# King Fahd University of Petroleum & Minerals Computer Engineering Dept

**COE 200 - Fundamentals of Computer Engineering** 

**Term 043** 

Dr. Ashraf S. Hasan Mahmoud

Rm 22-144

Ext. 1724

Email: ashraf@ccse.kfupm.edu.sa

7/13/2005 Dr. Ashraf S. Hasan Mahmoud

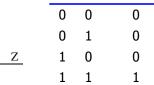
### **Binary Logic**

- Deals with *binary* variables that take one of two discrete values
- Values of variables are called by a variety of very different names
  - high or low based on voltage representations in electronic circuits
  - *true* or *false* based on their usage to represent logic states
  - one (1) or zero (0) based on their values in Boolean algebra
  - open or closed based on its operation in gate logic
  - on or off based on its operation in switching logic
  - asserted or de-asserted based on its effect in digital systems

7/13/2005

Dr. Ashraf S. Hasan Mahmoud

### **Basic Operations - AND**


Another Symbol is ".", e.g.

$$Z = X AND Y or$$

$$Z = X.Y$$
 or even

$$Z = XY$$

- X and Y are inputs, Z is an output
- Z is equal to 1 if and only if X = 1 and Y = 1; Z = 0 otherwise (similar to the multiplication operation)
- Truth Table:
- Graphical symbol:



Z=XY

X Y



7/13/2005

### **Basic Operations - OR**

Another Symbol is "+", e.g.

$$Z = X OR Y or$$

$$Z = X + Y$$

- X and Y are inputs, Z is an output
- Z is equal to 0 if and only if X = 0 and Y = 0; Z
   = 1 otherwise (similar to the addition operation)
- Truth Table:
- Graphical symbol:

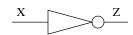
| <u>X</u> | 7         | 7 |
|----------|-----------|---|
| Y        | $\neg)$ > | Z |
| _        |           |   |

Dr. Ashraf S. Hasan Mahmoud

| Χ | Υ | Z=X+Y |
|---|---|-------|
| 0 | 0 | 0     |
| 0 | 1 | 1     |
| 1 | 0 | 1     |
| 1 | 1 | 1     |
|   |   | 4     |

7/13/2005

### **Basic Operations - NOT**


Another Symbol is "", e.g.

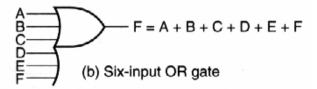
$$Z = \overline{X}$$
 or  $Z = X'$ 

- X is the input, Z is an output
- Z is equal to 0 if X = 1; Z = 1 otherwise
- Sometimes referred to as the complement or invert operation
- Truth Table:

| Χ | Z=X′ |
|---|------|
| 0 | 1    |
| 1 | 0    |

• Graphical symbol:




7/13/2005

Dr. Ashraf S. Hasan Mahmoud

### **Multiple Input Gates**

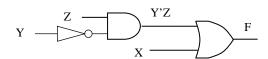


(a) Three-input AND gate



7/13/2005

Dr. Ashraf S. Hasan Mahmoud


-

### **Boolean Algebra**

• Consider the following function, F

$$F = X + Y'Z$$

- The function F is referred to as a BOOLEAN FUNCTION
- F has two terms: X and Y'Z
- The circuit diagram for F is as shown below



7/13/2005

Dr. Ashraf S. Hasan Mahmoud

### Boolean Algebra - cont'd

- The truth table for F is as follows
- Note:
  - In general, a truth table for an n-variable function, has 2<sup>n</sup> rows to cover all possible input combinations
  - The table covers all possible combinations of the inputs
  - To arrive at the F's column one could use an Y'Z column as follows

| Χ | Υ | Z | F |
|---|---|---|---|
| 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 |
| 0 | 1 | 1 | 0 |
| 1 | 0 | 0 | 1 |
| 1 | 0 | 1 | 1 |
| 1 | 1 | 0 | 1 |
| 1 | 1 | 1 | 1 |

The Y'Z column is computed using the Y and Z columns and then using the columns X and Y'Z, the column F is computed

