King Fahd University of Petroleum \& Minerals Computer Engineering Dept

COE 402 - Computer System Performance - Project Statement
Term 043
Dr. Ashraf S. Hasan Mahmoud
Rm 22-148-3
Ext. 1724
Email: ashraf@ccse.kfupm.edu.sa

Lecture Contents

1.

CDMA Downlink Capacity - Problem Statement

- This is a data transmission scheduling problem where the total system power is the shared resource. CDMA is the chosen multiple access for future mobile and wireless networks. For CDMA systems there exist no hard capacity limit (i.e. number of time slots or frequency carriers) but rather connection requests are accepted as long as the collective quality of all transmissions within the network is acceptable. For downlink (from basestation to mobile) transmissions, the total available power for traffic should not be exceeded as well. Under these conditions and using basic scheduling techniques like FCFS, it is required to evaluation the network throughput and other basic performance figures like mean access delay, request drop rate, etc.

System Description

- System:
- Basestation with maximum power budget of Ptotal Watts
- Can support only the following rates: R0, R1 $=2 \mathrm{RO}, \mathrm{R} 2=$ $4 R 0, R 3=8 R 0$, and R4 $=16 R 0$
- System bandwidth $=\mathrm{W} \mathrm{Hz}$
- Orthogonality factor $=\rho(0 \leq \rho \leq 1)$

Figure shows the cell of interest with a basestation in the center. The basestation is communicating on the downlink with three mobiles located at distances: d_{0}, d_{1}, and d_{2} from the basestation.

The basestation receives from the infrastructure network packets that are destined for each of users. It transmits these packets on the downlink using the assigned system rates.

When the base station can not serve an incoming packet, the packet is queued at basestation till it is possible to transmit the packet.

System Description (2)

- Consider a basestation in the cell of interest, serving N users
- $\mathrm{i}^{\text {th }}$ user $(i=0,1, \ldots, M)$ is at distance d_{i} from basestation
- The $i^{\text {th }}$ user is assigned a data rate R_{i}
- The simultaneous downlink transmissions from one basestation are ideally orthogonal (i.e. do not interfere with each other). However, in practice, there is loss of orthogonality and therefore, simultaneous downlink transmissions interfere with one another
- $\rho=1$ means perfect orthogonality
- $\rho=0$ means total loss of orthogonality

System Description (3)

- The basestation can assign any of the follow bit rates $=\left\{R_{i,} 2^{i} R_{0}, i=0,1, \ldots, 5\right\}$ where $R_{0}=$ 9.6 kb/s -
- Assume users request the highest rate possible given the available power and interference conditions
The basestation allocates enough transmit power, $P_{i j}$ to the $i^{\text {th }}$ mobile such that recevied (Eb/No)i is at least equal to a required EbNo threshold.

System Description (4)

- The basestation is continuously transmitting overhead channels (pilot, sync and paging) The fraction of power allocated for overhead channels is $\beta(0 \leq \beta \leq 1)$
- Overhead power, Pov $=\beta$ Ptotal
- The maximum power that can be used for traffic channels is given by, Ptraffic $=(1-\beta)$ Ptotal
- Thermal noise can be neglected

System Description (5)

- When our cell is serving N transmissions (or bursts), then the total transmitted power is given by:

$$
\sum_{i=0}^{N-1} P_{i}+P o v
$$

which is always less than or equal to Ptotal

What Are The Typical System Parameters?

- System bandwidth, $\mathrm{W}=1.25 \mathrm{MHz}$
- Minimum $\mathrm{Eb} / \mathrm{No}$ required $=5 \mathrm{~dB}$ (note has to be converted to real numbers - i.e. $\left.10^{\wedge}(5 / 10)=3.1623\right)$
- Overhead power fraction, $\beta=0.2$
- Total power budget $=24$ Watts
- Orthogonality factor, $\rho=0.1$
- Mean packet arrival per user = 5 packets/sec
- (mean) packet size $=1000$ bit

How to Allocate P_{i} ?

