King Fahd University of Petroleum \& Minerals Computer Engineering Dept

COE 200 - Fundamentals of Computer Engineering
Term 043
Dr. Ashraf S. Hasan Mahmoud
Rm 22-144
Ext. 1724
Email: ashraf@ccse.kfupm.edu.sa

Number Systems -
 Base r

Number Systems - Base r

- General number in base r is written as:

- Note that All A_{i} (digits) are less than r:
- i.e. Allowed digits are $0,1,2, \ldots, r-1$ ONLY
- A_{n-1} is the MOST SIGNIFACT Digit (MSD) of the number
- A_{-m} is the LEAST SIGNIFICANT Digit (LSD) of the number

$7 / 5 / 2005 \quad$ Dr. Ashraf S. Hasan Mahmoud \quad| A_{n-1} is the MSD of the integer part |
| :--- |
| A_{0} is the LSD of the integer part |
| A_{-1} is the MSD of the fraction part |
| A_{-m} is the LSD of the fraction part |

Number Systems - Base r

- The (base r) number

$$
A_{n-1} A_{n-2} \ldots A_{2} A_{1} A_{0} . A_{-1} A_{-2} \ldots A_{-(m-1)} A_{-m}
$$

is equal to
FORM or SHAPE OF NUMBER
$A_{n-1} X r^{n-1}+A_{n-2} X r^{n-2}+\ldots A_{2} X r^{2}+A_{1} X r^{1}+A_{0} X r^{0}+A_{-1} X$ $r^{-1}+A_{-2} X r^{-2}+\ldots A_{-(m-1)} X r^{-(m-1)}+A_{-m} X r^{-m}$

VALUE OF NUMBER

Example - Decimal or Base 10

- For decimal system (base 10), the number $(724.5)_{10}$
is equal to

$$
\begin{aligned}
& 7 \times 10^{2}+2 \times 10^{1}+4 \times 10^{0}+5 \times 10^{-1} \\
= & 7 \times 100+2 \times 10+4 \times 1+5 \times 0.1 \\
= & 700+20+4+0.5 \\
= & 724.5
\end{aligned}
$$

Example-Base 5

- Base $5 \rightarrow r=5$
- Allowed digits are: $0,1,2,3$, and 4 ONLY
- The number
$(312.4)_{5}$
is equal to

$$
\begin{aligned}
& 3 \times 5^{2}+1 \times 5^{1}+2 \times 5^{0}+4 \times 5^{-1} \\
= & 3 \times 25+1 \times 5+2 \times 1+4 \times 0.2 \\
= & 75+5+2+0.8 \\
= & (82.8)_{10}
\end{aligned}
$$

Therefore $(312.4)_{5}=(82.8)_{10}$

It is all powers of 5:
\ldots
$5^{3}=125$,
$5^{2}=25$,
$5^{1}=5$,
$5^{0}=1$
$5^{-1}=0.2$
$5^{-2}=0.04$,
\ldots

A Third Example -Base 2

- Base $2 \rightarrow r=2$
- This is referred to as the BI NARY SYSTEM
- Allowed digits are: 0 and 1 ONLY
- The number
$(110101.11)_{2}$
is equal to

$$
\begin{aligned}
& 1 \times 2^{5}+1 \times 2^{4}+0 \times 2^{3}+1 \times 2^{2}+0 \times 2^{1}+1 \times 2^{0} \\
+1 \times 2^{-1} & +1 \times 2^{-2} \\
& =1 \times 32+1 \times 16+1 \times 4+1 \times 2+1 \times 0.5 \\
+1 \times & 0.25 \\
= & 32+16+4+1+0.5+0.25 \\
= & (53.75)_{10}
\end{aligned}
$$

Therefore $(110101.11)_{2}=(53.75)_{10}$

Decimal to Binary Conversion of Integer Numbers

- Conversion from base 2 to base 10 (for real numbers) See previous slide
- To convert a decimal integer to binary \rightarrow decompose into powers of 2
- Example: $(37)_{10}=(?)_{2}$

37 has ONE $32 \rightarrow$ remainder is 5
5 has ZERO $16 \rightarrow$ remainder is 5
5 has ZERO $8 \rightarrow$ remainder is 5
5 has ONE $4 \rightarrow$ remainder is 1
1 has ZERO $2 \rightarrow$ remainder is 1
1 has ONE $1 \rightarrow$ remainder is 0

Therefore $(37)_{10}=(100101)_{2}$

Decimal to Binary Conversion of Integer Numbers- cont'd

- Or we can use the following (see table):
- You stop when the division result is ZERO
- Note the order of the resulting digits
- Therefore (37) ${ }_{10}=$ $(100101)_{2}$
- To check:
$1 \mathrm{X} 2^{5}+1 \mathrm{X} 2+1=32+4+1=37$

No	No/2	Remainder
	18	1
		0
		1
		0
		0
	0	1
In general: to convert a decimal integer to its equivalent in base r we use the above procedure but dividing by r		

A Very Useful Table

- To represent decimal numbers from 0 till 15 (16 numbers) we need FOUR binary digits $B_{3} B_{2} B_{1} B_{0}$
- In general to represent N numbers, we need $\left\lceil\log _{2} N\right\rceil$ bits
- Note how
- B_{0} flipped or COMPLEMENTED at every increment
- B_{1} flipped or COMPLEMENTED every 2 steps
- B_{2} flipped or COMPLEMENTED every 4 steps

Decimal	Binary	Decimal	Binary
0	0000	8	1000
1	0001	9	1001

- B_{3} flipped or COMPLEMENTED every 8 steps

A Very Useful Table - cont'd

- Note that zeros to the left of the number do not add to its value
- When we need DIGITS beyond 9, we will use the alphabets as shown in Table
- Example: base 16 system has 16 digits; these are: 0 , , 1, 2, 3, ..., 8, 9, A, B, C, D, E, F
- This is referred to as

Decimal	Binary	Decimal	Binary
0	0000	8	1000
1	0001	9	1001

$2 \quad 0010 \quad 10 \rightarrow A$

1010

$3 \quad 0011 \quad 11 \rightarrow B$

1011 $40100 \quad 12 \rightarrow$ C 1100 $5 \quad 0101 \quad 13 \rightarrow$ D 1101
$6 \quad 0110 \quad 14 \rightarrow$ E 1110

Decimal to Binary Conversion of Fractions

- Example: $(0.234375)_{10}=(?)_{2}$ No NoX2 Integer Part
- Solution: We use the following procedure
- Note:
- The binary digits are the integer part of the multiplication process
- The process stops when the number is 0
- There are situations where the process DOES NOT end - See next slide
- Therefore $(0.234375)_{10}=$ (0.001111) ${ }_{2}$
- To check: $(0.001111)_{2}=1 \times 2^{-2}$ $+1 \times 2^{-3}+1 \times 2^{-4}+1 \times 2^{-5}+1 \times 2^{-5}$

In general: to convert a decimal fraction to its equivalent in base r we use the $715 / 20 \mathrm{D} \times 2^{-6}=(0.234375)_{10} \quad$ Dr. Ashraf S. above procedure but multiplying by r

Decimal to Binary Conversion of Fractions - cont'd

- Example: $(0.513)_{10}=(?)_{2}$
- Solution: As in previous slide
Therefore $(0.513)_{10}=(0.100000110$
$\ldots)_{2}$

If we chose to round to 1 significant figure $\boldsymbol{\rightarrow}(0.1)_{2}$

No	$\mathrm{NoX2}$	Integer Part
0.513	1.026	1
0.026	0.052	0
0.052	0.104	0
0.104	0.208	0
0.208	0.416	0
0.416	0.832	0
0.832	1.664	1
0.664	1.328	1
0.328	0.656	0
\ldots		

Or to 7 significant figures $\boldsymbol{\rightarrow}$
$(0.1000001)_{2}$
Etc.