The column Y'Z is **not** an essential part of truth table

7/13/2005

0 0 Dr. Ashraf S. 1 1 1

#### **Basic Identities**

For the AND operation

$$X.1 = X$$

$$X.0 = 0$$

$$X.X = X$$

$$X \cdot X' = 0$$

• For the OR operation

$$X + 0 = X$$

$$X + 1 = 1$$

$$X + X = X$$

$$X + X' = 1$$



$$X'' = X$$

Notice the **duality**: start with one identity -Replace the AND by OR

-Replace the 1 by 0 and vice versa

You end up with an identity from the other group

7/13/2005 Dr. Ashraf S. Hasan Mahmoud

### **Basic Identities (2)**

For the AND operation
 OR Operation

<u>Commutative</u>: x.y=y.x x+y=y+x

Associative: X(YZ)=(XY)Z X+(Y+Z)=(X+Y)+Z Distributive: X+YZ=(X+Y)(X+Z) X(Y+Z)=(XY)+(XZ)

<u>DeMorgan's</u>: (X.Y)'=X'+Y' (X+Y)'=X'.Y'

 All above properties can be generalized to n > 2 variables: e.g:

•  $(X_1+X_2+...+X_n)' = X_1'.X_2'.....X_n'$ , or

 $(X_1.X_2....X_n)' = X_1' + X_2' + ... + X_n'$ 7/13/2005 Dr. Ashraf S. Hasan Mahmoud

11

### **Verifying Basic Identities**

- Any identity (not only the basic ones) can be verified using the truth table
- Example: verify that (X+Y)' = X'Y'

| Υ | X+Y                   | (X+Y)'                | Χ'                                   | Y′                                              | X'.Y'                                                                                                                                                              |
|---|-----------------------|-----------------------|--------------------------------------|-------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0 | 0                     | 1                     | 1                                    | 1                                               | 1                                                                                                                                                                  |
| 1 | 1                     | 0                     | 1                                    | 0                                               | 0                                                                                                                                                                  |
| 0 | 1                     | 0                     | 0                                    | 1                                               | 0                                                                                                                                                                  |
| 1 | 1                     | 0                     | 0                                    | 0                                               | 0                                                                                                                                                                  |
|   | Y<br>0<br>1<br>0<br>1 | Y X+Y 0 0 1 1 0 1 1 1 | Y X+Y (X+Y)' 0 0 1 1 1 0 0 1 0 1 1 0 | Y X+Y (X+Y)' X' 0 0 1 1 1 1 0 1 0 1 0 0 1 1 0 0 | Y     X+Y     (X+Y)'     X'     Y'       0     0     1     1     1       1     1     0     1     0       0     1     0     0     1       1     1     0     0     0 |

ALL possible combinations of inputs

Some columns to aid in calculations

The two quantities in question

7/13/2005


Dr. Ashraf S. Hasan Mahmoud

### Algebraic Manipulation - Example

Consider the following function, F

$$F = X'YZ + X'YZ' + XZ$$

The function can be implemented using above expressions as in



We need:

-2 inverters

-3 AND gates

-1 OR gate

13

### Algebraic Manipulation - Example - cont'd

The function

$$F = X'YZ + X'YZ' + XZ$$

can be simplified "ALGEBRAICALLY" as follows:

F = X'YZ + X'YZ' + XZ

=  $X'Y(Z + Z') + XZ \rightarrow$  by the distributive property

= XY(1) + XZ  $\rightarrow$  by the properties of the OR operation

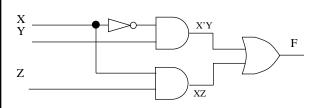
= X'Y + XZ  $\rightarrow$  by the properties of the AND operation

• Therefore F can be written as

$$F = X'Y + XZ$$

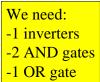
• Using this simpler form, one can implement the function as

7/13/2005


Dr. Ashraf S. Hasan Mahmoud

### Algebraic Manipulation - Example - cont'd

• Therefore F can be written as


$$F = X'Y + XZ$$

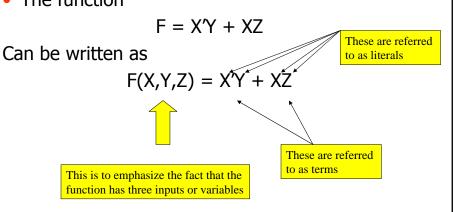
Using this simpler form, one can implement the function as