- For the ith user $(\mathrm{i}=0,1, \ldots, \mathrm{~N}-1)$ calculate $g_{i j}$ where g_{i} is given by

$$
g_{i}=\left(\left(W / R_{i}\right) /\left(E_{b} / N_{0}\right)_{\min }+1-\rho\right)^{-1}
$$

- Note ($\mathrm{Eb} / \mathrm{No}$) min is the minimum required $\mathrm{Eb} / \mathrm{No}$ figure for correct operation of the link
- ρ is the orthogonality factor
- W is the system bandwidth in Hz
- Perform the following check

$$
\sum_{i=0}^{N-1} g_{i}\left(1-\rho+f_{i}\right) \leq(1-\beta)
$$

- Remember β is the fraction of ${ }^{i=0}{ }^{i=}$ erhead power
- If the above is true then Pi's can be calculated using

$$
P_{i}=g_{i}\left(1-\rho+f_{i}\right) \frac{\text { Pov }}{1-\sum_{i=0}^{N-1} g_{i}\left(1-\rho+f_{i}\right)}
$$

- If the condition is NOT true, then the system can not support these specific N users at the specified rates

Definition of f_{i}

- $\quad f_{i}$ is a parameter that summarizes the radio frequency propagation loss and intercell interference
- This parameter is a function of the user location (distance)
- For a user at distance d_{i} from basestation, f_{i} for that particular user is equal to

$$
f_{i}\left(d_{i}\right)=\sum_{k=0}^{5} a_{k} d_{i}^{k}
$$

where the coefficients of the $5^{\text {th }}$ degree polynomial are given by $\left[a_{5} a_{4} a_{3} a_{2} a_{1} a_{0}\right]=[17.04825264741491$

$$
\begin{array}{r}
-28.61622283071572 \\
20.16491247631064 \\
-5.67993466014081 \\
0.61065458307801 \\
0] ;
\end{array}
$$

How to Position Users?

- To position user's randomly (and uniformly) in the cell
- Assume a circular cell of radius equal to 1 unit
- The position $\left(d_{j i} \theta_{i}\right)$ is specified by:
- $d_{i}=\operatorname{sqrt}(r a n d())$
- $\theta_{i}=2^{*} \square^{*}$ rand ()

Only the distance d_{i} is important for our calculations. Given d_{i}, you can

- Calculate f_{i} (a $5^{\text {th }}$ degree polynomial in d_{i}), -Using f_{i}, the required ($\mathrm{Eb} / \mathrm{No}$)min, and the bit rate R_{i} to be assigned, g_{i} (and P_{i} if possible) can be calculated.

How to Generate Packet Arrivals for One User?

- Remember all packet arrivals happen at the basestation.
- Basestation attempts to assign a bit rate for the user and transmit the packet to the user on the downlink
- Interarrival times for packets of one user can be generated by:
- Interarrival_Time = - MeanInterArrivalTime * log(rand());
- MeanInterArrivalTime $=1 /$ MeanArrivalRate
- E.g if MeanArrivalRate $=5$ packets/sec $\boldsymbol{\rightarrow}$ MeanInterarrivalTime $=$ $0.2 \mathrm{sec} /$ packet
- However, specific interarrival times are randomly generated
- For example, $1^{\text {st }} 10$ samples may be: $0.1412 \quad 0.17710 .0040$ $\begin{array}{lllllll}0.1207 & 0.0777 & 0.1350 & 0.0374 & 0.0405 & 0.3027 & 0.4783\end{array}$
- The mean for these 10 samples is 0.1514 which is not exactly 0.2
- If we generate 1000 samples, the mean may be 0.1970 which now closer to 0.2
- Usually, the problem specifies the mean packet arrival rate and not the mean interarrival time.

What about the Size of Each Packet Arrival?

- We can also make the size random (in a manner similar to that we used for the interarrivals)
- However, for the time being - use fixed 1000 bit/packet sizes.

Performance Metrics

- Required output:
- Throughput - time average of assigned rates (see next slide)
- Probability of burst request queueing - Ratio of queued burst requests to total number of number of arriving requests
- Average access delay for a burst request
- When a time-out timer is implemented, Probability of burst request dropping can be evaluated Ratio of dropped burst requests to total number of number of arriving requests
- Etc.

