King Fahd University of Petroleum \& Minerals Computer Engineering Dept

COE 200 - Fundamentals of Computer Engineering
Term 043
Dr. Ashraf S. Hasan Mahmoud
Rm 22-144
Ext. 1724
Email: ashraf@ccse.kfupm.edu.sa

Background -
 Binary Addition - Adding Bits

- Adding Binary bits:
$0+0 \rightarrow 0$ and the carry is 0
$0+1 \rightarrow 1$ and the carry is 0
$1+0 \rightarrow 1$ and the carry is 0
$1+1 \rightarrow 0$ and the carry is 1
- Hence one can write the following truth table:
$A_{i}+B_{i} \rightarrow S_{i}$ and the carry is C_{i+1}
- Note that S_{i} and $\mathrm{C}_{\mathrm{i}+1}$ are two functions, each depends on A_{i} and B_{i}

A_{i}	B_{i}	S_{i}	C_{i+1}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Background Binary Addition - Adding Bits (2)

- The functions S_{i} and $\mathrm{C}_{\mathrm{i}+1}$ are given by

$$
S_{i}=\overline{A_{i}} B_{i}+A_{i} \overline{B_{i}}=A_{i} \oplus B_{i}
$$

- and

$$
C_{i+1}=A_{i} B_{i}
$$

- Logic circuit is shown

This known as HALF Adder - It does not take into account incoming carry signal (see FULL Adder description - next)

Background - Binary Addition

- Adding n-bit binary numbers:
- Example: Add the following two numbers 101001 and 1101

0	0	1	0	0	1	0		\leqslant

- In general we have

$$
\mathrm{C}_{\mathrm{n}} \mathrm{~s}_{\mathrm{n}-1} \mathrm{~s}_{\mathrm{n}-2} \ldots \mathrm{~s}_{2} \mathrm{~s}_{1} \mathrm{~s}_{0}
$$

- The binary number ($\left.C_{n} S_{n-1} S_{n-2} \ldots S_{2} S_{1} S_{0}\right)$ is the summation result

$$
\begin{aligned}
& C_{n} C_{n-1} C_{n-2} \ldots C_{2} C_{1} C_{0} \leftarrow \text { Carry generated } \\
& A_{n-1} A_{n-2} \ldots A_{2} A_{1} A_{0} \quad \rightarrow \text { Number } A \\
& +B_{n-1} B_{n-2} \ldots B_{2} B_{1} B_{0} \quad \rightarrow \text { Number } B \\
& \text {------------------ } \\
& \text { Note first carry in signal } \\
& \left(\mathbf{C}_{\mathbf{0}}\right) \text { is always ZERO }
\end{aligned}
$$

Full Adder Circuit

- But in cases like the previous example, we need to add two bits in addition to the carry signal coming adding the previous two bits
- Hence one can write the following truth table:
$A_{i}+B_{i}+C_{i} \rightarrow S_{i}$ and the carry is C_{i+1}

A_{i}	B_{i}	C_{i}	S_{i}	C_{i+1}
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	0
0	0	1	1	0
0	1	0	1	0
0	1	1	0	1
1	0	0	1	0
1	0	1	0	1
1	1	0	0	1
1	1	1	1	1

Full Adder Circuit (2)

- The logic functions for S_{i} and the carry is C_{i+1} are

$$
\begin{array}{ll}
S_{i}=\bar{A}_{i} \bar{B}_{i} C_{i}+\overline{A_{i}} B_{i} \overline{C_{i}}+A_{i} \overline{B_{i} C_{i}}+A_{i} B_{i} C_{i} & C_{i+1}=A_{i} B_{i}+A_{i} C_{i}+B_{i} C_{i} \\
S_{i}=A_{i} \oplus B_{i} \oplus C_{i} & C_{i+1}=A_{i} B_{i}+C_{i}\left(A_{i}+B_{i}\right) \\
& C_{i+1}=A_{i} B_{i}+C_{i}\left(A_{i} \oplus B_{i}\right)
\end{array}
$$

Full Adder Circuit (4)

- The logic circuits for S_{i} and the carry is $\mathrm{C}_{\mathrm{i}+1}$ are

Another symbol for the full adder block

Full Adder Circuit (5)

- Using the standard form, the circuit is

τ is the logic gate delay (including the inverter)
S_{i} output is available after 3τ delay
C_{i+1} output is available after 2τ delay