One can use the truth table method to show that F
 XYZ + XYZ' + XZ is indeed equal to XY + XZ

/2005 Dr. Ashraf S. Hasan Mahmoud






Reduced hardware cost

15

### **More Notes on Function**

The function



7/13/2005

Dr. Ashraf S. Hasan Mahmoud

#### **More Identities**

- Page 37 in the text → VERY IMPORTANT make sure you can prove/verify all of these identities
- Listing
  - 1. X + XY = X
  - 2. XY + XY' = X
  - 3. X + X'Y = X + Y

in the textbook

The proof/verification of these is

- 4. X(X + Y) = X
- 5. (X + Y)(X + Y') = X
- 6. X(X' + Y) = XY
- 7. XY + X'Z + YZ = XY + X'Z (the consensus theorem)

7/13/2005

Dr. Ashraf S. Hasan Mahmoud

17

#### More Identities - continued

- Using the duality principle (refer to slide XX) there are other equivalent 7 identities
- Example: The proof of the consensus theorem is as follows

The RHS = 
$$XY + X'Z + YZ$$
  
=  $XY + X'Z + YZ(X + X')$   
=  $XY + X'Z + XYZ + X'YZ$   
=  $XY + XYZ + X'Z + X'YZ$   
=  $XY(1+Z) + X'Z(1+Y)$   
=  $XY + X'Z$   
= LHS

The dual of the consensus theorem is given by

$$(X+Y)(X'+Z)(Y+Z) = (X+Y)(X'+Z)$$

7/13/2005

Dr. Ashraf S. Hasan Mahmoud

### **Complement of a Function**

- Using the truth table complementing F means replacing every 0 with 1 and every 1 with 0 in the F column
- Algebraically, complementing F one can use DeMorgan's rule or the duality principle
- To use the duality principle
  - Replace Each AND with an OR and each OR with an AND
  - Complement each variable and constant

7/13/2005

Dr. Ashraf S. Hasan Mahmoud

19

### **Example**

- <u>Problem:</u> Find the complement of each of the following two functions F<sub>1</sub> = X'YZ' + X'Y'Z, and F<sub>2</sub> = X(Y'Z' + YZ)
- Solution:

For F<sub>1</sub>, applying DeMorgan's rule as many times as necessary

$$F_{1}' = (X'YZ' + X'Y'Z)'$$
  
=  $(X'YZ')'$ .  $(X'Y'Z)'$   
=  $(X + Y' + Z)$ .  $(X + Y + Z')$ 

Similarly for  $F_2$ :  $F_2'$ 

$$F_{2}' = (X(Y'Z' + YZ))'$$

$$= X' + (Y'Z' + YZ)'$$

$$= X' + (Y'Z')' \cdot (YZ)'$$

$$= X' + (Y + Z) \cdot (Y' + Z')$$
Dr Ashraf S Hasan Minmold

7/13/2005

### **Examples**

- Problem 2-2: Prove the identity of each of the following Boolean equations, using algebraic manipulations.
  - a) X'Y' + X'Y + XY = X' + Y
  - b) A'B + B'C' + AB + B'C = 1
- Solution:

```
a) LHS = X'Y' + X'Y + XY
= X'Y' + X'Y + XY' + XY'
= X'(Y'+Y) + Y(X + X')
= X' + Y
= RHS
```

b) LHS = RHS = A'B + B'C' + AB + B'C = (A'+A)B + B'(C'+C)= B + B'= 1

= RHS Dr. Ashraf S. Hasan Mahmoud

### **Examples**

- <u>Problem 2-6</u>: Simplify the following Boolean expressions to a minimum number of literals:
  - a) ABC + ABC' + A'B
  - e) (A+B'+AB')(AB+A'C+BC)
- Solution:

a) Expression 
$$= ABC + ABC' + A'B$$
$$= AB(C + C') + A'B$$
$$= (A+A')B$$

= B

e) Expression = (A+B'+AB')(AB+A'C+BC)= (A+(1+A)B')(AB + A'C)