Needed Data Structures

- Three main structures are needed
- (1) Channel structure - holds the up to date view of currently active transmissions in the system
- (2) Arrivals structure - holds the next arrival for every user in the system
- (3) Queue structure - hold the requests that could not be served

Simultaneous Channel Connections				
Channel Id	1	2	3	...
User Id				
Packet Id				
Rate				
Power				
PacketSize				
Start Time				
Finish Time				
Total Power				
3T巾ttorate				

Manual Simulation - 1

- Initially, the channel and queue are empty
- Allocate N users (as shown in slide 12) - calculate their corresponding di and fi
- Assume $\mathrm{N}=4$
- $\mathrm{di}=\left[\begin{array}{llll}0.9747 & 0.4808 & 0.7790 & 0.6971\end{array}\right](\mathrm{di}=\operatorname{sqt}($ (rand ()$) ;)$
- $\mathrm{fi}=\left[\begin{array}{llll}3.0416 & 0.1306 & 0.9140 & 0.5453\end{array}\right]$
- Calculate the first arrival for every user (Interarival_Time = MeanInterArrivalTime * $\log ($ rand ()$)$;)
- What is the earliest event in the system?
- User 3, Packet 1 arriving at $\mathrm{t}=0.2$
- System Time $\leftarrow 0.2$
- Note - no channel or queued events

Next Packet Arrivals		
User Id	Arrival Time	Packet Id
1	0.301	1
2	1.2	1
3	0.2	1
4	0.7	1

Manual Simulation-2

- User 3 (Packet 1) - d3 $=0.7790, \mathrm{f} 3=0.9140$
- What rate can be assigned
- Rate $153.6 \mathrm{~kb} / \mathrm{s}$ can be assigned - finish time $=$ System Time + $1000 / 153.6 \mathrm{~kb} / \mathrm{s}=0.2065 \mathrm{sec}$
- Update channel structure

Get next arrival for user 3

Trying rate $307.2 \mathrm{~kb} / \mathrm{s}-$ 8/1/2005

Trying rate 153.6 kb/s-
Dr. Ashraf S. Hasan Mahmoud

Next Packet Arrivals		
User Id	Arrival Time	Packet Id
1	0.301	1
2	1.2	1
3	0.3	2
4	0.7	1

Simultaneous Channel Connections	
Channel Id	1
User Id	3
Packet Id	1
Rate	153.6
Power	5.2469
PacketSize	1000
Start Time	0.2
Finish Time	0.2065
Total Power	5.2469
Total Rate	153.6

Total Rate	153.6

Manual Simulation - 3

- What is the next event?
- Earliest arrival is from user 3 (at $\mathrm{t}=0.3 \mathrm{sec}$)
- Channel release (at $\mathrm{t}=0.2065 \mathrm{sec}$)
- \rightarrow next event is channel release - System Time $=t=0.2065$
- Channel release event:
- Release (free) power
- Up date channel structure

Manual Simulation-4

- What is the next event?
- Earliest arrival is from user 3 (at $t=0.3 \mathrm{sec}$)
- No channel events
- Next event is arrival from user 3 - System Time =

0.3
Total rate

Manual Simulation-5

- User 3 (Packet 2) - d3 $=0.7790, \mathrm{f} 3=0.9140$
- What rate can be assigned
- Rate $153.6 \mathrm{~kb} / \mathrm{s}$ can be assigned - finish time $=$ System Time + $1000 / 153.6 \mathrm{~kb} / \mathrm{s}=0.3065 \mathrm{sec}$
- Update channel structure

Get next arrival for user 3

Trying rate 307.2 kb/s-

Trying rate $153.6 \mathrm{~kb} / \mathrm{s}-$ Dr. Ashraf S. Hasan Mahmoud

Next Packet Arrivals		
User Id	Arrival Time	Packet Id
1	0.301	1
2	1.2	1
3	0.5	3
4	0.7	1

Simultaneous Channel Connections	
Channel Id	1
User Id	3
Packet Id	1
Rate	153.6
Power	5.2469
PacketSize	1000
Start Time	0.3
Finish Time	0.3065
Total Power	5.2469
Total Rate	153.6

Manual Simulation - 6

- What is the next event?
- Next arrival User 1 (packet 1) at $\mathrm{t}=0.301$
- Channel release at $\mathrm{t}=0.3065$
- \rightarrow next event is arrival from user $1-$ System Time $=0.301$