Octal Number System

- Base $r=8$
- Allowed digits are $=0,1,2, \ldots, 6,7$
- Example: the number $(127.4)_{8}$ has the decimal value $1 \times 8^{2}+2 X 8^{1}+7 \times 8^{0}+4 X 8^{-1}$
$=1 \times 64+2 \times 8+7+0.5$
$=(87.5)_{10}$

It is all powers of 8:
\ldots
$8^{4}=4096$
$8^{3}=512$,
$8^{2}=64$,
$8^{1}=8$,
$8^{0}=1$
$8^{-1}=0.125$
$8^{-2}=0.015625$,
\ldots

Conversion between Octal and Binary

- Example: $(127)_{8}=(?)_{2}$
- Solution: we can find the decimal equivalent (see previous slide) and then convert from decimal to binary
$(127)_{8}=(87)_{10} \rightarrow(?)_{2}$
From long division
$(127)_{8}=(87)_{10}=(1010111)_{2}$
To check:
$1 \times 2^{6}+1 \times 2^{4}+1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{0}$
$=64+16+4+2+1$
$=87$

No	No/2	Remainder
87	43	1
43	21	1
21	10	1
10	5	0
5	2	1
2	1	0
1	0	1

Conversion between Octal and Binary-cont'd

- NOTE: $(127)_{8}=(1010111)_{2}$
- Lets group the binary digits in groups of 3 starting from the LSD

- That is the decimal equivalent of the first group $111 \rightarrow 7$ of the second group $010 \rightarrow 2$ of the third group $001 \rightarrow 1$
- Hence, to convert from Octal to Binary one can perform direct translation of the Octal digits into binary digits: ONE Octal digit \leftrightarrows THREE Binary digits

Conversion between Octal and Binary - cont'd

- To convert from Binary to Octal, Binary digits are grouped into groups of three digits and then translated to Octal digits
- Example: $(1011101.10)_{2}=(?)_{8}$
- Solution:

$$
\begin{aligned}
(1011101.10)_{2} & =\left(\begin{array}{llll}
001 & 011 & 101 & \cdot 100
\end{array}\right)_{2} \\
& =\left(\begin{array}{lll}
1 & 3 & 5
\end{array} \cdot 4\right)_{8} \\
& =\left(\begin{array}{lll}
135.4
\end{array}\right)_{8}
\end{aligned}
$$

Conversion From Decimal to Octal

- Problem: What is the octal equivalent of $(\mathbf{3 2 . 5 7})_{10}$?
- Solution:
a) We can covert (32.57) $)_{10}$ to binary and then to Octal or
b) We can do:
$32_{10} \rightarrow \quad 32 / 8=4$ and remainder is $0 \rightarrow 0$

$$
4 / 8=0 \text { and remainder is } 4 \rightarrow 4
$$

hence, $32_{10}=40_{8}$
$(0.57)_{10} \rightarrow \quad 0.57 \times 8=4.56 \rightarrow 4$

$$
\begin{aligned}
& 0.56 \times 8=4.48 \rightarrow 4 \\
& 0.48 \times 8=3.84 \rightarrow 3 \\
& 0.84 \times 8=6.72 \rightarrow 6
\end{aligned}
$$

hence, $(0.57)_{10}=(0.4436)_{8}$
What is $(0.4436)_{8}$ rounded for
Two fraction digits?
-One fraction digit?
Therefore, $(32.57)_{10}=(40.4436)_{8}$

Hexadecimal Number Systems

- Base r = 16
- Allowed digits: $0,1,2, \ldots, 8,9, A, B, C, D, E, F$
- The values for the alphabetic digits are as show in Table
- Example 1:
$(\mathrm{B} 65 \mathrm{~F})_{16}=\mathrm{BX} 16^{3}+6 \times 16^{2}+5 \times 16^{1}+\mathrm{FX} 16^{0}$

$$
\begin{aligned}
& =11 \times 4096+6 \times 256+5 \times 16+15 \\
& =(46687)_{10}
\end{aligned}
$$

Hex	Value
A	10
B	11
C	12
D	13
E	14
F	15

- Example 2:
(1B.3C) ${ }_{16}=1 \mathrm{X} 16^{1}+\mathrm{BX} 16^{0}+3 \times 16^{-1}+\mathrm{CX} 16^{-2}$

$$
=16+11+3 \times 0.0625+12 \times 0.00390625
$$

$$
=(27.234375)_{10}
$$

Conversion Between Hex and Binary

- Example: $(1 \mathrm{~B} .3 \mathrm{C})_{16}=(?)_{2}$
- Solution: we can find the decimal equivalent (see previous slide) and then convert from decimal to binary
$(1 \mathrm{~B})_{16}=(27)_{10} \rightarrow(?)_{2}$
From long division
$(1 \mathrm{~B})_{16}=(27)_{10}=(11011)_{2}$
$(0.3 C) 16=(0.234375)_{10}=(0.001111)_{2}$
\rightarrow Therefore (1B.3C) $)_{16}=(11011.001111)_{2}$
Verify This Result

Conversion Between Hex and Binary - cont'd

- Note:
$(1 \mathrm{~B} .3 \mathrm{C})_{16}=(11011.001111)_{2}$ from previous example Lets group the binary bits in groups of 4 starting from the radix point, adding zeros to the left of the number or to the right as needed
\rightarrow (0001 1011. 0011 1100)

- Hence, to convert from Hex to Binary one can perform direct translation of the Hex digits into binary digits: ONE Hex digit \longleftrightarrow FOUR Binary digits

Conversion between Hex and Binary - cont'd

- To convert from Binary to Hex, Binary digits are grouped into groups of four digits and then translated to Hex digits
- Example: $(1011101.10)_{2}=(?)_{16}$
- Solution:

$$
\begin{aligned}
(1011101.10)_{2} & =\left(\begin{array}{llll}
0101 & 1101 & 1000
\end{array}\right)_{2} \\
& =\left(\begin{array}{ccc}
5 & \mathrm{D} & 8
\end{array}\right)_{16} \\
& =(5 \mathrm{D} .8)_{16}
\end{aligned}
$$

Sample Exam Problem

- Problem: What is the radix r if

$$
\left((33)_{r}+(24)_{r}\right) \times(10)_{r}=(1120)_{r}
$$

- Solution:
$(33)_{r}=3 r+3$,
$(24)_{r}=2 r+4$,
$(10)_{r}=r$,
$(1120)_{r}=r^{3}+r^{2}+2 r$
therefore:

$$
\begin{aligned}
& {[(3 r+3)+(2 r+4)] \times r } \\
= & r^{3}+r^{2}+2 r \rightarrow r^{3}-4 r^{2}-5 r=0, \text { or } \\
& r(r-5)(r+1)=0
\end{aligned}
$$