= (A+B')(AB+A'C)

= A(AB+A'C) + B'(AB+A'C)

= AB + A'B'C

7/13/2005 Dr. Ashraf S. Hasan Mahmoud

22

### **Standard Forms of a Boolean Function**

- A Boolean function can be written algebraically in a variety of ways
- Standard form: is an algebraic expression of the function that facilitates simplification procedures and frequently results in more desirable logic circuits (e.g. less number of gates)
- Standard form: contains product terms and sum terms

Product term: X'Y'ZSum term: X + Y + Z'

7/13/2005

Dr. Ashraf S. Hasan Mahmoud

23

### Standard Forms of a Boolean Function - cont'd

- A minterm: a product term in which all variables (or literals) of the function appear exactly once
- A maxterm: a sum term in which all the variables (or literals) of the function appear exactly once
- Example: for the function F(X,Y,Z),
  - the term X'Y is not a minterm, but XYZ' is a minterm
  - The term X'+Z is not a maxterm, but X+Y'+Z' is maxterm

7/13/2005

Dr. Ashraf S. Hasan Mahmoud

#### **More on Minterms and Maxterms**

 A function of n variables – have 2<sup>n</sup> possible minterms and 2<sup>n</sup> possible maxterms

7/13/2005

Dr. Ashraf S. Hasan Mahmoud

25

### **Naming Convention for Minterms**

Consider a function F(X, Y)

| Χ | Y | Product<br>Terms | Symbol | $m_0$ | $m_1$ | m <sub>2</sub> | m <sub>3</sub> |
|---|---|------------------|--------|-------|-------|----------------|----------------|
| 0 | 0 | ΧΎ'              | $m_0$  | 1     | 0     | 0              | 0              |
| 0 | 1 | ΧΎ               | $m_1$  | 0     | 1     | 0              | 0              |
| 1 | 0 | XY'              | $m_2$  | 0     | 0     | 1              | 0              |
| 1 | 1 | XY               | $m_3$  | 0     | 0     | 0              | 1              |



Variable complemented if 0 Variable not complemented if 1 m; indicated the ith minterm

For each binary combination of X and Y there is a minterm The index of the minterm is specified by the binary combination  $m_i$  is equal to 1 for ONLY THAT combination

### **Naming Convention for Maxterms**

Consider a function F(X, Y)

| Χ | Y | Sum<br>Terms | Symbol | $M_0$ | $M_1$ | M <sub>2</sub> | $M_3$ |
|---|---|--------------|--------|-------|-------|----------------|-------|
| 0 | 0 | X+Y          | $M_0$  | 0     | 1     | 1              | 1     |
| 0 | 1 | X+Y'         | $M_1$  | 1     | 0     | 1              | 1     |
| 1 | 0 | X'+Y         | $M_2$  | 1     | 1     | 0              | 1     |
| 1 | 1 | X'+Y'        | $M_3$  | 1     | 1     | 1              | 0     |



Variable complemented if 1
Variable not complemented if 0

 $M_{i}$  indicated the  $i^{th}$  maxterm

For each binary combination of X and Y there is a maxterm
The index of the maxterm is specified by the binary combination
M<sub>i</sub> is equal to 0 for ONLY THAT combination

### **More on Minterms and Maxterms**

- In general, a function of n variables has
  - 2<sup>n</sup> minterms: m<sub>0</sub>, m<sub>1</sub>, ..., m<sub>2</sub><sup>n</sup><sub>-1</sub>
  - 2<sup>n</sup> maxterms: M<sub>0</sub>, M<sub>1</sub>, ..., M<sub>2</sub><sup>n</sup><sub>-1</sub>
- $m_i' = M_i$  or  $M_i' = m_i$

Example: for F(X,Y):

$$m_2 = XY' \rightarrow m_2' = X'+Y = M_2$$

7/13/2005

Dr. Ashraf S. Hasan Mahmoud

### More on Minterms and Maxterms - cont'd

 A Boolean function can be expressed algebraically from a give truth table by forming the logical sum of ALL the minterms that produce 1 in the function

#### Example:

Consider the function defined by the truth table

 $F(X,Y,Z) \rightarrow 3$  variables  $\rightarrow 8$  minterms F can be written as