		Simultaneous Channel Connections		Next Packet Arrivals		
				User Id	Arrival	Packet Id
		Channel Id	1		Time	
		User Id	3	1	0.301	1
		Packet Id	1	2	1.2	1
rate				3	0.5	3
		Rate	153.6	4	0.7	1
		Power	5.2469			
	Γ	PacketSize	1000			
		Start Time	0.3			
		Finish Time	0.3065			
0	$0.20 .2065{ }^{0.3}$ 0.301	Total Power	5.2469			
		Total Rate	153.6			
8/1/2005 0.301		moud				22

[^0]Dr. Ashraf S. Hasan Mahmoud

Manual Simulation-7

- User 1 (Packet 1) - d3 $=0.9747, \mathrm{f} 3=3.0416$
- What rate can be assigned to user 1 ?
- Remember User 3 is already on the air and it is assigned $153.6 \mathrm{~kb} / \mathrm{s}$
- $19.2 \mathrm{~kb} / \mathrm{s}$ can be assigned - finish time = System Time + $1000 / 19.2 \mathrm{~kb} / \mathrm{s}=0.3531 \mathrm{sec}$

Trying rate 307.2 kb/s8/1/2005

Rate Assignment			
Channel Id	1	2	
User Id	3	1	
Rate	153.6	153.6	
di	0.7790	0.9747	
fi	0.9140	3.0416	
gi	0.2879	0.2879	
$\Sigma \mathrm{gi}(1-\rho+\mathrm{fi})$	$1.6570>0.8$		
Pi	N.A.	N.A.	

Trying rate 153.6 kb/s-

Rate Assignment		
Channel Id	1	2
User Id	3	1
Rate	153.6	19.2
di	0.7790	0.9747
fi	0.9140	3.0416
gi	0.2879	0.0465
$\Sigma \mathrm{gi}(1-\rho+\mathrm{fi})$	$0.7057 \leq 0.8$	
Pi	8.5169	2.9915

Trying rate 19.2 kb/s-

Manual Simulation-8

- Update channel structure
- Get next arrival for user 1

Simultaneous Channel		
Connections		
Channel Id	1	2
User Id	3	1
Packet Id	1	1
Rate	153.6	19.2
Power	8.5169	2.9915
PacketSize	1000	1000
Start Time	0.3	0.301
Finish Time	0.3065	0.3531
Total Power	11.5084	
Total Rate	172.8	

Next Packet Arrivals		
User Id	Arrival Time	Packet Id
1	0.34	2
2	1.2	1
3	0.5	3
4	0.7	1

[^1]Dr. Ashraf S. Hasan Mahmoud

- What is the next event?
- Earliest arrival User 1 at $\mathrm{t}=0.34$
- Earliest channel release time $t=0.3065$
- \rightarrow channel release event - System Time $=0.3065$
- Channel release event:
- Release (free) power

Simultaneous Channel Connections		
Channel Id	1	2
User Id	Empty	1
Packet Id		1
Rate		19.2
Power		1.0783
PacketSize		1000
Start Time		0.301
Finish Time		0.3531
Total Power	1.0783	
Total Rate	19.2	

Dr. Ashraf S. Hasan Mahmoud

Next Packet Arrivals		
User Id	Arrival Time	Packet Id
1	0.34	2
2	1.2	1
3	0.5	3
4	0.7	1

8/1/2005

Manual Simulation - 10

- What is the next event?
- Earliest arrival User 1 at $\mathrm{t}=0.34$
- Earliest channel release time $t=0.3531$
- \rightarrow Arrival event - System Time $=0.341$
- Process Arrival Event
- User already assigned a rate - update finish time
- Get Next arrival for User 1

Remaining bits $=$ PacketSize $-($ SystemTime - StartTime $)$ XRate
$=1000-(0.34-0.301) \times 19200=251.2$ bit
NewPacketSize $=$ NewArrival + RemainingBits
$=1000+251.2=1251.2$ bit
New FinishTime $=$ SystemTime + NewPacketSize/Rate
$=0.34+1251.2 / 19200=0.4052$

Simultaneous Channel Connections		
Channel Id	1	2
User Id	Empty	1
Packet Id		1
Rate		19.2
Power		1.0783
PacketSize		1251.2
Start Time		0.34
Finish Time		0.4052
Total Power		
Total Rate		

Manual Simulation - 11

- The channel and arrivals structure are updated

Manual Simulation - ...

- ...