This means, the radix r is equal to 5

Number Ranges - Decimal

- Consider a decimal integer number of n digits:

$$
A_{n-1} A_{n-2} \ldots A_{1} A_{0} \quad \text { where } A_{i} \in\{0,1,2, \ldots, 9\}
$$

Smallest integer is $0_{n-1} 0_{n-2} \cdots 0_{1} 0_{0}=0$
Largest integer is $9_{n-1} 9_{n-2} \ldots 9_{1} 9_{0}=10^{n}-1$
Example: for n equal to $3 \boldsymbol{\rightarrow} 3$ digits integer decimals; the maximum integer is 999 or $10^{3}-1$

Number Ranges - Decimal - cont'd

- Consider a decimal fraction of m digits:

$$
0 . A_{-1} A_{-2} \ldots A_{-(m-1)} A_{-m} \text { where } A_{i} \in\{0,1,2, \ldots, 9\}
$$

Smallest non-zeros fraction is $0.0_{-1} 0_{-2} \ldots 0_{-(m-1)} 1_{-m}=10^{-\mathrm{m}}$ Largest fraction is $0.9_{-1} 9_{-2} \ldots 9_{-(m-1)} 9_{-m}=1-10^{-m}$

Example: for m equal to $3 \rightarrow 3$ digits decimal fraction;

The minimum fraction is 10^{-3} or 0.001
The maximum number is $1-10^{-3}$ or 0.999

Number Ranges - Base-r Numbers

- Consider a base-r integer of n digits:

$$
A_{n-1} A_{n-2} \ldots A_{1} A_{0} \quad \text { where } A_{i} \in\{0,1,2, \ldots, r-1\}
$$

Smallest integer is $0_{n-1} 0_{n-2} \ldots 0_{1} 0_{0}=0$
Largest integer is $(r-1)_{n-1}(r-1)_{n-2} \cdots(r-1)_{1}(r-1)_{0}=r^{n}-1$

Example: for $r=5, n$ equal to $3 \rightarrow 3$ digits base- 5 integer;
The maximum integer is $(444)_{5}$ or $\left(5^{3}-1\right)_{10}$
To check:
the decimal equivalent of $(444)_{5}$ is $4 X 5^{2}+4 X 5^{1}+4=$ $7 / 5 / 2005(124)_{10}$ or simply $5^{3}-1-1 . \overline{=}(124)_{\text {ish }}$

Number Ranges - Base-r Numbers

- Consider a base-r fraction of m digits:

$$
0 . A_{-1} A_{-2} \ldots A_{-(m-1)} A_{-m} \text { where } A_{i} \in\{0,1,2, \ldots, r-1\}
$$

Smallest non-zero fraction is

$$
\left(0.0_{-1} 0_{-2} \ldots 0_{-(m-1)} 1_{-m}\right)_{r}=\left(r^{-m}\right)_{10}
$$

Largest fraction is

$$
\left(0 .(r-1)_{-1}(r-1)_{-2} \cdots(r-1)_{-(m-1)}(r-1)_{-m}\right)_{r}=(1-r-m)_{10}
$$

Example: for $r=5$ and m equal to $3 \rightarrow 3$ digits base-5 fraction;
The maximum number is $(0.444)_{5}$ or $1-5^{-3}=0.992$

Number Ranges - Base-r Numbers cont'd					
		Decimal ($\mathrm{r}=10$)	Binary ($\mathrm{r}=2$)	Octal ($\mathrm{r}=8$)	Hex ($r=16$)
Integer	Min Max	$\begin{gathered} 0_{n-1} 0_{n-2} \cdots 0_{1} 0_{0} \\ =0 \end{gathered}$	$\begin{gathered} 0_{n-1} 0_{n-2} \cdots 0_{1} 0_{0} \\ =0 \end{gathered}$	$\begin{gathered} 0_{n-1} 0_{n-2} \cdots 0_{1} 0_{0} \\ =0 \end{gathered}$	$\begin{gathered} 0_{n-1} 0_{n-2} \cdots 0_{1} 0_{0} \\ =0 \end{gathered}$
		$\begin{gathered} 9_{n-1} 9_{n-2} \cdots 9_{1} 9_{0} \\ =10^{n}-1 \end{gathered}$	$\begin{gathered} \left(1_{n-1} 1_{n-2} \cdots 1_{1} 1_{0}\right)_{2} \\ =\left(2^{n}-1\right)_{10} \end{gathered}$	$\begin{gathered} \left(8_{n-1} 8_{n-2} \cdots 8_{1} 8_{0}\right)_{8} \\ =\left(8^{n}-1\right)_{10} \end{gathered}$	$\begin{gathered} \left(F_{n-1} F_{n-2} \ldots F_{1} F_{0}\right)_{16} \\ =(16 n-1)_{10} \end{gathered}$
fraction	Min	$\begin{gathered} 0.0_{-1} 0_{-2} \cdots 0_{-(m-1)^{1}-\mathrm{m}}^{2} \\ =100^{-\mathrm{m}} \end{gathered}$	$\begin{gathered} \left(0.0_{-1} 0_{-2} \cdot \ldots 0_{-(m-1)} 1^{1-m}\right)_{2} \\ =(2-m)_{10} \end{gathered}$	$\begin{gathered} \left(0.0_{-1} 0_{-2} \ldots 0_{-(m-1)} 1_{-m}\right)_{8} \\ =\left(8^{-m}\right)_{10} \end{gathered}$	$\begin{gathered} \left(0.0_{-1} 0_{-2} \cdots 0_{-(m-1)} 1^{1 m}\right)_{16} \\ =(16-m)_{10} \end{gathered}$
	Max	$\begin{aligned} & 0.9_{-1} 9_{-2} \cdots 9_{-(m-1)^{9}-\mathrm{m}}=1-10^{-\mathrm{m}} \end{aligned}$	$\begin{aligned} & \left(0.1_{-1} 1_{1-2} \cdots 1_{-(m-1} 1_{1-m}\right)_{2} \\ & =\left(1-2-\frac{m}{10}\right)_{10} \end{aligned}$	$\begin{aligned} & \left(0.7_{-1} 7_{-2} \cdot \ldots 7_{-(m-1-1} 7_{-m}\right)_{8} \\ & =(1-8-m)_{10} \end{aligned}$	$\begin{aligned} & \left(0 . F_{-1} F_{-2}-\cdots F_{-(m-1)} F_{-m}\right)_{16} \\ & =(1-16-m)_{10} \end{aligned}$
7/5/2005		Dr. Ashraf S. Hasan Mahmoud			28

Exercises

- What is 8^{4} equal to in octal?
$\left(8^{4}\right)_{10}=(10000)_{8}$
- What is 2^{5} equal to in binary?
$\left(2^{5}\right)=(100000)_{2}$
- What is $16^{4}-1$ equal to in Hex?
- What is $2^{3}-2^{-2}$ equal to in Binary?
- What is $16^{5}-16^{4}$ equal to in Hex?
- What is $3^{4}-3^{-2}$ equal to in base- 3 ?
- What is $2^{4}-2^{-2}$ equal to in base-3?

