King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 200 - Fundamentals of Computer Engineering

Term 043

Dr. Ashraf S. Hasan Mahmoud

Rm 22-144

Ext. 1724

Email: ashraf@ccse.kfupm.edu.sa

7/25/2005 Dr. Ashraf S. Hasan Mahmoud

Background - Binary Addition - Adding Bits

- Adding Binary bits:
 - $0 + 0 \rightarrow 0$ and the carry is 0
 - $0 + 1 \rightarrow 1$ and the carry is 0
 - 1 + 0 \rightarrow 1 and the carry is 0
 - $1 + 1 \rightarrow 0$ and the carry is 1
- Hence one can write the following truth table:
 - $A_i + B_i \rightarrow S_i$ and the carry is C_{i+1}
- Note that S_i and C_{i+1} are two functions, each depends on A_i and B_i

A_{i}	B_{i}	S _i	C_{i+1}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

_

Background -**Binary Addition - Adding Bits (2)**

The functions S_i and C_{i+1} are given by

$$S_i = \overline{A_i}B_i + A_i\overline{B_i} = A_i \oplus B_i$$

and

$$C_{i+1} = A_i B_i$$

Logic circuit is shown

Half Adder Circuit

This known as HALF Adder - It does not take into account incoming carry signal (see FULL Adder description – next)

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

Background - Binary Addition

- Adding n-bit binary numbers:
 - Example: Add the following two numbers 101001 and 1101
 - 0 0 1 0 0 1 0
- ← Carry generated
- 0 0 1 1 0 1
- → Number A
- 0 1 1 1 1 1
- → Number B

→ Summation

- In general we have
 - $\mathbf{C_n} \ \mathbf{C_{n-1}} \ \mathbf{C_{n-2}} \ \dots \ \mathbf{C_2} \ \mathbf{C_1} \ \mathbf{C_0}$
- ← Carry generated
- $\mathbf{A}_{\mathbf{n-1}} \ \mathbf{A}_{\mathbf{n-2}} \ \dots \ \mathbf{A}_{\mathbf{2}} \ \mathbf{A}_{\mathbf{1}} \ \mathbf{A}_{\mathbf{0}}$
- → Number A
- + B_{n-1} B_{n-2} ... B_2 B_1 B_0 → Number B

Note first carry in signal (C_0) is always ZERO

 $C_n S_{n-1} S_{n-2} ... S_2 S_1 S_0$

The binary number ($C_n S_{n-1} S_{n-2} ... S_2 S_1 S_0$) is the summation

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

Full Adder Circuit

- · But in cases like the previous example, we need to add two bits in addition to the carry signal coming adding the previous two bits
- Hence one can write the following truth table:

 $A_i + B_i + C_i \rightarrow S_i$ and the carry is C_{i+1}

A_{i}	B_{i}	C_{i}	Si	C_{i+1}
0	0	0	0	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

5

Full Adder Circuit (2)

The logic functions for S_i and the carry is C_{i+1} are

$$S_{i} = \overline{A_{i}} \overline{B_{i}} C_{i} + \overline{A_{i}} B_{i} \overline{C_{i}} + A_{i} \overline{B_{i}} \overline{C_{i}} + A_{i} B_{i} C_{i}$$

$$C_{i+1} = A_{i} B_{i} + A_{i} C_{i} + B_{i} C_{i}$$

$$C_{i+1} = A_{i} B_{i} + A_{i} C_{i} + B_{i} C_{i}$$

$$C_{i+1} = A_{i} B_{i} + C_{i} (A_{i} + B_{i})$$

$$C_{i+1} = A_i B_i + A_i C_i + B_i C_i$$
$$C_{i+1} = A_i B_i + C_i (A_i + B_i)$$

$$C_{i+1} = A_i B_i + C_i (A_i \oplus B_i)$$

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

The logic circuits for S_i and the carry is C_{i+1} are

Using the standard form, the circuit is

 τ is the logic gate delay (including the inverter) S_i output is available after 3τ delay

C_{i+1} output is available after 2τ delay

7/25/2005 Dr. Ashraf S. Hasan Mahmoud

Ripple Carry Adder

 Using the FA block one can construct an n-bit binary adder as in

- The number $(C_n S_{n-1} S_{n-2} ... S_2 S_1 S_0)_2$ is equal to the summation of $(A_{n-1} A_{n-2} ... A_2 A_1 A_0)_2$ and $(B_{n-1} B_{n-2} ... B_2 B_1 B_0)_2$
- Note that C₀ is set to zero to get the right result
- If C₀ is set to 1, Then the result is equal to A + B + 1