Manual Simulation - ... +1

- Assume the current system state is as depicted by the main data structures
- What is the next event?
- Earliest arrival User 1 (Packet 45) t $=5.311$
- Earliest channel release $\mathrm{t}=5.3133$
- \rightarrow Next event is arrival from User $1-$ System Time $=5.311$

Simultaneous Channel Connections Channel Id 11		
User Id	4	3
Packet Id	53	30
Rate	307.2	19.2
Power	12.4595	1.5914
PacketSize	1000	1000
Start Time	5.31	5.30
Finish Time	5.3133	5.3521
Total Power	14.0509	
Total Rate	326.4	

Next Packet Arrivals		
User Id	Arrival Time	Packet Id
1	5.311	45
2	5.312	28
3	6.2	31
4	7.1	54

Manual Simulation - ... +2

- User 1 (Packet 1) - d3 $=0.9747, \mathrm{f} 3=3.0416$
- What rate can be assigned to user 1 ?
- Remember Users 4 and 3 is already on the air
- User can not be assigned any rate \rightarrow Queue packet arrival
- Update queue structure

Rate Assignment				
Channel Id	1	2	3	
User Id	4	3	1	
Rate	307.2	19.2	307.2	
di	0.7790	0.9747	0.9747	
fi	0.5453	0.9140	3.0416	
gi	0.4573	0.0465	0.4573	
$\Sigma g i(1-\rho+f i)$	$2.5479>0.8$			
Pi	N.A.	N.A.	N.A	

Trying rate 307.2 kb/s-
8/1/2005

Trying rate $9.6 \mathrm{~kb} / \mathrm{s}-\quad$ User can not be served even at the smallest system rate queue packet arrival

Manual Simulation - ... +3

- Updated channel, arrivals, and queue structures

Queued Requests			
Index	User Id	Arrival Time	
1	1	5.311	

Manual Simulation - ... +4

- What is the next arrival?
- Earliest arrival User 2 (packet 28) - t=5.312
- Earliest channel release $-\mathrm{t}=5.3133$
- \rightarrow Next event is an arrival from user 2 - System Time $=5.312$
- Process Arrival event:
- Since queue is not empty and we are assuming a strict FCFS
- Queue arrival
- Update structures

Queued Requests		
Index	User Id	Arrival Time
1	1	5.311
2	2	5.312

Next Packet Arrivals		
User Id	Arrival Time	Packet Id
1	8.4	46
2	7.3	29
3	6.2	31
4	7.1	54

D.

Simultaneous Channel Connections Channel Id 11		
User Id	4	3
Packet Id	53	30
Rate	307.2	19.2
Power	12.4595	1.5914
PacketSize	1000	1000
Start Time	5.31	5.30
Finish Time	5.3133	5.3521
Total Power	14.0509	
Total Rate	326.4	

Next Packet Arrivals		
User Id	Arrival Time	Packet Id
1	8.4	46
2	5.312	28
3	6.2	31
4	7.1	54

析

> After a channel release event, queued requests are served till queue is empty or blockage

Manual Simulation - ... +5

- What is the next arrival?
- Earliest arrival User 3 (packet 31) - t=6.2
- Earliest channel release $-\mathrm{t}=5.3133$
- \rightarrow Next event is channel release - System Time $=5.3133$
- Process channel release:
- Since queue is not empty - then system should attempt to serve queued requests until queue is empty or blocked
- Update structures

Simultaneous Channel Connections				
Channel Id	1	2	3	
User Id	1	3	2	
Packet Id	45	30	28	
Rate	76.8	19.2	19.2	
Power	1.8778	14.4992	1.0669	
PacketSize	1000	1000	1000	
Start Time	5.3133	5.30	5.3133	
Finish Time	5.3263	5.3521	5.3654	
Total Power	17.4439			
Total Rate	115.2			

Next Packet Arrivals		
User Id	Arrival Time	Packet Id
1	8.4	46
2	7.3	29
3	6.2	31
4	7.1	54

Queued Requests			
Index	User Id	Arrival Time	
1	Empty		
2			

Manual Simulation - ...

- Etc.

How to Determine Next Event?

- T1 = earliest arrival event
- T2 = earliest channel release time
- If (T1 < T2)

Then NextEvent = ArrivalEvent
SystemTime = T1
else NextEvent = ChannelRelease SystemTime = T2
end

- System Time is ALWAYS earliest arrival event or earliest channel release

How to Process Arrival Events?

