30, use the z-value 
(or the norminv() function)
in line 0024
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Example: Unpaired Observations -
Comparing Two Alternatives – cont’d 
(Matlab Code - 2)
• Solution: 

Matlab code for performing the t-test: cont’d

0034 
0035 fprintf('Confidence level 100(1-a) = %3.0f%% ==> a = %4.3f and 1-a/2 = %5.4f\n', ...
0036     ConfidenceLevel, 1- ConfidenceLevel/100, p);
0037 
0038 fprintf('Mean difference Mue_A - Mue_B = %7.3f\n', Mean_Difference);
0039 fprintf('Sigma for mean difference     = %7.3f\n', Sigma_Mean_Difference);
0040 fprintf('Effective number of degrees of freedom, f = %7.3f (%3d)\n', ...
0041     Effective_number, Effective_number_rounded);
0042     
0043 fprintf('confidence interval for mean  = %7.3f +- tp * %7.3f \n', ...
0044         Mean_Difference, Sigma_Mean_Difference);
0045 fprintf('the %5.4f-quantile of the t-variate with %2d degrees of freedom t = %7.4f\n', ...
0046         p, Effective_number_rounded, t_p);
0047 Mue_L = Mean_Difference - t_p*Sigma_Mean_Difference;
0048 Mue_H = Mean_Difference + t_p*Sigma_Mean_Difference;
0049 fprintf('The %7.0f%% confidence interval is given by (%7.3f, %7.3f)\n', ...
0050          ConfidenceLevel, Mue_L, Mue_H);    
0051 
0052 if (Mue_L*Mue_H < 0)
0053     fprintf('The two systems ARE NOT significantly different\n', ...
0054          Mue_L, Mue_H);
0055  else
0056      fprintf('The two systems ARE significantly different\n', ...
0057           Mue_L, Mue_H);
0058  end
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Approximate Visual Test - Comparing 
Two Alternatives 
• Simpler than t-test
• Procedure:

• Compute confidence interval (CI) for each alternative
• If CIs do not overlap the two systems are significantly 

different
• Else CIs overlap and mean of one is in the CI of the other 

the two system are NOT significantly different
• Else CIs overlap but mean of any one is not in the CI of 

the other perform the t-test

Mean

CIs do not overlap 
A is higher than B

A

B

Mean

CIs overlap and mean of one 
is in the CI of the other 

A and B are NOT 
significantly different

A
B

Mean

CIs overlap but mean of any one 
is not in the CI of the other 

Perform the t-test

A

B
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One-Sided Confidence Interval
• For a two-sided confidence level of 100(1-α)% 

• There is a 100α/2% chance the sample will be more than 
the upper confidence limit

• There is a 100α/2% chance the sample will be less than 
the upper confidence limit

• To test a hypothesis that the mean is greater than a certain 
value – use one-sided confidence interval

• Given by (µs – t[1-α;n-1]s /√n, µs)
• The one-sided upper confidence interval for the population 

mean 
• Given by (µs, µs + t[1-α;n-1]s /√n)

• For large (n > 30) samples, z-values are used instead of t-
values.
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Example: One-Sided Confidence 
Interval 
• Problem: Refer to example 13.8 in 

textbook
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Confidence Interval for Proportions
• For categorical variables, the statistical data 

often consist of probabilities associated with 
various categories

• Such probabilities are called PROPORTIONS
• How to generate a confidence interval for an 

proportion estimate?
• Procedure:

• Sample proportion = p = n1/n
• CI for proportion   = p ± z1-α/2√(p(1-p)/n)

• Condition: np ≥ 10 (Binomial distribution ≈
Normal distribution)

• If condition is not satisfied – can not use t-test
• Procedure not defined at this stage
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Example: Confidence Interval for 
Proportions
• Problem: If 10 out 1000 pages printed on 

a laser printer are illegible. 