F = 
$$X'Y'Z' + X'YZ' + XY'Z + XYZ$$
, or  
=  $m_0 + m_2 + m_5 + m_7$   
=  $\Sigma m(0,2,5,7)$ 

| X | Υ | Z | m                          | F |
|---|---|---|----------------------------|---|
| 0 | 0 | 0 | $m_0$                      | 1 |
| 0 | 0 | 1 | $m_{\scriptscriptstyle 1}$ | 0 |
| 0 | 1 | 0 | $m_2$                      | 1 |
| 0 | 1 | 1 | $m_3$                      | 0 |
| 1 | 0 | 0 | $m_4$                      | 0 |
| 1 | 0 | 1 | $m_5$                      | 1 |
| 1 | 1 | 0 | $m_6$                      | 0 |
| 1 | 1 | 1 | $m_7$                      | 1 |
|   |   |   |                            |   |

7/13/2005

Dr. Ashraf S. Hasan Mahmoud

2

### More on Minterms and Maxterms - cont'd

 A Boolean function can be expressed algebraically from a give truth table by forming the logical product of ALL the maxterms that produce 0 in the function

#### Example:

Consider the function defined by the truth table  $F(X,Y,Z) \rightarrow$  in a manner similar to the previous example, F' can be written as

$$F' = m_1 + m_3 + m_4 + m_6$$
  
=  $\Sigma m(1,3,4,6)$ 

Now apply DeMorgan's rule

$$F = F'' = [m_1 + m_3 + m_4 + m_6]$$
  
=  $m_1'.m_3'.m_4'.m_6'$ 

=  $M_1.M_3.M_4.M_6$ =  $\Pi M(1,3,4,6)$ 

|   | 0 | 1                     | 1 | $M_3$ | 0 | 1 |
|---|---|-----------------------|---|-------|---|---|
|   | 1 | 0                     | 0 | M4    | 0 | 1 |
|   | 1 | 1<br>0<br>0<br>1<br>1 | 1 | $M_5$ | 1 | 0 |
| ĺ | 1 | 1                     | 0 | $M_6$ | 0 | 1 |
|   | 1 | 1                     | 1 | $M_7$ | 1 | 0 |
|   |   |                       |   |       |   |   |

0

0

0

1

7/13/2005

Note the indices in this list are those that are Dr. missing from the previous list in  $\Sigma$ m(0,2,5,7)

0

0

30

F

0

1

1

0

 $M_0$ 

 $M_1$ 

 $M_2$ 

### **Summary**

- A Boolean function can be expressed algebraically as:
  - The logical sum of minterms
  - The logical product of maxterms
- Given the truth table, writing F as
  - $\Sigma m_i$  for all minterms that produce 1 in the table, or
  - $\Pi M_i$  for all maxterms that produce 0 in the table
- Another way to obtain the Σm<sub>i</sub> or ΠM<sub>i</sub> is to use ALGEBRA – see next example

7/13/2005

Dr. Ashraf S. Hasan Mahmoud

31

### **Example:**

- Write E = Y' + X'Z' in the form of  $\Sigma m_i$  and  $\Pi M_i$ ?
- Solution: <u>Method1</u>
   First construct the Truth Table as shown

Second:

 $E = \Sigma m(0,1,2,4,5)$ , and

 $E = \Pi M(3,6,7)$ 

| Χ | Υ | Z | m              | М       | Е |
|---|---|---|----------------|---------|---|
| 0 | 0 | 0 | $m_0$          | $M_0$   | 1 |
| 0 | 0 | 1 | $m_1$          | $M_1$   | 1 |
| 0 | 1 | 0 | $m_2$          | $M_2$   | 1 |
| 0 | 1 | 1 | $m_3^-$        | $M_3^-$ | 0 |
| 1 | 0 | 0 | $m_4$          | M4      | 1 |
| 1 | 0 | 1 | m <sub>5</sub> | $M_5$   | 1 |
| 1 | 1 | 0 | $m_6$          | $M_6$   | 0 |
| 1 | 1 | 1 | m <sub>7</sub> | $M_7$   | 0 |
|   |   |   |                |         |   |