- if (User already on air)
then compute remaining bits from previous transmission
update start time, packet size, and finish
time
else if (Queue is Empty)
then determine maximum rate to assign
if (no rate can be assigned)
then queue arrival
else assign computed rate
calculate finish time
end
else queue arrival
end

How to Process Channel Release Events?

- Free corresponding channel structure
if (Queue is NOT Empty)
then while (Queue is NOT Empty)
determine rate to serve queued request
if (no rate can be assigned)
then break
else assign rate and calculate finish time
free queued element
get next element
endwhile
end
Update channel structure

Main Routine

```
    // This is the main routine in the simulation code
    Main(){
        InputNoOfTerminals( );
        for i=1 to NoOfIterations
        InitializeDataStructures( );
        ClearIterationStatistics( );
        SimulateSystem( NoOfTermainls );
        CollectIterationStatistics( );
        end
    AverageAllIterationsStatistics( );
    OutputStatistics( )
    }
```


InitializeDataStructures Routine

InitializeDataStructures()
 \{

// In this routine the three main data structures: Arrivals, ChannelStatus, and Queue are created and initialized properly
// The three structures are shown in slide 16
\}

ClearlterationStatistics Routine

```
ClearIterationStatistics()
{
    // In this routine the variables used to accumulate
        quantities of interest like total throughput and
        total request delay, etc. are cleared - These
        will be used in the CollectIterationStatistics
    AccumulateTotalThroughput = 0;
    AccumulateTotalDelay = 0;
    NoOfServedRequests = 0;
    NoOfQueuedRequests = 0;
    }
```


SimulateSystemRoutine

```
SimulateSystem( int NoOfTermainls )
{
// This is the main simulation routine where a number of terminals are
    located in the cell at random distances - and then the simulation is
    conducted till MaxSimulationTime is reached
    LocateTerminalsInCell( NoOfTermainls );
    CalculatefiForTerminals( NoOfTermainls );
    CreateFirstArrivals( NoOfTermainls );
    SystemTime = 0.0;
    while (SystemTime <= MaxSimulationTime){
        // This is routine gets the next event to process and assigns its
        // value to the SystemTime variable - see slide 35 for details on
        // how to determine SystemTime
        // Remember, we have two events only - Request arrival event and
        // Channel release event
        GetNextEvent( &SystemTime, &EventType );
            if (EventType == ARRIVAL_EVENT)
                ProcessArrivalEvent( ); // flow chart in slide 36
        else
            ProcessChannelReleaseEvent( ); // flow chart in slide 37
    }
}
```


Required Metrics and How to Calculate Them

- Average system throughput = average area under the total sum of rates versus time curve
- Average system power used = average area under the total power used versus time curve
- Average queue length = average area under the queue size versus time curve
- Probability of being delayed = No of packets that are queued relative to number of total packets generated
- Average access delay = mean of packet waiting time for all packets

How Did I do the previous Calculations?

```
0001 clear all
002% initialize system paramters
003 W = 1.25e6; % bandwidth is 1.25 MHz
004 EbNo dB = 5; % minimum required EbNo in dBS
0005 EbNo = 10^(EbNo_dB/10); % converting to real numbers
0006 Rho = 0.1; % Orthogonolity factor
0 0 0 7 ~ B e t a ~ = ~ 0 . 2 ; ~ \% ~ f r a c t i o n ~ o f ~ o v e r h e a d ~ p o w e r ~
008 Ptotal = 24; % total power at basestation
0009 Pov = Beta*Ptotal; % power for overhead channels
```



```
0011 d = [0.9747 0.4808 0.7790 0.6971]; % Four users located (distances) randomly
0012 f = f_function_circle_05_S6(d); 0.6971; % their corresponding fi
0014 % The routine below takes rates in vector "Rates" and the corresponding
0015 % for the users in the vector "f_i" and performs the power assignment
0 0 1 6 \% ~ c a l c u l a t i o n s
017 % Example1:
018 % To check whether we can assign user 1 and 3 the bit rates
0019% 9.6kb/s and 153.6kb/s, the "Rates" and "f i" vector should look like
020 % Rates = [SystemRate(1) SystemRate(5)], and f_i = [f(1) f(3)]
021 %
0022 % Example2:
0023% To check whether we can assign user 4 and 2 the bit rates
0024% 307.2kb/s and 78.8kb/s, the "Rates" and "f_i" vector should look like
0025%%Rates = [SystemRate(6) SystemRate(4)], and f_i=[f(4)f(2)]
0026 %
027 % Example3:
0028% To check whether we can assign user 1 the bit rate
```