• Characterize the proportion of illegible 
pages using a 90% and 95% confidence 
intervals
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Example: Confidence Interval for 
Proportions – cont’d
• Solution:

For 90% confidence:

Sample proportion    =   0.010
n*p =  10.000 >= 10 is  satisfied
Confidence level 100(1-a) =  90% ==> a = 0.100 and 1-a/2 = 0.9500
confidence interval for proportion =  0.0100 +- za * sqrt(  0.010 *   

0.990 / 1000)
confidence interval for proportion =  0.0100 +- za *   0.003
the 0.9500-quantile of the normal-variate z =  1.6449
The      90% confidence interval is given by (0.0048, 0.0152)

For 95% confidence:
the 0.9750-quantile of the normal-variate z =  1.9600
The      95% confidence interval is given by (0.0038, 0.0162)
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Example: Confidence Interval for 
Proportions – cont’d (Matlab Code)
• Matlab code for confidence interval for proportions:
0001 clear all
0002 %
0003 % Code for generating confidence intervals for proportions
0004 ConfidenceLevel = 90;   % required confidence level
0005 % put your samples here
0006 n1 = 10;
0007 n  = 1000;
0008 p  = n1/n;
0009 
0010 a   = 1-(1 - ConfidenceLevel/100)/2;
0011 
0012 fprintf('Sample proportion    = %7.3f\n', p);
0013 if (p*n<10)
0014     fprintf('n*p = %7.3f >= 10 is not satisfied\n',n*p);
0015 else
0016     z_a = norminv(a,0,1);
0017     fprintf('n*p = %7.3f >= 10 is  satisfied\n',n*p);
0018     fprintf('Confidence level 100(1-a) = %3.0f%% ==> a = %4.3f and 1-a/2 = %5.4f\n', ...
0019         ConfidenceLevel, 1- ConfidenceLevel/100, a);
0020     fprintf('confidence interval for proportion = %7.4f +- za * sqrt(%7.3f * %7.3f / %4d)\n', ...
0021         p, p, 1-p, n);
0022     fprintf('confidence interval for proportion = %7.4f +- za * %7.3f\n', ...
0023         p, sqrt(p*(1-p)/n));
0024     fprintf('the %5.4f-quantile of the normal-variate z = %7.4f\n', a, z_a);
0025     p_L = p - z_a*sqrt(p*(1-p)/n);
0026     p_H = p + z_a*sqrt(p*(1-p)/n);
0027     fprintf('The %7.0f%% confidence interval is given by (%5.4f, %5.4f)\n', ...
0028          ConfidenceLevel, p_L, p_H);    
0029 end
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Example: Confidence Interval for 
Proportions – Testing for Zero
• Problem: A single experiment was 

repeated on two systems 40 times. System 
A was found superior to system B in 26 
repetitions. 

• Can we state with 99% confidence that 
system A is superior?
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Example: Confidence Interval for 
Proportions – Testing for Zero – cont’d
• Solution: 
• For 99% confidence:
Sample proportion    =   0.650
n*p =  26.000 >= 10 is  satisfied
Confidence level 100(1-a) =  99% ==> a = 0.010 and 1-a/2 = 0.9950
confidence interval for proportion =  0.6500 +- za * sqrt(  0.650 *   0.350 /   40)
confidence interval for proportion =  0.6500 +- za *   0.075
the 0.9950-quantile of the normal-variate z =  2.5758
The      99% confidence interval is given by (0.4557, 0.8443)

• We note that 0.5 (the point of equality between two systems) is 
included in the interval we can NOT say with 99% that A is 
superior

• For 99% confidence:
Sample proportion    =   0.650
n*p =  26.000 >= 10 is  satisfied
Confidence level 100(1-a) =  90% ==> a = 0.100 and 1-a/2 = 0.9500
confidence interval for proportion =  0.6500 +- za * sqrt(  0.650 *   0.350 /   40)
confidence interval for proportion =  0.6500 +- za *   0.075
the 0.9500-quantile of the normal-variate z =  1.6449
The      90% confidence interval is given by (0.5260, 0.7740)

• We note that 0.5 (the point of equality between two systems) is 
NOT included in the interval we can say with 90% that A is 
superior
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Determining Sample Size
• Previously, we were given a sample set 

and required to calculate the confidence 
interval for some confidence level

• The other side of the coin – Can you 
calculate the size of the samples set for a 
required confidence level?

• E.g. how many iterations should you run 
your code for a 95% confidence in the 
collected mean throughput?
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Determining Sample Size – cont’d
• Suppose we want to estimate the mean 

with an accuracy of ±r% and a confidence 
level of 100(1-α)%

• We know the confidence interval is given 
by µs ± z X s /√n = µs (1±r/100)

• Therefore, n = (100 z s / (r µs ))^2
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Example: Determining Sample Size
• Problem: Based on a preliminary test, the 

sample mean of the response time is 20 
seconds, and the sample standard 
deviation is 5. 