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

9

Ripple Carry Adder Delay

- · Time to get the summation:
 - Assume: If τ is the gate delay, then for a FA block, the S_i output is available after 3τ while the C_{i+1} output is available after 2τ refer to FA structure
 - Apply the inputs at t = 0
 - The C_1 signal is generated at $t = 2\tau$
 - The C₂ signal is generated at t = 2X2τ
 - The C_3 signal is generated at $t = 3X2\tau$
 - . . .
 - The C_{n-1} signal is generated at $t = (n-1)X2\tau$
 - The S_n signal is generated at $t = (n-1)X2\tau + 3\tau$
 - The C_n signal is generated at $t = nX2\tau$
- Hence, total delay is 2nτ

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

Ripple Carry Adder Delay (2)

- The disadvantage:
 - The outputs (C and S) of one stage carry and summation can not be generated till the outputs of the previous stage are generated (Ripple effect)
- Delay is linearly proportional to n (size of binary number) – this is undesired
 - · This means longer delays for longer word sizes

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

11

Carry Lookahead Adder

- n is the size of the binary number or the word size for the ALU
- Ripple carry adder results in delay that increases linearly with size of binary number, n
- To design fast CPUs you need fast logic circuits
- It is desirable to get the summation with a fixed delay that does not depend on n
- The carry lookahead adder provides just that

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

Carry Lookahead Adder Design

- The reason for the long delay is the time to propagate the carry signal till it reaches the final FA stage
- Let's examine the FA logic again (refer to FA section)
- The carry signal at the ith stage is given by $C_{i+1} = A_iB_i + C_i(A_i \oplus B_i)$

which could be written as $C_{i+1} = G_i + P_i C_i$ if we define $G_i = A_i B_i$ and $P_i = A_i \oplus B_i$

 G_i and P_i are referred to as the generate and propagate signals, respectively

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

13

Carry Lookahead Adder Design (2)

 The new design for the FA block is as follows:

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

Carry Lookahead Adder Design (3)

A partial Adder block

If we use the standard form, τ is the logic gate delay (including the inverter)

 S_i output is available after 3τ delay G_i output is available after τ delay

P, output is available after τ delay

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

15

Carry Lookahead Adder Delay

- C₀ (the carry signal for first stage) is set to zero
- C_1 is equal to $G_0 + P_0C_0$
 - It takes 2τ to generate this signal
- C_2 is equal to $G_1 + P_1C_1 = G_1 + P_1(G_0 + P_0C_0) = G_1 + P_1G_0 + P_1P_0C_0$
 - It takes 2τ to generate this signal
- C_3 is equal to $G_2 + P_2C_2 = G_2 + P_2(G_1 + P_1G_0 + P_1P_0C_0) = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$
 - It takes 2τ to generate this signal

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

Carry Lookahead Adder Delay (2)

- C_4 is equal to $G_3 + P_3C_3 = G_3 + P_3(G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0) = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0$
 - It takes 2τ to generate this signal
- In general, C_{i+1} is given by $C_{i+1} = G_i + P_i G_{i-1} + P_i P_{i-1} G_{i-2} + \dots + P_i P_{i-1} \dots P_1 G_0 + P_i P_{i-1} \dots P_1 P_0 C_0$

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

17

Carry Lookahead Adder

Block Diagram for 4-bit CLA

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

Carry Lookahead Adder Delay (3)

- Any carry signal depends only on C₀ and the generate (G) and propagate (P) functions only – It does not depend on the previous carry signal (except C₀ which is readily available)
- The generate (G) and propagate (P) signals can be generated simultaneously with one gate delay τ – for all stages
- Hence all carry signals at all stages can be available after 3τ delay

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

19

Carry Lookahead Adder Delay (4)

- Total Delay:
 - Assume all inputs (A, B, and C₀) were available at t = 0
 - All G and P functions will be available at $t = \tau$
 - All carry signals (C₁ ... C $_{n-1}$ C_n) will be available at t = $\tau + 2\tau = 3\tau$
 - The S_{n-1} signal will be available at $t = 3\tau + 3\tau = 6\tau$
- Note delay to get summation is FIXED and does NOT depend on word size n – desirable feature