Ripple Carry Adder

- Using the FA block one can construct an n-bit binary adder as in

- The number $\left(C_{n} S_{n-1} S_{n-2} \ldots S_{\mathbf{2}} \mathbf{S}_{\mathbf{1}} \mathbf{S}_{\mathbf{0}}\right)_{\mathbf{2}}$ is equal to the summation of $\left(A_{n-1} A_{n-2} \ldots A_{2} A_{1} A_{0}\right)_{2}$ and ($B_{n-1} B_{n-2} \ldots$ $\left.B_{2} B_{1} B_{0}\right)_{2}$
- Note that C_{0} is set to zero to get the right result
- If $\mathrm{C}_{\mathbf{0}}$ is set to $\mathbf{1}$, Then the result is equal to $\mathbf{A + B + 1}$

Ripple Carry Adder Delay

- Time to get the summation:
- Assume: If τ is the gate delay, then for a FA block, the $\mathbf{S}_{\mathbf{i}}$ output is available after 3τ while the $\mathrm{C}_{\mathrm{i}+1}$ output is available after 2τ - refer to FA structure
- Apply the inputs at $\mathbf{t}=\mathbf{0}$
- The C_{1} signal is generated at $\mathbf{t}=2 \tau$
- The C_{2} signal is generated at $t=2 \times 2 \tau$
- The C_{3} signal is generated at $t=3 \times 2 \tau$
- ..
- The C_{n-1} signal is generated at $t=(n-1) \times 2 \tau$
- The S_{n} signal is generated at $t=(n-1) \times 2 \tau+3 \tau$
- The C_{n} signal is generated at $\mathrm{t}=\mathbf{n X 2} \tau$
- Hence, total delay is $\mathbf{2 n} \tau$

Ripple Carry Adder Delay (2)

- The disadvantage:
- The outputs (C and S) of one stage carry and summation can not be generated till the outputs of the previous stage are generated (Ripple effect)
- Delay is linearly proportional to \mathbf{n} (size of binary number) - this is undesired
- This means longer delays for longer word sizes

Carry Lookahead Adder

- \boldsymbol{n} is the size of the binary number - or the word size for the ALU
- Ripple carry adder - results in delay that increases linearly with size of binary number, \mathbf{n}
- To design fast CPUs you need fast logic circuits
- It is desirable to get the summation with a fixed delay that does not depend on \mathbf{n}
- The carry lookahead adder provides just that

Carry Lookahead Adder Design

- The reason for the long delay is the time to propagate the carry signal till it reaches the final FA stage
- Let's examine the FA logic again (refer to FA section)
- The carry signal at the $i^{\text {th }}$ stage is given by

$$
C_{i+1}=A_{i} B_{i}+C_{i}\left(A_{i} \oplus B_{i}\right)
$$

which could be written as $C_{i+1}=G_{i}+P_{i} C_{i}$ if we define $G_{i}=A_{i} B_{i}$ and $P_{i}=A_{i} \oplus B_{i}$

- G_{i} and P_{i} are referred to as the generate and propagate signals, respectively

Carry Lookahead Adder Design (2)

- The new design for the FA block is as follows:

Carry Lookahead Adder Design (3)

- A partial Adder block

If we use the standard form,

τ is the logic gate delay (including the inverter)
S_{i} output is available after 3τ delay
G_{i} output is available after τ delay
P_{i} output is available after τ delay

Carry Lookahead Adder Delay

- C_{0} (the carry signal for first stage) is set to zero
- C_{1} is equal to $G_{0}+P_{0} C_{0}$
- It takes 2τ to generate this signal
- C_{2} is equal to $G_{1}+P_{1} C_{1}=G_{1}+P_{1}\left(G_{0}+\right.$ $\left.P_{0} C_{0}\right)=G_{1}+P_{1} G_{0}+P_{1} P_{0} C_{0}$
- It takes 2τ to generate this signal
- C_{3} is equal to $\mathrm{G}_{2}+\mathrm{P}_{2} \mathrm{C}_{2}=\mathrm{G}_{2}+\mathrm{P}_{2}\left(\mathrm{G}_{1}+\right.$ $\left.P_{1} G_{0}+P_{1} P_{0} C_{0}\right)=G_{2}+P_{2} G_{1}+P_{2} P_{1} G_{0}+$ $\mathrm{P}_{2} \mathrm{P}_{1} \mathrm{P}_{0} \mathrm{C}_{0}$
- It takes 2τ to generate this signal

Carry Lookahead Adder Delay (2)