Addition and Subtraction of (Unsigned)
 Numbers

Binary Addition of UNSIGEND Numbers

- Consider the following example:

Find the summation of $(1100)_{2}$ and $(11001)_{2}$

Solution:

	110000	\leftarrow Carry
Augend	01100	
Addend	+11001	
$----------------~$		
sum	100101	

- Note that
- $0+0=0,0+1=1+0=1$, and $1+1=0$ and the carry is 1
- If the maximum no of digits for the augend or the addend is n, then the summation has either n or $\mathrm{n}+1$ digits
- This procedure works even for non-integer binary numbers

Binary Subtraction of UNSIGEND Numbers

- Consider the following example:

Subtract (10010) ${ }_{2}$ from (10110) ${ }_{2}$

Solution:

Minuend	10110
Subtrahend	-10010
Difference	001

- Note that
- $(10110)_{2}$ is greater than $(10010)_{2} \rightarrow$ The result is POSITIVE
- $0-0=0,1-0=1$, and $1-1=0$
- The difference size is always less or equal to the size of the minued or the subtrahend
- This procedure works even for non-integer binary numbers

Binary Subtraction - cont'd

- Consider the following example:

Subtract (10011) ${ }_{2}$ from (10110) ${ }_{2}$

Solution:

	00110	\leftarrow Borrow
Minuen	10110	
Subtrahend	-10011	
Difference	00011	

- Note that
- $(10110)_{2}$ is greater than $(10011)_{2} \rightarrow$ result is positive
- $0-1=1$, and the borrow from next significant digit is 1
- This procedure works even for non-integer binary numbers

Binary Subtraction - cont'd

- Consider the following example:

Subtract (11110) ${ }_{2}$ from $(10011)_{2}$

Solution:

- Note that
- $(10011)_{2}$ is smaller than $(11110)_{2} \rightarrow$ result is negative
- This procedure works even for non-integer binary numbers

Binary Multiplication of UNSIGEND Numbers

- Consider the following example:

Multiply (1011)2 by (101) ${ }_{2}$

Solution:

Multiplicand	1011
Multiplier	$\times 101$
----------------1011	
	0000
	1011

	110111

Sums and Products in Base r (Unsigned Numbers)

- For sums and Products in base-r ($r>2$) systems
- Memorize tables for sums and products
- Convert to Dec $\boldsymbol{\rightarrow}$ perform operation $\boldsymbol{\rightarrow}$ convert back to base-r
- Example: Find the summation of $(59 F)_{16}$ and (E46) ${ }_{16}$?

- This procedure is used for any base-r

Sums and Products in Base-r cont'd

- Example: Find the multiplication of $(762)_{8}$ and $(45)_{8}$?
- Solution:

Therefore, product $=(43772)_{8}$

Decimal Codes

Decimal Codes

- There are 2^{n} DISTINCT n-bit binary codes (group of n bits)
- n bits can count 2^{n} numbers
- For us, humans, it is more natural to deal with decimal digits rather than binary digits
- 10 different digits \rightarrow we can use 4 bits to represent any digit
- 3 bits count 8 numbers
- 4 bits count 16 numbers \rightarrow to represent 10 digits we need 4 bits at least

Binary Coded Decimal (BCD)

- Let the decimal digits be coded as show in table

Decimal Digit	Binary Code	Decimal Digit	Binary Code
0	0000	5	0101
1	0001	6	0110
2	0010	7	0111
3	0011	8	1000
4	0100	9	1001

- Then we can write numbers as

4010

Although we are using the equal sign -
$(396)_{10}=(001110010110)_{B C D}$
Since $3 \rightarrow 0011,9=1001,6=0110$ but they are not equal in the
mathematical sense; this is JUST a code

BCD Addition - Example 2

- Consider:	$\begin{aligned} & 0010 \rightarrow \text { Carry } \\ & \begin{array}{l} \text { BCD for } 8=1000 \\ \text { BCD for } 9=1001 \end{array} \\ & =10001 \rightarrow>9 \text { Need a correction step } \\ & +010(\text { (add } 6) \end{aligned}$	
110 ¢Carry		
448		
+489		

937	$1101 \rightarrow>9 \rightarrow$ Need a correction step +0110 (acdac	
	${ }_{-10011} \rightarrow$ (8CC for 3)	
	OOOI \rightarrow Cary	
Addition in the	BCD for $4=000$ $B C D$ for $4=0100$	
Decimal Domain		
7552005	Dr. Ashraf S. Hasan Mahmoud	42

BCD Addition - Summary

- BCD codes: decimal digits are assigned 4 bit codes
- We can perform additions using the BCD digits
- If the result of adding two BCD digits is greater than 9, a correction step is required in order produce the correct BCD digit
- To correct: add 6
- If a carry is produced \rightarrow move it to next BCD digits addition

Alphanumeric Codes

- We have
- 10 decimal digits
- 26×2 (English) letters: capital and small case
- Some special characters \{; , . : + - etc $\}$
- If we assign each character of these a binary code, then computers can exchange alphanumeric information (letters, numbers, etc) by exchanging binary digits
- One binary code is the American Standard Code for Information Interchange (ASCII)

ASCII

- A 7 -bits code $\rightarrow 128$ distinct codes
- 96 printable characters (26 upper case letter, 26 lower case letters, 10 decimal digits, 34 non-alphanumeric characters)
- 32 non-printable character
- Formatting effectors (CR, BS, ...)
- Info separators (RS, FS, ...)
- Communication control (STX, ETX, ...)
- Computers typically use words sizes that are multiples of 2
- Usually 8 bits are used for the ASCII code with the $8^{\text {th }}$ (left most bit) bit set to zero, OR
- The ASCII code is extended $\boldsymbol{\rightarrow}$ Extended ASCII (platform dependant)
- A good reference about ASCII and Extended ASCII is found at http://www.cplusplus.com/doc/papers/ascii.htm

ASCII - cont'd

- A 7 -bits code $\boldsymbol{\rightarrow} 128$ distinct codes
- The American Standard Code for Information Interchange (ASCII) uses seven binary digits to represent 128 characters as shown in the table.

00 NUL| 01 SOH| 02 STX| 03 ETX| 04 EOT| 05 ENQ| 06 ACK| 07 BEL 08 BS | 09 HT | 0A NL | 0B VT | 0C NP | 0D CR | 0E SO | 0 F SI 10 DLE| 11 DC1| 12 DC2| 13 DC3| 14 DC4| 15 NAK| 16 SYN| 17 ETB 18 CAN | $19 \mathrm{EM} \mid 1 \mathrm{~A}$ SUB| 1B ESC| 1C FS | 1D GS | 1E RS | 1F US 20 SP | 21 ! | 22 " | 23 \# | 24 \$ | 25 \% | 26 \& | 27
$28(\mid 29)|2 A *| 2 B+|2 C,|2 D-|2 \mathrm{E}| 2 \mathrm{~F}$,

30	0	31	1	32	2	33	3	34	4	35	5	36	6	37	7

$38 \quad 8|39 \quad 9| 3 \mathrm{~A}:|3 \mathrm{~B} ;|3 \mathrm{C}<|3 \mathrm{D}=|3 \mathrm{E}>| 3 \mathrm{~F}$?
40 @ | 41 A
48 H
$50 \mathrm{P}|51 \mathrm{Q}| 52 \mathrm{R}|53 \mathrm{~S}| 54 \mathrm{~T}|55 \mathrm{U}| 56 \mathrm{~V} \mid 57 \mathrm{~W}$