0029 \% 307.2kb/s, the "Rates" and "f_i" vector should look like:
0030 \% Rates $=\left[\right.$ SystemRate(6)], and $f _i=[f(1)]$
-031 \%

How Did I do the previous Calculations? (2)

```
0032 Rates = [SystemRates(4) systemRates(5)];
0033 f_i = [f(1) f(3)];
0034 gí = 1./((W./Rates)/EbNo + 1 - Rho); % calculate gi's
0035 Gi = gi.*(1-Rho+f_i); % Calculate Gi = gi*(1-Rho+fi)
0036 SumGis = sum(Gi); % sum all Gi's to test feasiblity
0037 fprintf('SumGis = %7.4f\n', SumGis);
0 0 3 8 ~ i f ~ ( S u m G i s ~ < = ~ ( 1 - B e t a ) )
0039 fprintf('Assigment can be performed\n');
0040 Pi = gi.*(1-Rho+f_i) .* Pov./(1-SumGis);
0041 fprintf('gi = %7.4f \n', gi);
0042 fprintf('power assignment = %7.4f\n', Pi);
0 0 4 3 ~ \% ~
0044 % as a test - all computed EbNos after the power assignment should be
    % equal to the minimum required EbNo specified above
    EbNo_t = W./Rates .* (Pi./((1-Rho+f_i).*(sum(Pi)+Pov) - (1-Rho)*Pi));
0047 else
```



```
0 0 4 8 ~ f p r i n t f ( ' A s s i g n m e n t ~ c a n ~ n o t ~ b e ~ p e r f o r m e d ~ - ~ S u m G i s ~ i s ~ G R E A T E R ~ T H A N ~ ( 1 - ~
    Beta)\n')
0 0 4 9 ~ e n d ~
```


BACKGROUND MATERIAL (NOT REQUIRED)

Fixed Assignment Access for VoiceOriented Networks

- Voice-Oriented networks ~ cellular telephony or PCS
- Fixed allocation of resource (frequency, time, code, etc)
- Three basic access techniques:
- Frequency Division Multiple Access (FDMA)
- Time Division Multiple Access (TDMA)
- Code Division Multiple Access (CDMA)
- The choice of technology impacts:
- Capacity
- QoS

Background and References

- Background:
- Chapter 8, W. Stallings, "Data and Computer Communications," Sixth Edition, Prentice Hall International Inc.
- References:
- Chapter 4 [Pahlavan]
- Chapter 3 [Garg]

Uplink/Down Link Duplexing

- Mechanism to differentiate between uplink and downlink transmissions
- Two basic techniques are used:
- Frequency Division Duplexing (FDD)
- Time Division Duplexing (TDD)
- FDD
- Usually large coverage areas
- TDD
- Share one RF circuitry
- Accurate open-loop power control (refer to IS-95)
- Usually low-power local communications
- More will be provided later on the pros and cons of each of these technologies

FDMA

- All users may transmit simultaneously - each using a distinct carrier \rightarrow channel
- Basics: Frequency Division Multiplexing (FDM)
- Design Issues:
- Adjacent channel interference (refer to backup slides - voiceband signals)
- RF spectrum mask
- Near-far problem - a concern especially on reverse link
- Carriers belonging to one set are not adjacent
- Guard bands - reduces spectral efficiency

FDMA - cont'd

- A user is assigned a carrier f_{i} for each direction (uplink and downlink)
- A user may employ continuous transmission
- Data (user's info) is modulated using the assigned carrier
- Analog circuitry (VCO) is required to keep track of frequency shifts

Example: AMPS

- A user is assigned an uplink and a downlink channels that are 45 MHz apart

| $A^{\prime \prime}$
 $(991-1023)$ | A
 $(1-333)$ | B
 $(334-666)$ | A^{\prime}
 $(667-716)$ | B^{\prime}
 $(717-799)$ |
| :---: | :---: | :---: | :---: | :---: | uplink 8.845

