# King Fahd University of Petroleum & Minerals Computer Engineering Dept

**COE 200 - Fundamentals of Computer Engineering** 

**Term 043** 

Dr. Ashraf S. Hasan Mahmoud

Rm 22-144

Ext. 1724

Email: ashraf@ccse.kfupm.edu.sa

7/14/2005 Dr. Ashraf S. Hasan Mahmoud

#### Karnaugh Map (K-Map)

- A tabular method to simplify function expressions – an alternative to algebraic manipulation
- Produces 2-level (sum of products or product of sums) implementation

7/14/2005

Dr. Ashraf S. Hasan Mahmoud

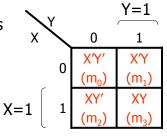
#### 1-variable K-map

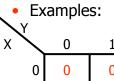
Consider the function F(X)

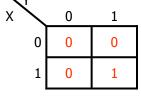
$$F(X) = 0 x 0 1$$
(F is NOT dependent on X)

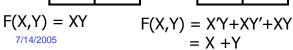
$$F(X) = X X 0 1$$

$$F(X) = X' \qquad X \quad 0 \quad 1$$


7/14/2005 Dr. Ashraf S. Hasan Mahmoud


#### 2-variable K-map


- Consider the function F(X,Y)
- The general 2-variable K-map is as shown
- The map is formed by putting two 1-variable K-maps side by side


0

1



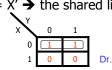




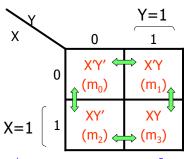


#### 2-variable K-map - cont'd

- Neighbors sharing one literal:
  - X'Y' (or m<sub>0</sub>) and X'Y (or m<sub>1</sub>) → sharing the literal X'
  - X'Y' (or m<sub>0</sub>) and XY' (or m<sub>2</sub>) → sharing the literal Y'
  - X'Y (or m₁) and XY (or m₃) → sharing the literal Y
  - XY' (or m₂) and XY (or m₃) → sharing the literal X
- If for example


7/14/2005

$$F(X,Y) = m0 + m1 = X'Y' + X'Y$$


Then once can simplify F as follows:

$$F(X,Y) = X'(Y' + Y)$$

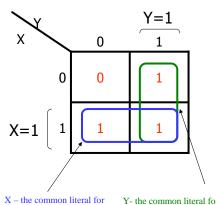
$$= X' \implies \text{the shared literal}$$



Dr. Ashraf S. Hasan Mahmoud



#### 2-variable K-map - cont'd


• Example2:  $F(X,Y) = \Sigma m(1,2,3)$ 

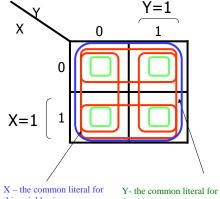
F can be simplified as in

$$F = X'Y + XY' + XY$$
$$= X'Y + XY + XY' + XY$$

$$= (X'+X)Y + X(Y'+Y)$$

$$= Y + X$$




7/14/2005

Dr. Ashraf S. Has this neighboring group

Y- the common literal for for this neighboring group

#### 2-variable K-map - All Possible Squares

- 4 Groups each of one minterm
- 4 groups each of two minterms
- 1 group of 4 minterms



7/14/2005

Dr. Ashraf S. Has this neighboring group

for this neighboring group

#### 3-variable K-map

- Consider the function F(X,Y,Z)
- The general 3-variable K-map is as shown
- The map is formed by putting two 2-variable K-maps side by side
- Note:
  - The minterms are ordered such that any two neighboring minterm differ only in one literal
  - The K-Map (the numbering of the minterms) assumes X is the most significant variable and Z is the least significant variable

Y=100 11 10

Z=1

7/14/2005

Dr. Ashraf S. Hasan Mahmoud

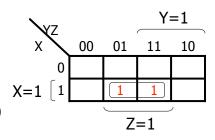
#### 3-variable K-map - cont'd

• Example  $F(X,Y,Z) = m_5 + m_7$ 

Once can simplify as in

$$F = m_5 + m_7$$

$$= XY'Z + XYZ$$


$$= XZ(Y'+Y)$$

= XZ

Or once can use the K-map as shown

The common literals for this group is XZ (they differ in Y)