58	X	59	Y	$5 A$	Z	$5 B$	$[$	$5 C$	I	$5 D$	$]$	$5 E$	\wedge	$5 F$	
60	-	61	a	62	b	63	c	64	d	65	e	66	f	67	g

| 68 | h | 69 | i | 6 A | j | 6 B | k | 6 C | l | 6 D | m | 6 E | n | 6 F | o |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 70 | p | 71 | q | 72 | r | 73 | s | 74 | t | 75 | u | 76 | v | 77 | w |

78 x | 79 y | 7 A z | 7 B \{| $7 \mathrm{C} \mid$ | 7 D \} | 7 E ~| 7 F DEL

Unicode

- Unicode describes a 16 -bit standard code for representing symbols and ideographs for the world's languages.
First 256 Codes for Unicode ${ }^{\text {a }}$

	Control		ASCII						Control		Latin 1					
	000	001	002	003	004	005	006	007	008	009	00A	00B	00C	00D	00E	00F
0	CTRL	CTRL	:-	0	@	P	-	P	CTRL	CTRL	;NBsp:	-	A	D	à	D
1	CTRL	CTRL		1	A	Q	a	q	CTRL	CTRL		\pm	A	N	á	ñ
2	CTRL	CTRL	"	2	B	R	b	r	CTRL	CTRL	c	2	A	O	â	ò
3	CTRL	CTRL	\#	3	C	S	c	s	CTRL	CTRL	£	3	A	0	ã	ó
4	CTRL	CTRL	\$	4	D	T	d	t	CTRL	CTRL	口	-	A	0	à	ô
5	CTRL	CTRL	\%	5	E	U	e	u	CTRL	CTRL	\#\|	μ	A	\bigcirc	a	¢ั
6	CTRL	CTRL	\&	6	F	V	f	v	CTRL	CTRL	,	f	E	Ö	æ	ӧ
7	CTRL	CTRL	,	7	G	W	g	w	CTRL	CTRL	§		C	\times	c	$\stackrel{+}{+}$
8	CTRL	CTRL	(8	H	X	h	x	CTRL	CTRL	-	,	E	\emptyset	è	๑
9	CTRL	CTRL)	9	I	Y	i	y	CTRL	CTRL	(c)	i	É	Ù	é	u
A	CTRL	CTRL	*	:	J	Z	j	z	CTRL	CTRL	a	\bigcirc	E	Ú	ê	u
B	CTRL	CTRL	+	;	K	[k	\{	CTRL	CTRL	*	"	Ë	U	ë	ut
C	CTRL	CTRL	,	<	L	1	1	\|	CTRL	CTRL	\checkmark	$\frac{1}{1} 1^{1 / 4}$	İ	Ü	i	u
D	CTRL	CTRL	-	$=$	M	1	m	\}	CTRL	CTRL	-	$\frac{1}{2} 1^{1 / 2}$	Í	Y	i	y
E	CTRL	CTRL	-	>	N	\wedge	n	\sim	CTRL	CTRL	(1)	$43^{3 / 4}$	İ	p	i	p
F	CTRL	CTRL	1	?	O	-	-	CTRL	CTRL	CTRL	-	¿	İ	B	i	$\ddot{\text { y }}$

andicode, Inc., The Unicode Standard. Worldwide Character Encoding. Version 1.0, Volume 1, 81990,1991 by Unicode, Inc. Reprinted by permission of Addison-
Wesley Publishing Col 7/5/2005

Problems of Interest

- Problem List:
- Homework: Chapter 1, pages 24-26: 2, 3, 8, 12, 16, 19, 24, 26
Due date: Saturday July 16, 2005 (in class)

Signed Numbers
 Representations

Machine Representation of Numbers

- Computers store numbers in special digital electronic devices called REGISTERS
- REGISTERS consist of a fixed number of storage elements
- Each storage element can store one BIT of data (either 1 or 0)
- A register has a FINITE number of bits
- Register size (n) is the number of bits in this register
- N is typically a power of 2 (e.g. $8,16,32,64$, etc.)
- A register of size n can represent 2^{n} distinct values
- Numbers stored in a register can be either signed or unsigned

N-bit Register

- N -storage elements

- Each storage element capable of holding ONE bit (either 1 or -0
- n-bits can represent 2^{n} distinct values
- For example if unsigned integer numbers are to be represented, we can represent all numbers from 0 to 2^{n-1} (recall the number ranges for n-bits)
- If we use it to represent signed numbers, still it can hold $2 n$ different numbers - we will learn about the ranges of these numbers in the coming slides

N-bit Register - cont'd

- Using a 4-bit register, $(13)_{10}$ or $(\mathrm{D})_{H}$ is represented as follows:

1	1	0	1

- Using an 8-bit register, $(13)_{10}$ or $(\mathrm{D})_{\mathrm{H}}$ is represented as follows:

0	0	0	0	1	1	0	1

- Note that ZEROS are used to pad the binary representation of 13 in the 8 -bit register
- We are still using UNSIGNED NUMBERS

Signed Number Representation

- To report a "signed" number, you need to specify its:
- Magnitude (or absolute value), and
- Sign (positive or negative)
- There are to major techniques to represent signed numbers

1. Signed Magnitude Representation
2. Complement Method

Signed Magnitude Representation

- N -bit register

Signed Magnitude Representation Example 1:

- Show how +6, $-6,+13$, and -13 are represented using a 4-bit register
- Solution: Using a 4-bit register, the leftmost bit is reserved for the sign, which leaves 3 bits only to represent the magnitude
\rightarrow The largest magnitude that can be represented $=2^{(4-1)}-1=7<13$
Hence, the numbers +13 and -13 can NOT be represented using the 4-bit register

Signed Magnitude Representation Example 1: cont'd

- Solution (cont'd):

However both -6 and +6 can be represented as follows:

Signed Magnitude Representation Example 2:

- Show how +6, $-6,+13$, and -13 are represented using an 8-bit register
- Solution: Using an 8-bit register, the leftmost bit is reserved for the sign, which leaves 7 bits only to represent the magnitude
\rightarrow The largest magnitude that can be represented $=2^{(8-1)}-1=127$
Hence, the numbers can be represented using the 8 -bit register

Signed Magnitude Representation Example 2: cont'd

- Solution (cont'd):

Since 6 and 13 are equal to : 110 and 1101 respectively, the required representations are

Singed-Magnitude representation of +6	0	0	0	0	0	1	1	0	
Singed-Magnitude representation of -6	1	0	0	0	0	1	1	0	
$\begin{aligned} & \text { Singed-Magnitude } \\ & \text { representation of +13 } \end{aligned}$	0	0	0	0	1	1	0	1	1
Singed-Magnitude representation of -13	1	0	0	0	1	1	0	1	1