• How many repetitions are needed to get 
the response time accurate within 1 
second at 90% confidence?
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Example: Determining Sample Size 
– cont’d
• Solution: 

Required accuracy = 1 in 20  = 5%
µs = 20, s = 5, r = 5%
Confidence level 100(1-a) =  95% ==> a = 0.05 and 1-a/2 
= 0.9750
z0.95 = 1.960

Therefore, required repetitions

(100)(1.960)(5)
n = (-------------------)^2 = 9.8^2 = 96.04

(5) (20)

A total of 97 observations are required.
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Sample Size for Determining 
Proportions
• The CI for proportions is given by

p ± z√(p(1-p)/n)

• To get half-width (accuracy of) r,
p ± r = p ± z√(p(1-p)/n)

p(1-p)
• Therefore, n = z^2 ----------

r^2
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Example: Determining Sample Size 
for Proportions
• Problem: A preliminary measurement of a 

laser printer showed an illegible print rate 
of 1 in 10,000.

• How many pages must be observed to get 
an accuracy of 1 per million at 95% 
confidence?
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Example: Determining Sample Size 
for Proportions – cont’d
• Solution:

p = 1/10 000 = 10-4, r = 10-6, z = 1.960

10-4(1-10-4)
n = (1.960)^2 ---------------

(10-6) (10-6)

= 384,160,000
A total of 384.16 million pages must be observed.
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Sample Size for Comparing Two 
Alternatives
• Utilizing the previous info, we need to 

make the CI for the two systems non 
overlapping (refer to “Visual Test” slide)

• Therefore, the upper edge of the lower 
confidence interval should be below the 
lower edge of the upper confidence 
interval
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Example: Sample Size for 
Comparing Two Alternatives
• Problem: Two packet-forwarding 

algorithms were measured. Preliminary 
measurements showed that algorithm A 
loses 0.5% of packets and algorithm B 
loses 0.6%.

• How many packets do we need to 
observed to state with 95% that 
algorithm A is better than algorithm?
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Example: Sample Size for Comparing 
Two Alternatives – cont’d
• Solution: 

CI for algorithm A = 0.005 ± 1.960 (0.005(1-0.005)/n)^2
CI for algorithm B = 0.006 ± 1.960 (0.006(1-0.006)/n)^2

For A to be better than B
upper edge of CI for A should be lower than lower edge of 
CI for B, ie.

0.005+1.960 (0.005(1-0.005)/n)^2 < 0.006 - 1.960 
(0.006(1-0.006)/n)^2

n > 84340

We need to observe 85,000 packets  



57

7/30/2005 Dr. Ashraf S. Hasan Mahmoud 113

Some Important Random Variables 
– Discrete Random Variables
• Bernoulli
• Binomial
• Geometric
• Poisson

Identities to remember:
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Bernoulli Random Variable
• Let A be an event related to the outcomes of some random 

experiment. The indicator function for A is defined as

IA(ζ) = 0     if ζ not in A
= 1     if ζ is in A

• IA is random variable since it assigns a number to each outcome in S
• It is discrete r.v. that takes on values from the set {0,1}
• PMF is given by

pI(0) = 1-p, pI(1) = p
where P(A) = p

• Describes the outcome of a Bernoulli trial 

• E[X] = p,    VAR[X] = p(1-p)
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Binomial Random Variable
• Suppose a random experiment is repeated n independent 

times; let X be the number of times a certain event A occurs 
in these n trials

X = I1 + I2 + … + In

i.e. X is the sum of Bernoulli trials (X’s range = {0, 1, 2, …, n})

• X has the following pmf

for k=0, 1, 2, …, n   

• E[X] = np,     Var[X] = np(1-p)

knk pp
k
n

kXP −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
== )1(][
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Geometric Random Variable
• Suppose a random experiment is repeated - We 

count the number of M of independent Bernoulli 
trials until the first occurrence of a success

• M is called geometric random variable
• Range of M = 1, 2, 3, …

• X has the following pmf

for k=1, 2, 3, …

• E[X] = 1/p,      Var[X] = (1-p)/p2

ppkX k 1)1(]Pr[ −−==
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Geometric Random Variable - 2
• Suppose a random experiment is repeated - We 

count the number of M of independent Bernoulli 
trials until the first occurrence of a success – not 
counting the successful trial                  