- C_{4} is equal to $\mathrm{G}_{3}+\mathrm{P}_{3} \mathrm{C}_{3}=\mathrm{G}_{3}+\mathrm{P}_{3}\left(\mathrm{G}_{2}+\right.$ $\left.P_{2} G_{1}+P_{2} P_{1} G_{0}+P_{2} P_{1} P_{0} C_{0}\right)=G_{3}+P_{3} G_{2}+$ $P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} C_{0}$
- It takes 2τ to generate this signal
- In general, $\mathbf{C}_{\mathbf{i + 1}}$ is given by
$C_{i+1}=G_{i}+P_{i} G_{i-1}+P_{i} P_{i-1} G_{i-2}+\ldots+P_{i} P_{i-1} \ldots P_{1} G_{0}+P_{i} P_{i-1} \ldots P_{1} P_{0} C_{0}$

Carry Lookahead Adder

- Block Diagram for 4-bit CLA

Carry Lookahead Adder Delay (3)

- Any carry signal depends only on C_{0} and the generate (G) and propagate (P) functions only - It does not depend on the previous carry signal (except C_{0} which is readily available)
- The generate (\mathbf{G}) and propagate (\mathbf{P}) signals can be generated simultaneously with one gate delay τ - for all stages
- Hence all carry signals at all stages can be available after 3τ delay

Carry Lookahead Adder Delay (4)

- Total Delay:
- Assume all inputs (A, B, and C_{0}) were available at $t=0$
- All G and P functions will be available at $t=\tau$
- All carry signals ($C_{1} \ldots C_{n-1} C_{n}$) will be available at $t=$ $\tau+2 \tau=3 \tau$
- The S_{n-1} signal will be available at $t=3 \tau+3 \tau=6 \tau$
- Note delay to get summation is FI XED and does NOT depend on word size \mathbf{n} - desirable feature

Carry Lookahead Adder - Refined

- One Last issue to solve:

C4 signal requires gates with 5 inputs
$\mathrm{C}_{5}, \mathrm{C}_{6}$, etc will require gates with > 5 inputs - This is undesirable (higher delay)

- Note the structure of function for $\mathrm{C}_{4}=\mathrm{G}_{3}+\mathrm{P}_{3} \mathbf{G}_{\mathbf{2}}+$ $P_{3} P_{2} G_{1}+P_{3} P_{2} P_{1} G_{0}+P_{3} P_{2} P_{1} P_{0} C_{0}$
- Let $\mathbf{G}_{0-3}=\mathbf{G}_{3}+P_{3} \mathbf{G}_{2}+P_{3} P_{2} \mathbf{G}_{1}+P_{3} P_{2} P_{1} \mathbf{G}_{0} \rightarrow$ group generate function
- Let $\mathbf{P}_{0-3}=P_{3} P_{2} P_{1} P_{0} \rightarrow$ group propagate function
- Then C_{4} can be written as
$\mathrm{C}_{4}=\mathrm{G}_{0-3}+\mathrm{P}_{0-3} \mathrm{C}_{0}$
- Hence the function for C_{4} is very similar to that for C_{1} - but it uses group generate/ propagate functions as opposed to generate/ propagate

Carry Lookahead Adder - Refined (2)

- 4-bit CLA block

[^0]
Carry Lookahead Adder General

- Block Diagram for 16-bit CLA

- C_{16} (and all other carry signals) are available two gate delays after the time needed to generate the group generate/propagate signals.
- Group propagate signal requires one gate delay - while group generate requires two gate delays - Hence, C_{16} is available 5 gate delays after A, B and C_{0} are applied as inputs (assuming standard forms)

n-Bit Adder General

- Diagram used in most text books
- Could be ripple carry adder or carry lookahead adder

Binary Numbers - Review

- Computers use fixed n-bit words to represent binary numbers
It is the user (programmer) who makes the distinction whether the number is signed or unsigned
- Example:
main() \{
unsigned int X, Y;
int W, Z;
\}
- X and Y are defined as unsigned integers while \mathbf{W} and Z are defined as signed integers

Addition of Unsigned Numbers Review

- For n -bit words, the UNSI GNED binary numbers range from $\left(0_{n-1} 0_{n-2} \cdots 0_{1} 0_{0}\right)_{2}$ to $\left(1_{n-1} 1_{n-2} \cdots 1_{1} 1_{0}\right)_{2}$
i.e. they range from 0 to $\mathbf{2}^{\mathbf{n - 1}}$
- When adding A to B as in:
$c_{n} C_{n-1} c_{n-2} \ldots c_{2} c_{1} c_{0} \leftarrow$ Carry generated
$A_{n-1} A_{n-2} \ldots A_{2} A_{1} A_{0} \rightarrow$ Number A
$+B_{n-1} B_{n-2} \ldots B_{2} B_{1} B_{0} \quad \rightarrow$ Number B
$\mathrm{C}_{\mathrm{n}} \mathrm{S}_{\mathrm{n}-1} \mathrm{~S}_{\mathrm{n}-2} \ldots \mathrm{~S}_{2} \mathrm{~S}_{1} \mathrm{~S}_{0}$
- If C_{n} is equal to ZERO, then the result DOES fit into n -bit word ($\mathrm{S}_{\mathrm{n}-1} \mathrm{~S}_{\mathrm{n}-2} \ldots \mathrm{~S}_{\mathbf{2}} \mathrm{S}_{1} \mathrm{~S}_{\mathbf{0}}$)
- If C_{n} is equal to ONE, then the result DOES NOT fit into n -bit word