Things We Learned About SignedMagnitude Representation

- For an n-bit register
- Leftmost bit is reserved for the sign (0 for +ve and 1 for -ve)
- Remaining $\mathrm{n}-1$ bits represent the magnitude
- $2^{(n-1)}$ different numbers: - minimum is zero and maximum is $2^{(n-1)}-1$
- Two representations for zero: +0 and -0
- Range of numbers: from $-\left\{2^{(n-1)}-1\right\}$ to $+\left\{2^{(n-1)-}\right.$ $1\} \rightarrow$ symmetric range

Complement Representation

- +ve numbers (+N) are represented exactly the same way as in signed-magnitude representation
- -ve numbers (-N) are represented by the complement of N or N^{\prime}

How is the complement of N or N^{\prime} defined?
$N^{\prime}=M-N \quad$ where M is some constant

Properties of the Complement Representation

- The complement of the complement of N is equal to N :
Proof: $\left(N^{\prime}\right)^{\prime}=M-(M-N)=-(-N)=N$
Same as with -ve numbers definition!
- The complement method representation of signed numbers simplifies implementation of arithmetic operations like subtraction:
e.g.: A - B can be replaced by $A+(-B)$ or $A+B^{\prime}$ using the complement method
Therefore to perform subtraction using computers we complement and add the subtrahend
- Consider the following number:

$$
\mathrm{X}=X_{\mathrm{n}-1} \ldots X_{2} X_{1} X_{0}, X_{-1} X_{-2} \ldots X_{-(m-1)} X_{-\mathrm{m}}
$$

(n integral digits -m fractional digits)

- Using the base-r number system, there can be two types of the complement representation
- Radix Complement (R's Complement)
$\rightarrow M=r^{n}$
- Diminished Radix Complement (R-1's Complement):

$$
\Rightarrow M=r^{n}-r^{-m}
$$

Recall that $r^{n}=1_{n} 0_{n-1} \ldots 0_{1} 0_{0}$

$$
=r^{n}-u l p
$$

= 1 followed by n zeros
Recall that $\mathrm{r}^{-\mathrm{m}}=0 . .00 .00 . .01$

How to Choose M? - cont'd

- Note that:
- $M=r^{n}-r^{-m}$ is the LARGEST unsigned number that can be represented
- From the definitions of $M, R s$ complement of N is equal to R-1's complement of N plus ulp

Summary of Complement Method

- R's Complement:

Number System	R's Complement	Complement of X
Decimal	10^{\prime} s Complement	$X_{10}^{\prime}=10^{n}-X$
Binary	2^{\prime} 's Complement	$X^{\prime}{ }_{2}=2^{n}-X$
Octal	$8^{\prime} s$ Complement	$X_{8}^{\prime}=8^{n}-X$
Hexadecimal	$16^{\prime} s$ Complement	$X_{16}^{\prime}=16^{n}-X$

Summary of Complement Method cont'd

- R-1's Complement:

Number System	R-1's Complement	Complement of X
Decimal	9's Complement	$\mathrm{X}_{9}^{\prime}=\left(10^{\mathrm{n}}-10^{-\mathrm{m}}\right)-\mathrm{X}$ $=99 \ldots 99.99 \ldots 99-\mathrm{X}$
Binary	1's Complement	$\mathrm{X}^{\prime}{ }_{1}=\left(2^{\mathrm{n}}-2^{-\mathrm{m}}\right)-\mathrm{X}$ $=11 \ldots 11.11 \ldots .11-\mathrm{X}$
Octal	7's Complement	$\mathrm{X}_{7}^{\prime}=\left(8^{\mathrm{n}}-8^{-\mathrm{m}}\right)-\mathrm{X}$ $=77 . .77 .77 \ldots .77-\mathrm{X}$
Hexadecimal	15's Complement	$\mathrm{X}_{15}^{\prime}=\left(16^{\mathrm{n}}-16^{-\mathrm{m}}\right)-\mathrm{X}$ $=\mathrm{FF} . . . \mathrm{FF} . \mathrm{FF} . . . \mathrm{FF}-\mathrm{X}$

Example 1a:

- Find the 9's and 10's complement of 2357?
- Solution:

Example 1b:

- Find the 9's and 10's complement of 2895.786?
- Solution:

$$
=10000-2895.786
$$

$$
=7104.214
$$

Or alternatively,

$$
X_{10}^{\prime}=X_{9}^{\prime}+\text { ulp }=7642+1=7104.214
$$

$$
\begin{aligned}
& X=2895.786 \rightarrow n=4, m=3 \\
& X_{9}^{\prime}=\left(10^{4}-u l p\right)-X \\
& =(10000-0.001)-2895.786 \\
& =9999.999-2895.786 \\
& =7104.213 \\
& X_{10}^{\prime}=10^{4}-X \\
& \begin{array}{c}
=9999.999=\mathrm{M} \\
\text { While } \mathrm{X}+\mathrm{X}^{\prime}{ }_{10}=2895.786+7104.214
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& X=2357 \rightarrow n=4 \\
& X_{9}^{\prime}=\left(10^{4}-u l p\right)-X \\
& =(10000-1)-2357 \\
& \text { = 9999-2357 } \\
& =7642 \\
& X_{10}^{\prime}=10^{4}-X \\
& =10000-2357 \\
& =7643 \\
& \text { Or alternatively, } \\
& \mathrm{X}_{10}^{\prime}=\mathrm{X}_{9}^{\prime}+\mathrm{ulp}=7642+1=7643
\end{aligned}
$$

Example 2a:

- Find the 1 's and 2's complement of 110101010 ?
- Solution:

$$
\begin{aligned}
\mathrm{X}= & 110101010 \rightarrow \mathrm{n}=9 \\
\mathrm{X}_{1}^{\prime}= & \left(2^{9}-\mathrm{ulp}\right)-\mathrm{X} \\
& =(1000000000-1)-110101010 \\
& =111111111-110101010 \\
& =001010101
\end{aligned} \quad \begin{aligned}
& \text { Note that: } \mathrm{X}+\mathrm{X}_{1}^{\prime}=1110101010+001010101 \\
& =11111111=\mathrm{M} \\
& \mathrm{X}_{2}^{\prime}
\end{aligned}=2^{9}-\mathrm{X} \quad \begin{aligned}
& \text { While } \mathrm{X}+\mathrm{X}_{2}^{\prime}=110101010+00101010 \\
& =1000000000=\mathrm{M}
\end{aligned}
$$

$=1000000000-110101010$
$=001010110$
Or alternatively,

$$
X_{2}^{\prime}=X_{1}^{\prime}+u l p=001010101+1=001010110
$$

Example 2b:

- Find the 1's and 2's complement of 1010.001?
- Solution:

$$
\begin{aligned}
& X=1010.001 \rightarrow n=4, m=3 \\
& X_{1}^{\prime}=\left(2^{4}-u l p\right)-X \\
& =(10000-0.001)-1010.001 \\
& \text { = } 1111.111-1010.001 \\
& =0101.110 \\
& X_{2}^{\prime}=2^{4}-X \\
& \text { Note that: } \mathrm{X}+\mathrm{X}_{1}{ }_{1}=1010.001+0101.110 \\
& \text { While } \mathrm{X}+\mathrm{X}_{2}{ }_{2}=1010.001+0101.110 \\
& =10000.000=\mathrm{M} \\
& =10000-1010.001 \\
& =0101.111
\end{aligned}
$$