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

Carry Lookahead Adder - Refined

- One Last issue to solve:
- C4 signal requires gates with 5 inputs
- C₅, C₆, etc will require gates with > 5 inputs This is undesirable (higher delay)
- Note the structure of function for $C_4 = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0$
 - Let $G_{0-3} = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0$ \Rightarrow group generate function
 - Let P₀₋₃ = P₃P₂P₁P₀ → group propagate function
 - Then C₄ can be written as

$$C_4 = G_{0-3} + P_{0-3}C_0$$

 Hence the function for C₄ is very similar to that for C₁ – but it uses group generate/propagate functions as opposed to generate/propagate

7/25/Eunctions

Dr. Ashraf S. Hasan Mahmoud

21

Carry Lookahead Adder - Refined (2)

4-bit CLA block

Accepts two 4-bit numbers A and B with initial carry signal C_0 Generates 4-bit summation in addition to group generate/functions To do 4-bit additions – one needs to add logic to generate C_4 signal using G_{0-3} , P_{0-3} , and C_0

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

Carry Lookahead Adder - General

Block Diagram for 16-bit CLA

- C_{16} (and all other carry signals) are available two gate delays after the time needed to generate the group generate/propagate signals.
- Group propagate signal requires one gate delay while group generate requires two gate delays
- Hence, C₁₆ is available 5 gate delays after A, B and C₀ are applied as inputs (assuming standard forms)

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

2

n-Bit Adder General

- Diagram used in most text books
 - · Could be ripple carry adder or carry lookahead adder

Binary Numbers - Review

- Computers use fixed n-bit words to represent binary numbers
- It is the user (programmer) who makes the distinction whether the number is signed or unsigned
- Example:

```
main(){
  unsigned int X, Y;
  int W, Z;
  ...
}
```

 X and Y are defined as unsigned integers while W and Z are defined as signed integers

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

25

Addition of Unsigned Numbers - Review

- For n-bit words, the UNSIGNED binary numbers range from $(0_{n-1}0_{n-2}...0_10_0)_2$ to $(1_{n-1}1_{n-2}...1_11_0)_2$ i.e. they range from 0 to 2^{n-1}
- When adding A to B as in:

- If C_n is equal to ZERO, then the result DOES fit into n-bit word (S_{n-1} S_{n-2} ... S₂ S₁ S₀)
- If C_n is equal to ONE, then the result DOES NOT fit into n-bit word

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

Subtraction of Unsigned Numbers - Review

- How to perform A B (both defined as unsigned)?
- Procedure:
 - Add the the 2's complement of B to A; this forms A + (2ⁿ B)
 - 2. If (A >= B), the sum produces end carry signal (C_n) ; discard this carry
 - If A < B, the sum does not produce end carry signal (C_n); result is equal to 2ⁿ – (B-A), the 2's complement of B-A – Perform correction:
 - Take 2's complement of sum
 - Place –ve sign in front of result
 - Final result is –(A-B)

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

27

Subtraction of Unsigned Numbers - Review (2)

- Example: X = 1010100 or (84)₁₀, Y = 1000011 or (67)₁₀ Find X-Y and Y-X
- Solution:

A) X – Y:

X = 1010100

2's complement of Y = 0111101

Sum = 10010001

Discard C_n (last bit) = 0010001 or $(17)_{10} \leftarrow X - Y$

B) Y – X:

X = 1000011

2's complement of X = 0101100

Sum = 1101111

 C_n (last bit) is zero \rightarrow need to perform correction Y - X = -(2's complement of 1101111) = -001001

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

2's Complement Review

- For n-bit words, the 2's complement SIGNED binary numbers range from -(2ⁿ⁻¹) to +(2ⁿ⁻¹-1)
 e.g. for 4-bit words, range = -8 to +7
- Note that MSB is always 1 for -ve numbers, and 0 for +ve numbers

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

29

2's Complement Review (2)

- Consider the following Example:
 How to represent –9 using 8-bit word?
- A) Using signed magnitude:

 $(+9)_{10} = (00001001)_2 \rightarrow (-9)_{10} = (10001001)_2$

The most significant bit is 1 (-ve number)

B) Using 1's complement:

 $M = 2^{n}-1$, -9 in 1s complement = $M - 9 = (111111111)_{2} - (00001001)_{2} = (11110110)_{2}$

C) Using 2's complement:

 $M = 2^{n}$, -9 in 2s complement = $M - 9 = (100000000)_{2} - (00001001)_{2} = (11110111)_{2}$

Or simply:

1's complement: invert bits of number

2's complement: invert bits of number and add one to it

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

Subtraction of Signed Numbers

- Consider

 +6 0000 0110
 +6 1111 1010
 +13 0000 1101
 +13 0000 0011
 +19 0001 0011
 +7 0000 0111
 +6 0000 0110
 -6 1111 1010
 -13 1111 0011
 -13 1111 0011
 -7 1111 1001
 -19 11101101
- Any carry out of sign bit position is DISCARDED
- -ve results are automatically in 2's complement form (no need for an explicit –ve sign)!