7/13/2005

Dr. Ashraf S. Hasan Mahmoud

### Example: cont'd

Solution: <u>Method2\_a</u>

$$E = Y' + X'Z'$$

$$= Y'(X+X')(Z+Z') + X'Z'(Y+Y')$$

$$= (XY'+X'Y')(Z+Z') + X'YZ'+X'Z'Y'$$

$$= XY'Z+X'Y'Z+XY'Z'+XY'Z'+X'Y'Z'+X'YZ'+X'YZ'Y'$$

$$= m_5 + m_1 + m_4 + m_0 + m_2 + m_0$$

$$E$$

=  $m_0 + m_1 + m_2 + m_4 + m_5$ =  $\Sigma m(0,1,2,4,5)$ 

To find the form  $\Pi Mi$ , consider the remaining indices

remaining indices

$$E = Y' + X'\overline{Z'}$$

Solution: Method2\_b

$$E' = Y + XZ$$

$$E' = Y(X+Z)$$

$$= YX + YZ$$

= YX(Z+Z') + YZ(X+X')= XYZ+XYZ'+X'YZ

E = (X'+Y'+Z')(X'+Y'+Z)(X+Y'+Z')= M<sub>7</sub> . M<sub>6</sub> . M<sub>3</sub> = \PiM(3,6,7)

To find the form  $\Sigma m_i$ , consider the remaining indices

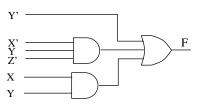
 $E = \Sigma m(0,1,2,4,5)$ 

 $E = \Pi M(3,6,7)$ 

7/13/2005 Dr. Ashraf S. Hasan Mahmoud

33

#### **Exercise**


• What is  $G(X,Y) = \Sigma m(0,1,2,3)$  equal to?

7/13/2005

Dr. Ashraf S. Hasan Mahmoud

## Implementation - Sum of Products

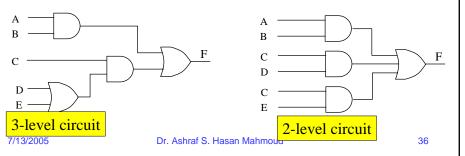
- Consider F = Y' + X'YZ' + XY
  - Three products: Y' (one literal), X'YZ' (three literals), and XY (two literals)
- The logic diagram



- Two-level implementation:
  - AND-OR
- Each product term requires an AND gate (except one literal terms)
- Logic diagram requires ONE OR gate

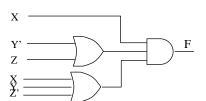
7/13/2005

Dr. Ashraf S. Hasan Mahmoud


35

# Implementation - Sum of Products - cont'd

- Consider F = AB + C(D+E)
- This expression is NOT in the sum-of-products form
- Use the identities/algebraic manipulation to convert to a standard form (sum of products), as in


$$F = AB + CD + CE$$

· Logic Diagrams:



### Implementation - Product of Sums

- Consider F = X(Y'+Z)(X+Y+Z')
- This expression is in the product-of-sums form:
  - Thee summation terms: X (one literal), Y'+Z (two literals), and X+Y+Z' (three literals)
- Logic Diagrams:



- Two-level implementation:
  - OR-AND
- Each sum term requires an OR gate (except one literal terms)
- Logic diagram requires ONE AND gate

В

0

0

1

1

0

1

0

1

1

1

0

1

0

0

A 0

0

7/13/2005

Dr. Ashraf S. Hasan Mahmoud

37

### **Examples:**

• Problem 2-10b: Obtain the truth table of the following function and express each function in sum-of-minterms and product-of-maximterms form: (A'+B)(B'+C)

Solution:

Let F(A,B,C) = (A'+B)(B'+C)The truth table is as shown in figure

$$F(A,B,C) = A'B'C'+A'B'C+A'BC+ABC$$

$$= \Sigma m(0,1,3,7)$$

$$F(A,B,C) = (A+B'+C)(A'+B+C)(A'+B+C')(A'+B'+C)$$

$$= \Pi M(2,4,5,6)$$

7/13/2005

Dr. Ashraf S. Hasan Mahmoud