Or alternatively,

$$
X_{2}^{\prime}=X_{1}^{\prime}+u l p=0101.110+0.001=0101.111
$$

Notes On 1's and 2's Complements Computation:

- 1's complement can be obtained by bitwise complementing the bits of X
Examples (from previous slide)

$$
X=1010.001 \rightarrow X_{1}^{\prime}=0101.110
$$

- 2's complement of X can be obtained by:

1. Adding ulp to its 1 's complement, or

$$
X=1010.001 \rightarrow X_{1}^{\prime}=0101.110 \rightarrow X_{2}^{\prime}=0101.111
$$

2. Scanning X from right to left, copy all digits including first 1, complement all remaining digits

Example 3a:

- Find the 7 's and the 8 's complement of the following octal number 6770?
- Solution:
$X=6770 \rightarrow \mathrm{n}=4$
$\mathrm{X}_{7}^{\prime}=\left(8^{4}-\mathrm{ulp}\right)-\mathrm{X}$
$=(10000-1)-6770$
= 7777 - 6770
= 1007
$X_{8}^{\prime}=8^{4}-X$
$=10000-6770$
= 1010
Or alternatively,

$$
\mathrm{X}_{8}^{\prime}=\mathrm{X}_{7}^{\prime}+\mathrm{ulp}=1007+1=1010
$$

Example 3b:

- Find the 7's and the 8's complement of the following octal number 541.736?
- Solution:

$$
\begin{aligned}
& \mathrm{X}= \\
& \begin{aligned}
\mathrm{X}_{7}^{\prime}= & \left(8^{3}-\mathrm{ulp}\right)-\mathrm{X} \\
& =(10000-0.001)-541.736 \\
& =777.777-541.736 \\
& =236.041 \\
\mathrm{X}_{8}^{\prime} & =8^{3}-\mathrm{X} \\
& =10000-541.736 \\
& =236.042
\end{aligned}
\end{aligned}
$$

Or alternatively,
$\mathrm{X}_{8}^{\prime}=\mathrm{X}_{7}^{\prime}+\mathrm{ulp}=236.041+0.001=236.042$

Example 4a:

- Find the 15 's and the 16 's complement of the following Hex number 3FA9?
- Solution:
$X=3$ FA9 $\rightarrow \mathrm{n}=4$
$\mathrm{X}_{15}^{\prime}=\left(16^{4}-\mathrm{ulp}\right)-\mathrm{X}$
$=(10000-1)-3$ FA 9
= FFFF - 3FA9
= C056
$X_{16}^{\prime}=16^{4}-X$
$=10000-3$ FA9
= C057
Or alternatively,

$$
\mathrm{X}_{16}^{\prime}=\mathrm{X}_{15}^{\prime}+\mathrm{ulp}=\mathrm{C} 056+1=\mathrm{C} 057
$$

Example 4b:

- Find the 15 's and the 16 's complement of the following Hex number 9B1.C70?
- Solution:
$X=9 B 1 . C 70 \rightarrow n=3, m=3$
$X_{15}^{\prime}=\left(16^{3}-\right.$ ulp $)-X$
$=(1000-0.001)-9 B 1 . C 70$
= FFF.FFF - 9B1.C70
$=64 \mathrm{E} .38 \mathrm{~F}$
$X_{16}^{\prime}=16^{3}-\mathrm{X}$
$=1000-9 B 1 . C 70$
$=64 \mathrm{E} .390$
Or alternatively,
$\mathrm{X}_{16}^{\prime}=\mathrm{X}_{15}^{\prime}+\mathrm{ulp}=64 \mathrm{E} .38 \mathrm{~F}+0.001=64 \mathrm{E} .390$

Complement Representation Example 5:

- Show how +53 and -53 are represented in 8 -bit registers using signed-magnitude, 1's complement and 2's complement?
- Solution:

Note that $53=32+16+4+1$,
Therefore using 8-bit signed-magnitude:
$-+53 \boldsymbol{\rightarrow} \mathbf{0} 0110101 \quad-53 \boldsymbol{\rightarrow} \mathbf{\underline { 1 }} 0110101$

- To find the representation in complement method:

Complement Representation Example 5: cont'd

- Solution: cont'd

To find the representation in complement method. (53) $10=(00110101)_{2}$ when written in 8 -bit binary
1's complement $\boldsymbol{\rightarrow} 11001010$ (inverting every bit)
2's complement $\rightarrow 11001011$ (adding ulp to X_{1}^{\prime})

Complement Representation Example 5: cont'd

- Solution: cont'd

Putting all the results together in a table

Note:

- +53 representation is the same for all

	+53	-53
Signed- Magnitude	00110101	10110101
1's Complement	00110101	11001010
2's Complement	00110101	11001011

- For +53 , the leftmost bit is 0 (+ve number)
- For -53 , the leftmost bit is 1 (-ve number)

Example 6:

- For the shown 4-bit representations, indicate the corresponding decimal value in the shown representation

Example 6: cont’d

- Signed-Magnitude and 1 's complement are symmetrical representations with TWO representations for ZERO
- Range from signedmagnitude and 1's complement is from 7 to +7
- 2's complement representation is not symmetrical
- Range for 2's complement is from 8 to +7 - with one representation for ZERO

	Unsigned	Signed- Magnitude	1's Complement	2's Complement
0000	0	0	0	0
0001	1	1	1	1
0010	2	2	2	2
0011	3	3	3	3
0100	4	4	4	4
0101	5	5	5	5
0110	6	6	6	6
0111	7	7	7	7
1000	8	-0	-7	-8
1001	9	-1	-6	-7
1010	10	-2	-5	-6
1011	11	-3	-4	-5
1100	12	-4	-3	-4
1101	13	-5	-2	-3
1110	14	-6	-1	-2
1111	15	-7	-0	-1

Summary

- The following table summarizes the properties and ranges for the studied signed number representations

	Signed- Magnitude	1's Complement	2's Complement
Symmetric	Y	Y	N
No of Zeros	2	2	1
Largest	$2^{(n-1)}-1$	$2^{(n-1)-1}$	$2^{(n-1)-1}$
Smallest	$-\left\{2^{(n-1)}-1\right\}$	$-\left\{2^{(n-1)-1\}}\right.$	$-2^{(n-1)}$

Exercise

- Find the binary representation in signed magnitude, 1's complement, and 2's complement for the following decimal numbers: $+13,-13,+39,+1,-1,+73$, and -73 . For all numbers, show the required representation for 6 -bit and 8 -bit registers

10's Complement

- For $\mathrm{n}=1$ and 2

$\mathrm{X}_{10}^{\prime}(\mathrm{n}=1)$	X_{10}^{\prime} using+/- in decimal
0	0
1	1
2	2
3	3
4	4
5	-5
6	-4
7	-3
8	-2
9	-1

$\mathrm{X}_{10}^{\prime}(\mathrm{n}=2)$	X_{10}^{\prime} using+/- in decimal
00	0
01	1
02	2
..	\ldots
09	9
10	10
11	11
12	12
\ldots	\ldots
49	49
50	-50
51	-49
52	-48
\ldots	\ldots
98	-2
99	-1