45 MHz apart

Original FCC designation
A band for independent carriers
B for traditional wireline (regional Bell Operating Companies) carriers
A', B', and A'' were added later

Time-Division Multiple Access

- A number of users share the same frequency band by taking assigned turns in using the channel
- BS controller assigns slots - slot released upon the completion of call
- Advantages:
- Flexibility - can provide different access rates at no cost
- Disadvantages:
- Requires accurate synchronization with BS and rest of users

TDMA

- All the band is used by the user during his slot
- Fixed assignment - predetermined order
- Slot waster if there is no info for transmission

Example: GSM

- The user is assigned one uplink slot and one downlink slot

Direct-Spread Code-Division Multiple Access (DS-CDMA)

- Spread Spectrum (SS): a technique in which a signal is of original bandwidth W is transmitted over a bandwidth equal to GXW where $G \gg 1$
- G is referred to as the spreading gain
- DS-CDMS: A bit stream of rate R b/s (bit duration, $\mathrm{T}_{\mathrm{b}}=$ $1 / \mathrm{R} \mathrm{sec}$) occupies a bandwidth of $\mathrm{W} \approx \mathrm{R} \mathrm{Hz}$
- The bandwidth is roughly inversely proportional to the duration of the smallest signal element (bit), i.e. $\mathrm{W} \approx 1 / \mathrm{T}_{\mathrm{b}}$ = R
- If the signal is multiplied by a code: where every bit is multiplied by a sequence of G chips each of duration T_{c} then the new signal have a bandwidth $\approx 1 / \mathrm{T}_{\mathrm{c}}=\mathrm{G} / \mathrm{T}_{\mathrm{b}}=$ GXW

Code-Division Multiple Access (CDMA)

- DS-CDMA Transmitter (simplified)

[^2]
Code-Division Multiple Access (CDMA)

- DS-CDMA Receiver (simplified):
- Typically, the signal is passed through a LPF and then sampled - the samples are then used by the FEC decoder
- An alternative receiver structure: Replace the correlator by a filter matched to the specific user code

How Does CDMA work?

- Input:
- Assume we have N users transmitting simultaneously
- Let the bit stream of the $i^{\text {th }}$ user by $\mathrm{R}_{\mathrm{i}}(\mathrm{t})$
- Let the code assigned to the $i^{\text {th }}$ user by $\mathrm{C}_{\mathrm{i}}(\mathrm{t})$
- Codes are ORTHOGONAL, i.e.

$$
\begin{aligned}
C_{i}(t) \times C_{j}(t) & =1 \text { if } \mathrm{i}=\mathrm{j} \\
& =0 \text { if } \mathrm{i}<>\mathrm{j}
\end{aligned}
$$

- Operation:
- Each user uses its code to spread its signal - the signal transmitted by the $i^{\text {th }}$ user is $\mathrm{S}_{\mathrm{i}}(\mathrm{t})=\mathrm{R}_{\mathrm{i}}(\mathrm{t}) \mathrm{C}_{\mathrm{i}}(\mathrm{t})$
- The signal received (say by the base station) is the sum of all transmitted signals (ignore multi-path copies for the time being),

$$
S_{r}(t)=\sum S_{i}(t)=\sum R_{i}(t) C_{i}(t)
$$

How Does CDMA work? - cont'd

- Demodulation (De-spreading):
- Receiver dedicates a path structure per user - multiplies the received signal with the $k^{\text {th }}$ user code

$$
\begin{aligned}
C_{k}(t) \times S_{r}(t) & =C_{k}(t) \times \sum S_{i}(t) \\
& =C_{k}(t) \times \sum R_{i}(t) C_{i}(t) \\
& =R_{k}(t)
\end{aligned}
$$

i.e. only the $k^{\text {th }}$ signal is retrieved from the $k^{\text {th }}$ receiver path

Simplified basestation receiver

Codes are only orthogonal if
-Perfect synchronization is achieved -No multipath exists

Code Division Multiple Access

- User transmits all the time (not in a particular slot) and using all the frequency bandwidth
- User is assigned a distinct code
- A frequency reuse factor of one is potentially possible with CDMA

[^0]: 8/1/2005

[^1]: 8/1/2005

[^2]: G is typically >10

 - For IS-95 G = $9.6 \mathrm{kbs} / 1.25 \mathrm{MHz}=128$