Therefore: F(X,Y) = XZ



00

 $X=1 \mid 1 \mid$ 

01

7/14/2005

Dr. Ashraf S. Hasan Mahmoud

### 3-variable K-map - cont'd

• Example  $F(X,Y,Z) = \Sigma m(2,3,4,5)$ 

Once can simplify as in

$$F = m_2 + m_3 + m_4 + m_5$$

$$= X'YZ' + X'YZ + XY'Z' + XY'Z$$

$$= X'Y(Z'+Y) + XY'(Z'+Z)$$

= X'Y + XY'

Or one can use the K-map as shown

The common literals for the 1<sup>st</sup> group is X'Y (they differ in Z), while the common literals for the 2<sup>nd</sup> group is XY' (they differ in Z)

Therefore: F(X,Y) = X'Y + XY'

7/14/2005

Dr. Ashraf S. Hasan Mahmoud

10

Y=1

11

Z=1

10

1

9

#### 3-variable K-map - cont'd

• Example  $F(X,Y,Z) = \Sigma m(0,2,4,5,6)$ Once can simplify as in

$$F = m_0 + m_2 + m_4 + m_5 + m_6$$

$$= X'Y'Z' + X'YZ' + XY'Z' + XY'Z + XYZ'$$

$$= X'Y'Z' + XYYZ' + XY'Z' + XY'Z' + XY'Z'$$

$$+ XYZ'$$

$$= Y'Z'(X' + X) + YZ'(X'+X) + XY'(Z'+Z')$$

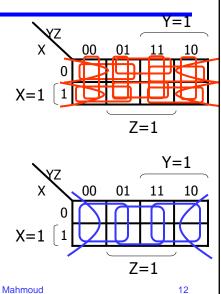
$$= Z'(Y'+Y) + XY'$$

$$= Z' + XY'$$

Or one can use the K-map as shown
The common literals for the 1<sup>st</sup> group is
XY' (they differ in Z), while the
common literal for the 2<sup>nd</sup> group is Z'
(they differ in XY)

Therefore: F(X,Y) = Z' + XY'

/14/2005 Dr. Ashraf S. Hasan Mahmoud


X = 0 0 1 1 1 1 Z=1

Y=1

11

## **3-variable K-map - All Possible Groups**

- 8 groups each of 1 minterms
- 12 groups each of 2 minterms
- 4 groups each of 4 minterms
- 1 group of 8 minterms



7/14/2005

Dr. Ashraf S. Hasan Mahmoud

#### **Rules for Choosing Groups**

- The groups SHOULD cover all minterms
- The groups SHOULD have minimum overlap
- The groups SHOULD be maximized in size (to reduce their number or product terms)

7/14/2005

Dr. Ashraf S. Hasan Mahmoud

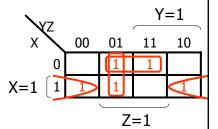
13

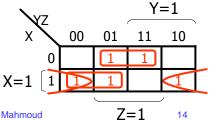
#### **Example**

• Consider  $F(X,Y,Z) = \Sigma m(1,3,4,5,6)$ 

Following the groups selection rules:

- there is no group of 8 or 4 that can be selected
- there are only groups of 2 that can be selected
- once can select the groups as shown (minimum no of groups)


Therefore F(X,Y,Z) = X'Z+Y'Z+XZ'OR (See second K-Map)


$$F(X,Y,Z) = X'Z + XZ' + XY'$$

The simplest expression is NOT unique!