Subtraction of Unsigned Numbers - Review

- How to perform A - B (both defined as unsigned)?
- Procedure:

1. Add the the 2 's complement of B to A; this forms $A+\left(2^{n}\right.$ - B)
2. If $(A>=B)$, the sum produces end carry signal $\left(C_{n}\right)$; discard this carry
3. If $A<B$, the sum does not produce end carry signal (C_{n}); result is equal to 2^{n} - (B-A), the 2^{\prime} 's complement of $B-A-$ Perform correction:

- Take 2's complement of sum
- Place - ve sign in front of result
- Final result is - (A-B)

Subtraction of Unsigned
 Numbers - Review (2)

- Example: $X=1010100$ or (84) ${ }_{10}, Y=1000011$ or $(67)_{10}$ - Find $X-Y$ and $Y-X$
- Solution:
A) $X-Y$:
$X=1010100$
2's complement of $Y=0111101$
Sum = 10010001
Discard C_{n} (last bit) $=0010001$ or (17) $)_{10} \leftarrow X-Y$
B) Y - X: $\quad X=1000011$

2's complement of $X=0101100$
Sum = 1101111
C_{n} (last bit) is zero \rightarrow need to perform correction $\mathrm{Y}-\mathrm{X}=-(2$'s complement of 1101111) $=\mathbf{- 0 0 1 0 0 1}$

2's Complement Review

- For n-bit words, the 2's complement SI GNED binary numbers range from $-\left(2^{\mathrm{n}-1}\right)$ to $+\left(2^{\mathrm{n}-1}-1\right)$ e.g. for 4-bit words, range $=-8$ to +7
- Note that MSB is always $\mathbf{1}$ for - ve numbers, and 0 for + ve numbers

2's Complement Review (2)

- Consider the following Example:

How to represent - 9 using 8-bit word?
A) Using signed magnitude:
$(+9)_{10}=(00001001)_{2} \rightarrow(-9)_{10}=(10001001)_{2}$
The most significant bit is $\mathbf{1}$ (-ve number)
B) Using 1's complement:
$\mathrm{M}=\mathbf{2 n}^{\mathbf{n}-1,-9}$ in 1s complement $=\mathbf{M - 9}=(11111111)_{2}$ $(00001001)_{2}=(11110110)_{2}$
C) Using 2's complement:
$M=\mathbf{2}^{\mathrm{n}},-9$ in 2 s complement $=\mathbf{M - 9}=(\mathbf{1 0 0 0 0 0 0 0 0})_{2}$ $(00001001)_{2}=(11110111)_{2}$

- Or simply:

1's complement: invert bits of number
2's complement: invert bits of number and add one to it

Subtraction of Signed Numbers

- Consider
+6 $00000110 \quad$-6 11111010
$+1300001101+1300000011$
------ ------------ ----- ------------
+19 $00010011 \quad$ +7 00000111
+6 00000110 -6 11111010
- 1311110011 - 1311110011
- $7 \quad 11111001 \quad$-19 11101101
- Any carry out of sign bit position is DI SCARDED
- -ve results are automatically in 2's complement form (no need for an explicit - ve sign)!

Subtraction of Signed Numbers (2)
 - Subtraction of two signed binary number when negative numbers are in 2's complement is simple: How to do A-B?

Take the 2's complement of the subtrahend B (including the sign bit) and add it to the minuend A (including the sign bit). A carry out of the sign bit position is discarded

Minuend $\quad \rightarrow \mathrm{A}$
Subtrahend $\quad \rightarrow$ - B

Result $\quad \rightarrow \mathrm{D}$

Subtractor-Background

- What is the number B equal to?

B is equal to A

Subtractor-Background (2)

- What is the number B equal to?

B is equal to 1 's complement of A

$$
\left(B_{i}=A_{i}^{\prime}\right)
$$

Subtractor-Background (3)

- What is the number B equal to?