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

31

Subtraction of Signed Numbers (2)

 Subtraction of two signed binary number when negative numbers are in 2's complement is simple: How to do A – B?

Take the 2's complement of the subtrahend B (including the sign bit) and add it to the minuend A (including the sign bit). A carry out of the sign bit position is discarded

Minuend → A
Subtrahend → B
Result → D

7/25/2005 Dr. Ashraf S. Hasan Mahmoud

Subtractor - Background

What is the number B equal to?

B is equal to A

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

33

Subtractor - Background (2)

What is the number B equal to?

B is equal to 1's complement of A $(B_i = A_i')$

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

Subtractor - Background (3)

What is the number B equal to?

B is equal to 2's complement of A (B = -ve A)

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

35

Subtractor

• What is the number S equal to?

S is equal to B + (-A)Or S = B - A

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

· What is the number S equal to?

If
$$(Control = 0)$$
 $S = A+B$
Else $(Control = 1)$ $S = B - A$

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

37

Overflow Conditions

- Computers use fixed word sizes to represent numbers
- Overflow flag: result addition or subtraction does NOT fit the fixed word size
- Examples: consider 8-bit words and using signed numbers

carries:	<mark>0 1</mark> 000 0000	carries	<mark>1 0</mark> 110 0000
+70	0100 0110	-70	1011 1010
+80	0101 0000	-80	1011 0000
+150	1001 0110	-150	0110 1010

 Note both operation produced the wrong answer –because +150 or –150 are OUTSIDE the range of allowed number (only from –128 to +127)!

Note that when C_{n-1} and C_n are different the results is outside the allowed range of numbers

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

Overflow Conditions (2)

- When n-bit word is used to represent UNSINGED binary numbers:
 - Carry signal (C_n) resulting from adding the last two bits (A_{n-1} and B_{n-1}) detects an overflow

```
If (C<sub>n</sub> == 0) then {
    // no carry and no overflow, but correction step is
    required for //subtraction
    correction_step: final result = -1 X 2's complement of
    result;
}
else {
    // overflow for addition, but no correction step is
    //required for subtraction
    process_overflow;
}
```

Overflow Conditions (3)

- When n-bit word is used to represent SINGED binary numbers:
 - Carry signal into n-1 position (C_{n-1}) and the one resulting from adding the last two bits (A_{n-1} and B_{n-1}) determine an overflow → Let overflow bit V = C_{n-1} XOR C_n

```
If (V == 0) then {
    // no overflow, and addition/subtraction result is correct
    ;
}
else {
    // overflow has occurred for addition/subtraction, result
    // requires n+1 bits
    process_overflow;
}
```

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

40

Decimal Arithmetic - Adding 2 BCD digits

 Valid BCD digits:0, 1, 2, ..., 9 Design a circuit that adds two BCD digits Example: 0 →carry in 1 1 0 BCD carry 1 4 4 8 0100 1000 →1st digit 0100 4 8 9 1000 1001 →2st digit 0100 9 3 7 Binary sum 1001 1101 1 0001 \rightarrow add 6 if > 9 Add 6 0110 0110 BCD sum 1 0011 1 0111 → carry out 0111 →BCD sum digit BCD result 1001 0011 7/25/2005 Dr. Ashraf S. Hasan Mahmoud 45

When the BCD Sum is Greater Than 9?

1. When the sum of two digits generates a carry (see previous example)

OR

- 2. Sum of the two digits is 1010, 1011, 1100, 1101, 1110, 1111 (See problem 3-11 page 170)
 - If the sum is denoted by Z₃Z₂Z₁Z₀ then F = Z₁Z₃ + Z₂Z₃ is equal to 1 only if the number Z₃Z₂Z₁Z₀ is an invalid BCD digit
- Hence, to detect an invalid summation result where a correction (adding 6 is required) we need:

$$F = carry + Z_1Z_3 + Z_2Z_3$$

7/25/2005

Dr. Ashraf S. Hasan Mahmoud