7/14/2005

Dr. Ashraf S. Hasan Mahmoud





#### **Definitions**

- Map manipulation: to minimize number of terms (i.e. simplify function and avoid redundant terms)
- Implicant:
  - A product term
  - · Any valid square or group
- Prime Implicant: If you list all implicants, the removal of any literal does not lead to an implicant – the orignal implicant is a prime implicant
  - i.e. largest possible square
- Essential Prime Implicant: A prime implicant covering a minterm no other prime implicant does

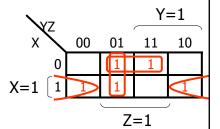
7/14/2005

Dr. Ashraf S. Hasan Mahmoud

15

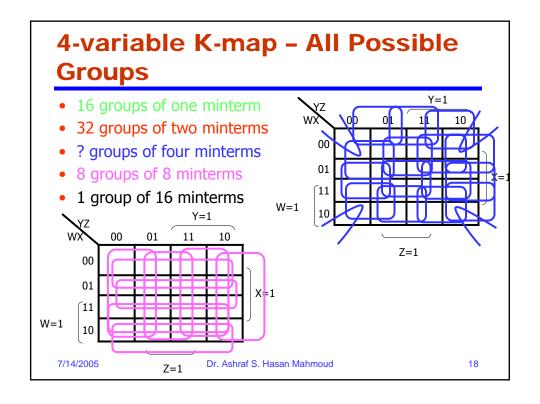
#### **Example**

• Consider  $F(X,Y,Z) = \Sigma m(1,3,4,5,6)$ 


List all implicants, prime implicants and essential prime implicants

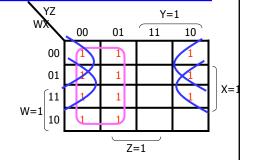
- Solution:
- Implicants: XY'Z', XZ', XY', XY'Z, X'Y'Z, Y'Z, ...
- P.Is: XY', XZ', Y'Z, X'Z
- EPIs: X'Z, XZ'

The simplest expression is NOT unique!


7/14/2005

Dr. Ashraf S. Hasan Mahmoud






#### 4-variable K-map Consider the function F(W,X,Y,Z) The general 4-variable K-map is as shown The map is formed by putting two 3-variable K-maps on top of each other Note: 00 01 11 10 • The minterms are ordered such that any two neighboring minterm differ only in $m_60$ X= one literal The K-Map (the numbering of the W=1minterms) assumes W is the most significant variable and Z is the least significant 7/14/2005variable Dr. Ashraf S. Hasan Mahmoud $m_2$



#### 4-variable K-map - Example

• Consider  $F(W,X,Y,Z) = \Sigma m(0,1,2,4,5,6,8,9,12,13,14)$ 

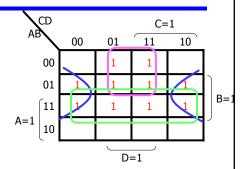


$$F(W,X,Y,Z) = Y' + W'Z' + XZ'$$

7/14/2005

Dr. Ashraf S. Hasan Mahmoud

19


#### **Example**

- Consider F(A,B,C,D) =  $\Sigma$ m(0,1,3,4,5,6,7,12,13,14, 15) Find essential prime implicants?
- Solution:

A'D and BD' are EPI

A'B is not an EPI

What is F(A,B,C,D)?



7/14/2005

Dr. Ashraf S. Hasan Mahmoud

#### **Example**

- Consider F(W,X,Y,Z) = $\Sigma m(0,1,5,10,11,12,13,15)$ Find all essential prime implicants? Write all possible expressions for
- CD C=1 00 01 11 10 00 1 01 1 B=: 11 A=1

Solution:

EPI = A'B'C'D', BC'D, ABC', AB'C

$$F(A,B,C,D) =$$
  
 $A'B'C'D' + BC'D + ABC' + AB'C +$   
 $ACD (or ABD)$ 

7/14/2005

Dr. Ashraf S. Hasan Mahmoud

ΥZ

01

11

10

21

Y=1

1

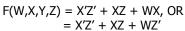
11

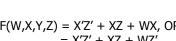
01

1

1

Z=1


#### Problem 2-19(a)


- Consider  $F(W,X,Y,Z) = \Sigma m(0,2,5,7,8,10,12,13,14,15)$ Find all implicants, prime implicants, and essential prime implicants? Write all possible expressions for F?
- Solution:

Implicants: W'X'Y'Z', W'X'Z', WX'Y'Z', WX'YZ', WX'Z', X'Z', ...