B is equal to 2 's complement of A
$(B=-v e A)$

Subtractor

- What is the number S equal to?

$$
\begin{gathered}
S \text { is equal to } B+(-A) \\
\text { Or } \quad S=B-A
\end{gathered}
$$

Adder-Subtractor

- What is the number S equal to?

$$
\begin{array}{cl}
\text { If (Control }=0) & S=A+B \\
\text { Else (Control = 1) } & S=B-A
\end{array}
$$

Overflow Conditions

- Computers use fixed word sizes to represent numbers
- Overflow flag: result addition or subtraction does NOT fit the fixed word size
- Examples: consider 8-bit words and using signed numbers

carries:	010000000	carries	101100000
+70	01000110	-70	10111010
+80	01010000	-80	10110000
-----	-----------	----	-----------10
+150	10010110	-150	01101010

- Note both operation produced the wrong answer - because +150 or - $\mathbf{1 5 0}$ are OUTSI DE the range of allowed number (only from - 128 to +127)!

Note that when $\mathrm{C}_{\mathrm{n}-1}$ and C_{n} are different the results is outside the allowed range of numbers

Overflow Conditions (2)

- When n-bit word is used to represent UNSI NGED binary numbers:
- Carry signal (C_{n}) resulting from adding the last two bits (A_{n-1} and B_{n-1}) detects an overflow
If $\left(C_{n}==0\right)$ then \{
// no carry and no overflow, but correction step is required for //subtraction
correction_step: final result $=-1 \mathrm{X} 2$'s complement of result;
\}
else \{
// overflow for addition, but no correction step is //required for subtraction
process_overflow;
\}

Overflow Conditions (3)

- When n-bit word is used to represent SI NGED binary numbers:
- Carry signal into $\mathbf{n - 1}$ position ($\mathrm{C}_{\mathrm{n}-1}$) and the one resulting from adding the last two bits (A_{n-1} and B_{n-1}) determine an overflow \rightarrow Let overflow bit $V=C_{n-1}$ XOR \mathbf{C}_{n}

```
If (V == 0) then {
    // no overflow, and addition/subtraction result is correct
    ;
}
else {
    // overflow has occurred for addition/subtraction, result
    // requires n+1 bits
    process_overflow;
    }
```


Overflow Conditions - Summary

	Unsigned	Signed
Overflow Condition	$C_{n}=1$ (no correction required)	$\mathrm{V}=\mathrm{C}_{\mathrm{n}}$ XOR $\mathrm{C}_{\mathrm{n}-1}=1$

Overflow Detection logic for Addition and Subtraction

2-Bit Binary Multiplier

A Bigger Binary Multiplier

- Consider the multiplication of $B=B_{3} B_{2} B_{1} B_{0}$ by A $=A_{2} A_{1} A_{0}$

B_{3}	B_{2}	B_{1}	B_{0}
	A_{2}	A_{1}	A_{0}

4-Bit by 3-Bit Binary Multiplier

- For J multiplier bit and K multiplicand bit:
- JXK AND gates
- (J-1) K-bit adders to produce a product of J +K bits
- In the shown circuit:
- $\mathbf{J}=\mathbf{3}$ (multiplier $=\mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{0}$)
- $K=4$ (multiplicand $=$ $B_{3} B_{2} B_{1} B_{0}$)
- Hence we need $3 \times 4=12$ AND gates and (3-1) Adders
- Multiplication result in 3+4 bits

[^1]

Decimal Arithmetic - Adding 2 BCD digits

- Valid BCD digits:0, 1, 2, ..., 9
- Example:

When the BCD Sum is Greater Than 9?

1. When the sum of two digits generates a carry (see previous example)
OR
2. Sum of the two digits is $1010,1011,1100$, 1101, 1110, 1111 (See problem 3-11 page 170)

- If the sum is denoted by $Z_{3} Z_{2} Z_{1} Z_{0}$ then $F=Z_{1} Z_{3}+Z_{2} Z_{3}$ is equal to 1 only if the number $Z_{3} Z_{2} Z_{1} Z_{0}$ is an invalid BCD digit
- Hence, to detect an invalid summation result where a correction (adding 6 is required) we need:

$$
F=\text { carry }+Z_{1} Z_{3}+Z_{2} Z_{3}
$$

Decimal Arithmetic - Adding 2 BCD Numbers?

- Consider the previous example:

[^0]: Accepts two 4-bit numbers A and B with initial carry signal C_{0} Generates 4-bit summation in addition to group generate/functions To do 4-bit additions - one needs to add logic to generate C_{4} signal using $\mathrm{G}_{0.3}, \mathrm{P}_{0.3}$, and C_{0}

[^1]: Exercise: Does this circuit work for signed numbers? Try to multiply 2 signed numbers