8's Complement

- For $\mathrm{n}=1$ and 2

$\mathrm{X}_{8}^{\prime}(\mathrm{n}=1)$	X_{8}^{\prime} using+/- in decimal
0	0
1	1
2	2
3	3
4	-4
5	-3
6	-2
7	-1

$\mathrm{X}_{8}^{\prime}(\mathrm{n}=2)$	X_{8}^{\prime} using+/- in decimal
00	0
01	1
02	2
..	\ldots
07	7
10	8
11	9
12	10
\ldots	\ldots
36	30
37	31
40	-32
41	-31
\ldots	\ldots
70	-8
71	-7
\ldots	\ldots
76	-2
77	-1

16's Complement

- For $n=1$ and 2			$\mathrm{X}_{16}^{\prime}(\mathrm{n}=2)$	X_{16}^{\prime} using+/- in decimal
			00	0
	$\mathrm{X}_{16}^{\prime}(\mathrm{n}=1)$		01	1
	$\mathrm{X}_{16}(\mathrm{n}=1)$	decimal	\ldots	\ldots
	0	0	OE	14
	1	1	OF	15
			10	16
			11	17
			\ldots	\ldots
	4	4		
	5	5	20	32
	6	6	21	33
	7	7		
	8	-8		
	9	-7		
	A	-6		
	B	-5		
	C			
	D	-4		-16
	E	-3		
	E	-2	FD	-3
7/5/2005	Dr. Ashraf S. Has		FE	-2
			FF	-1

Operations On Binary Numbers

Operation On Binary Numbers

- Assuming we are dealing with n-bit binary numbers
- UNSIGNED, or
- SIGNED (2's complement)
- A subtraction can always be made into an addition operation $\mathrm{A}-\mathrm{B}=\mathrm{A}+(-\mathrm{B})$ or $\mathrm{A}+\left(\mathrm{B}^{\prime}\right)$
- Compute the 2's complement of the subtrahend and added to the minuend

Operations on Binary Numbers

- The GENERAL OPERATION looks like:
$C_{n} C_{n-1} C_{n-2} \ldots C_{2} C_{1} C_{0} \leftarrow$ Carry generated
$A_{n-1} A_{n-2} \ldots A_{2} A_{1} A_{0} \rightarrow$ Number A (signed or otherwise)
$+B_{n-1} B_{n-2} \ldots B_{2} B_{1} B_{0} \quad \rightarrow$ Number B (signed or otherwise)

$C_{n} \mathbf{S}_{\mathrm{n}-1} \mathbf{S}_{\mathrm{n}-\mathbf{2}} \ldots \mathbf{S}_{\mathbf{2}} \mathbf{S}_{\mathbf{1}} \mathbf{S}_{\mathbf{0}}$
- Note that although we start with n-bit numbers, we can end up with a result consisting of $n+1$ bits
- Remember we are using n-bit registers!!
- What to do with this extra bit $\left(\mathrm{C}_{\mathrm{n}}\right)$?

Addition of Unsigned Numbers Review

- For n-bit words, the n-bit UNSI GNED binary numbers range from $\left(0_{n-1} 0_{n-2} \ldots 0_{1} 0_{0}\right)_{2}$ to $\left(1_{n-1} 1_{n-}\right.$ $\left.{ }_{2} \ldots 1_{1} 1_{0}\right)_{2}$
i.e. they range from 0 to $\mathbf{2}^{\mathbf{n - 1}}$
- When adding A to B as in:
$c_{n} C_{n-1} C_{n-2} \ldots C_{2} C_{1} C_{0} \leftarrow$ Carry generated
$A_{n-1} A_{n-2} \ldots A_{2} A_{1} A_{0} \quad \rightarrow$ Number A (unsigned)
$+B_{n-1} B_{n-2} \ldots B_{2} B_{1} B_{0} \rightarrow$ Number B (unsigned)
$\mathrm{C}_{\mathrm{n}} \mathrm{S}_{\mathrm{n}-1} \mathrm{~S}_{\mathrm{n}-2} \ldots \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$
- If C_{n} is equal to ZERO, then the result DOES fit into n -bit word ($\mathrm{S}_{\mathrm{n}-1} \mathrm{~S}_{\mathrm{n}-2} \ldots \mathrm{~S}_{\mathbf{2}} \mathbf{S}_{\mathbf{1}} \mathbf{S}_{\mathbf{0}}$)
- If C_{n} is equal to ONE, then the result DOES NOT fit into n-bit word \rightarrow An "OVERFLOW" indicator!

Subtraction of Unsigned Numbers

- How to perform A-B (both defined as n-bit unsigned)?
- Procedure:

1. Add the the 2 's complement of B to A; this forms A + (2n - B)
2. If $(A>=B)$, the sum produces end carry signal $\left(C_{n}\right)$; discard this carry
3. If $A<B$, the sum does not produce end carry signal (C_{n}); result is equal to $\mathbf{2}^{\mathrm{n}}$ - (B-A), the $\mathbf{2 ' s}^{\prime}$ complement of $B-A-$ Perform correction:

- Take 2's complement of sum
- Place - ve sign in front of result
- Final result is - (A-B)

Subtraction of Unsigned Numbers - NOTES

- Although we are dealing with unsigned numbers, we use the 2's complement to convert the subtraction into addition
- Since this is for UNSI GEND numbers, we have to use the - ve sign when the result of the operation is negative

Subtraction of Unsigned
 Numbers - Example

- Example: $X=1010100$ or (84) ${ }_{10}, Y=1000011$ or $(67)_{10}$ - Find $X-Y$ and $Y-X$
- Solution:
A) $\mathrm{X}-\mathrm{Y}$:
$X=1010100$
2's complement of $Y=0111101$
Sum = 10010001
Discard C_{n} (last bit) $=0010001$ or (17) $)_{10} \leftarrow X-Y$
B) Y - X: $\quad Y=1000011$

2's complement of $X=0101100$
Sum = 1101111
C_{n} (last bit) is zero \rightarrow need to perform correction $\mathrm{Y}-\mathrm{X}=-(2$'s complement of 1101111) $=-001001$

n-bit Unsigned Number Operations Summary

2's Complement Review

- For n-bit words, the 2's complement SI GNED binary numbers range from - ($\left.2^{\mathrm{n}-1}\right)$ to $+\left(2^{\mathrm{n}-1}-1\right)$
e.g. for 4-bit words, range $=-8$ to +7
- Note that MSB is always $\mathbf{1}$ for - ve numbers, and 0 for + ve numbers

Addition/Subtraction of n-bit Signed Numbers by Example (1)

- Any carry out of sign bit position is DISCARDED
- -ve results are automatically in 2's complement form (no need for an explicit - ve sign)!

Addition/Subtraction of n-bit Signed Numbers by Example (2)

Addition/Subtraction of n-bit Signed Numbers by Example (2) - cont'd

- NOTE:
- The result is invalid (not within range) only if $\mathrm{C}_{\mathrm{n}-1}$ and C_{n} are different! \rightarrow An OVERFLOW has occurred
- The result is valid (within range) if $\mathrm{C}_{\mathrm{n}-1}$ and C_{n} are the same
- If $\mathrm{C}_{\mathrm{n}}=1$; it needs to be discarded
- If result is valid and -ve, it will be in the correct 2 's complement form

Addition/Subtraction of n-bit Signed Numbers - Summary