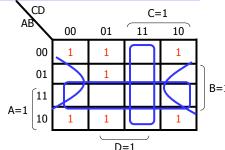
PIs: WZ', XZ, X'Z', WX

EPIs: X'Z' (only PI covering W'X'Y'Z'), XZ (only PI covering W'XY'Z or





7/14/2005


Dr. Ashraf S. Hasan Mahmoud

22

X=

### **Product of Sums Simplification - Example**

- Consider F(A,B,C,D) = Σm(0,1,2,5,8,9,10)
   Write F in the simplified product of sums
- Solution:
   Follow same rule as before but for A=1 the ZEROs



F' = AB + CD + BD'

Therefore,

$$F'' = F = (A'+B')(C'+D')(B'+D)$$

7/14/2005

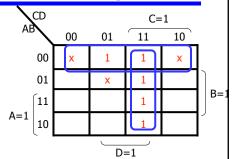
Dr. Ashraf S. Hasan Mahmoud

23

#### **Don't Care Conditions - Example**

• Consider

 $F(A,B,C,D) = \Sigma m(1,3, 11, 15)$  $d(A,B,C,D) = \Sigma m(0,2,5)$ 


Simplify F.

Solution:

F = A'B' + CD

Note – for the simplification we assumed A'B'C'D'  $(m_0) = 1$ , and A'B

 $CD'(m_2) = 1$ , while A'BC'D  $(m_5) = 0$ 



7/14/2005

Dr. Ashraf S. Hasan Mahmoud

#### **More Gates: NAND - NOR**

NAND  $\frac{X}{Y}$   $\Sigma$  F = (XY)'

X Y Z=(XY)'
0 0 1
0 1
1 1
1 0 1
1 1 0

NOR

$$\frac{X}{Y}$$
  $Z$   $I$ 

$$F = (X+Y)'$$

X Y Z=(X+Y)'
0 0 1
0 1 0
1 0
1 0 0
1 1 0

 Sometimes it is desirable to build circuits using NAND gates only or NOR gates only

7/14/2005

Dr. Ashraf S. Hasan Mahmoud

25

#### **More Gates: XOR - XNOR**

Exclusive OR (XOR)

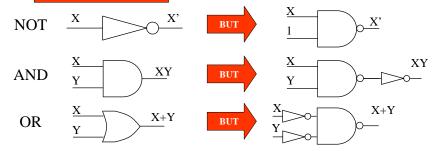
$$\frac{X}{Y}$$

$$F = X'Y + XY'$$
$$= X \oplus Y$$

Exclusive NOR (XNOR)

$$\frac{X}{Y}$$

$$F = XY + X'Y'$$
$$= (X \oplus Y)'$$


| Χ | Υ | Z=(X⊕Y)′ |
|---|---|----------|
| 0 | 0 | 1        |
| 0 | 1 | 0        |
| 1 | 0 | 0        |
| 1 | 1 | 1        |

7/14/2005

Dr. Ashraf S. Hasan Mahmoud

#### **NAND Circuits**

We have learned how to build any function using



- Therefore, we can build all functions we learned so far using NAND gates ONLY
- NAND is a UNIVERSAL gate

7/14/2005

Dr. Ashraf S. Hasan Mahmoud

27

#### **Graphic Symbols for NAND Gate**

 Two equivalent graphic symbols or shapes for the SAME function

AND-NOT 
$$\frac{X}{Y}$$
 (XYZ)

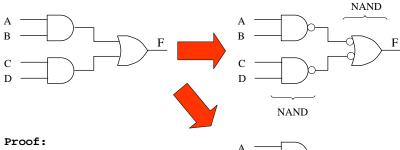
NOT-OR 
$$\frac{X}{Y}$$
  $X'+Y'+Z' = (XYZ)'$ 

7/14/2005

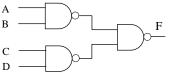
Dr. Ashraf S. Hasan Mahmoud

#### **Two Level Implementation**

- We use the sum of products form
  - This results from K-map simplification or algebraic manipulation
- The AND gates 1st level
- The OR gate 2<sup>nd</sup> level
- Inverters to inputs of ANDs or output of OR are not counted as levels