• M is called geometric random variable
• Range of M = 0, 1, 2, 3, …

• X has the following pmf

for k=0, 1, 2, 3, …

• E[X] = (1-p)/p,      Var[X] = (1-p)/p2

ppkX k)1(]Pr[ −==

Note the different range for 
these two Geometric r.v.s
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Poisson Random Variable
• In many applications we are interested in counting the 

number of occurrences of an event in a certain time period

• The pmf is given by

For k=0, 1, 2, … ; 
α is the average number of event occurrences in the specified 

interval

• E[X] = α,     Var[X] = α

• Poisson is the limiting case for Binomial as n ∞, p 0, such 
that np = α – remember 

αα −== e
k

kX
k

!
]Pr[

( ) λλ −
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=− en n
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1lim
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Poisson Random Variable - 2
• If the average rate of occurrence per time 

unit is λ, then the average number of 
occurrences in t seconds is equal to λt

• The probability of k occurrences in t 
seconds is given by 

( ) ( ) ,...2,1,0
!

== − ke
k
ttP t

k

k
λλ

Compared to previous slides – we have replaced α by λt
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Some Important Random Variables 
– Continuous Random Variables
• Uniform
• Exponential
• Gaussian (Normal)
• Rayleigh
• Gamma
• Pareto
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Uniform Random Variables
• Realizations of the r.v. can take values 

from the interval [a, b]

• PDF fX(x) = 1/(b-a)         a≤x≤b

• E[X] = (a+b)/2,    Var[X] = (b-a)2/12
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Example 5: Analog-to-Digital 
Conversion
Problem: compute the SNR for a uniform 

quantizer using 2N representation values?
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Exponential Random Variables
• The exponential r.v. X with parameter λ

has pdf

• And CDF given by

• Range of X: [0, ∞)

• E[X] = 1/λ,     Var[X] = 1/λ2

⎩
⎨
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Exponential Random Variables –
cont’d
• The exponential r.v. is the only r.v. with the memoryless

property!!
• Memoryless Property:

P[X>t+h/ X>t] = P[X>h]

Proof:
P[(X > t+h) ∩ (X > t)]

P[X>t+h/ X>t] = ---------------------------
P[(X > t)]

P[(X > t+h)        e-λ(t+h)

= --------------- = ----------
P[X > t]             e-λt

= e-λh

= P[X > h]
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Gaussian (Normal) Random 
Variable
• Rises in situations where a random variable X is the sum of 

a large number of “small” random variables – central limit 
theorem

• PDF

For -∞<x< ∞; µ and σ > 0 are real numbers

• The characteristic function is given by 

• E[X] = µ,       Var[X] = σ2
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Gaussian (Normal) Random 
Variable - 2
• CDF given by

where
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Rayleigh Random Variable
• Rises in modeling of mobile channels
• Range: [0, ∞)

• PDF:

• For x ≥ 0, α > 0

• E[X] = α√(π/2),    Var[X] = (2-π/2)α2

)2/(
2

22

)( α

α
x

X exxf −=
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Gamma Random Variable
• Versatile distribution ~ appears in modeling of lifetime of devices 

and systems
• Has two parameters: α > 0 and λ > 0

• PDF: 

• For 0 < x < ∞
• The quantity Г(z) is the gamma function and is specified by

• The gamma function has the following properties:
• Г(1/2) =  √π
• Г(z+1) = zГ(z)  for z>0
• Г(m+1) = m!    For m nonnegative integer

• E[X] = α/λ,     Var[X] = α/λ2

• ФX(ω) = 1/(1-jω/ λ)α
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If α = 1 gamma r.v. 
becomes exponential
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Pareto Random Variable
• Originally used by economists to model 

income and other soci-economic 
quantities.

• For α (shape parameter) > 0, β (scale 
parameter) > 0, the PDF is given by

• The CDF is given by
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Pareto Random Variable - 2
• nth moment (if it exists) is given by

• Expected value:

• Variance: 
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Example 6: Packet Size Modeling
• Pareto distribution is used to model the 

packet size, P, in bytes for internet traffic 
as follows:

where x is a Pareto random variable with the 
following PDF

θ is given by 
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Example 7: Packet Size Modeling
• Calculate the expected value for packet size using 

the model proposed in Example 3?

• Models proposed to test ETSI/UMTS networks use 
the following parameters: α = 1.1, β = 81.5 Bytes, 
Smax = 66,666 Byte (this results in a mean 
packet size of 480 Bytes)