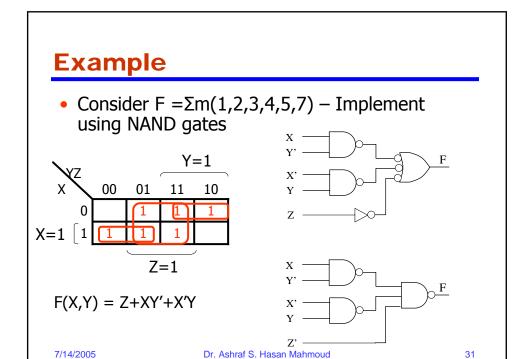

7/14/2005

Dr. Ashraf S. Hasan Mahmoud


29

#### Two Level Implementation - cont'd

• Example: Consider F = AB + CD




F = ((AB)'.(CD)')' = ((AB)')' + ((CD)')' = AB + CD



7/14/2005

Dr. Ashraf S. Hasan Mahmoud



### Rules for 2-Level NAND Implementations

- Simplify the function and express it in sum-ofproducts form
- Draw a NAND gate for each product term (with 2 literals or more)
- Draw a single NAND gate at the 2<sup>nd</sup> level (in place of the OR gate)
- A term with single literal requires a NOT

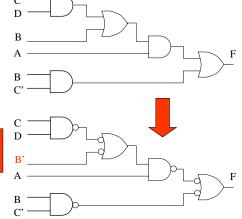
What about multi-level circuits?

7/14/2005

Dr. Ashraf S. Hasan Mahmoud

### Rules for Multi-Level NAND Implementations

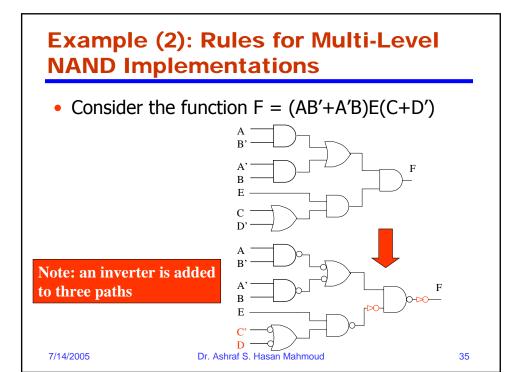
- NOTE: the function is NOT in the standard form – WHY?
- Steps:
  - Draw a NAND gate for each AND gate
  - Draw a NAND gate (using the NOT-OR symbol) for each OR gate
  - Check paths add inverters to make even number of bubbles

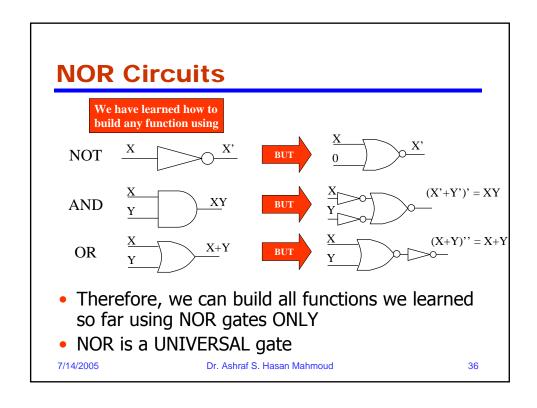

7/14/2005

Dr. Ashraf S. Hasan Mahmoud

33

### **Example (1): Rules for Multi-Level NAND Implementations**


• Consider the function F = A(CD+B)+BC'




Note: an inverter is added to the path for the literal B

7/14/2005

Dr. Ashraf S. Hasan Mahmoud



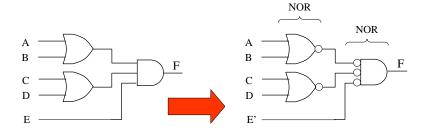


#### **Graphic Symbols for NOR Gate**

 Two equivalent graphic symbols or shapes for the SAME function

OR-NOT 
$$\frac{X}{Y}$$
  $(X+Y+Z)'$ 

NOT-AND 
$$\frac{X}{Z}$$
  $(X'Y'Z')=(X+Y+Z)'$ 


7/14/2005

Dr. Ashraf S. Hasan Mahmoud

37

#### **Two Level Implementation - NOR**

• Consider F = (A+B)(C+D)E

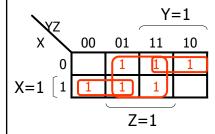


7/14/2005

Dr. Ashraf S. Hasan Mahmoud

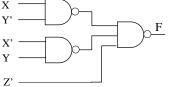
#### **Two Level Implementation - NOR**

- We use the *product of sums* form
  - This results from K-map simplification or algebraic manipulation
  - Note to get product of sums we the zeros simplify and then complement the expression
- The OR gates 1<sup>st</sup> level
- The AND gate 2<sup>nd</sup> level
- Inverters to inputs of ORs or output of AND are not counted as levels


7/14/2005

Dr. Ashraf S. Hasan Mahmoud

39


#### **Example**

• Consider  $F = \Sigma m(1,2,3,4,5,7)$  – Implement using NAND gates



$$F(X,Y) = Z+XY'+X'Y$$

X Y' X' Y



7/14/2005

Dr. Ashraf S. Hasan Mahmoud

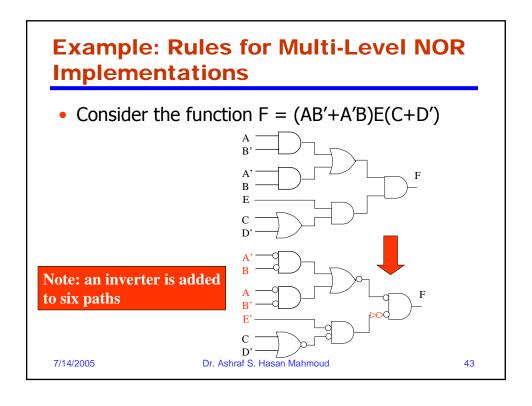
### Rules for 2-Level NOR Implementations

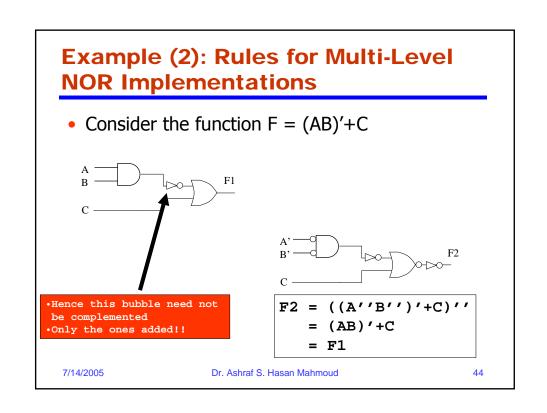
- Simplify the function and express it in product of sums form
- Draw a NOR gate (using OR-NOT symbol) for each sum term (with 2 literals or more)
- Draw a single NOR gate (using NOT-AND symbol) the 2<sup>nd</sup> level (in place of the AND gate)
- A term with single literal requires a NOT

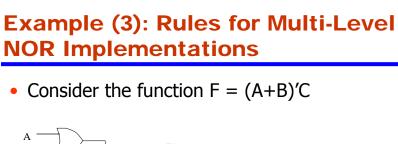
What about multi-level circuits?

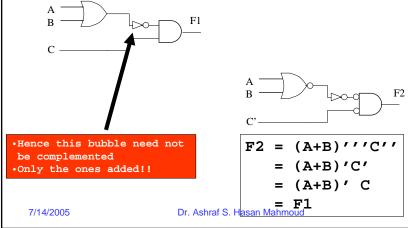
7/14/2005

Dr. Ashraf S. Hasan Mahmoud


41


### Rules for Multi-Level NOR Implementations


- NOTE: the function is NOT in the standard form – WHY?
- Steps:
  - Draw a NOR (OR-NOT) gate for each OR gate
  - Draw a NOR (NOT-AND) gate for each AND gate
  - Check paths add inverters to make even number of bubbles


7/14/2005

Dr. Ashraf S. Hasan Mahmoud







