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Queuing Model
• Consider the following system:

Queueing System

ith customer
arrives at time Si

ith customer
departs at time Di

A(t) N(t) = A(t) – D(t) D(t)

Ti = Di – Ai
A(t) – number of arrivals in (0, t]
D(t) – number of departures in (0, t]
N(t) – number of customers in system in (0,t]
Ti – duration of time spent in system for ith customer
Wi – duration of time spent waiting for service for ith customer

Wi = Ti – Si
= Di – Ai – Si
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Example: Queueing System
Problem: A data communication line delivers a block of 

information every 10 microseconds. A decoder check each 
block for errors and corrects the errors if necessary. It 
takes 1 microsecond to determine whether the block has 
any errors. If the block has one error it takes 5 
microseconds to correct it and it has more than 1 error it 
takes 20 microseconds to correct the error. Blocks wait in 
the queue when the decoder falls behind. Suppose that 
the decoder is initially empty and that the number of 
errors in the first 10 blocks are: 0,  1, 3, 1, 0, 4, 0, 1, 0, 0.

a) Plot the number of blocks in the decoder as a function of 
time.

b) Find the mean number of blocks in the decoder
c) What percent of the time is the decoder empty?
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Example: Queueing System – cont’d
Solution:
Interarrival time = 10 µsec
Service time = 1         if no errors

1+5    if 1 error
1+20  if more than 1 error

The queue parameters (A, D, S, and W) are shown 
below:

Block #:    1    2    3    4    5    6    7    8    9   10  
Arrivals:  10   20   30   40   50   60   70   80   90  100  
Errors:     0    1    3    1    0    4    0    1    0    0  
Service:    1    6   21    6    1   21    1    6    1    1  
Departs:   11   26   51   57   58   81   82   88   91  101  
Waiting:    0    0    0   11    7    0   11    2    0    0 
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Example: Queueing System – cont’d
Solution:
Using the previous results and knowing that

N(t) = A(t) – D(t)
One can produce the following results

The following Matlab code can be used to 
solve this queue system (Note the code 
is general – it solves any system 
provided The Arrivals vector A, and the 
service vector S)

Average no of customers in system =   0.950
Average customer waiting time     =   3.100 microsec
Maximum simulation time           = 101.000 microsec
Duration server busy              =  65.000 microsec
Server utilization                =  0.6436
Server idle                       =  0.3564
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Example: Queueing System – cont’d
0001 %
0002 % Problem 9.3 - Leon Garcia's book
0003 clear all
0004 A = [10:10:100];
0005 Errors = [0 1 3 1 0 4 0 1 0 0];
0006 S = zeros(size(A));
0007 D = zeros(size(A));
0008 %
0009 % this loop to computes service times
0010 for i=1:length(A);
0011     if (Errors(i)==0)  S(i) = 1;
0012     else
0013         if (Errors(i)==1) S(i) = 6;
0014         else
0015             S(i) = 21;
0016         end
0017     end
0018     %
0019     % this section computes the departure time for 
the ith user
0020     if (i>1) % this is not the first user
0021         if (D(i-1) < A(i)) D(i) = A(i) + S(i);
0022         else
0023             D(i) = D(i-1) + S(i);
0024         end
0025     else
0026         D(i) = A(i)+S(i);
0027     end
0028     %
0029     % compute waiting time 
0030     W(i) = D(i) - A(i) - S(i);
0031 end
0032 %

0033 % Compute N(t)
0034 T    = [];  % time axis
0035 T(1) = 0;   % time origin
0036 N    = [];  % number of cutomers
0037 N(1) = 0;   % initial condition
0038 k    = 2;   % place for next insert
0039 A_max = A(length(A)); % last arrival instant
0040 i = 1;      % index for arrivals
0041 j = 1;      % index for departures
0042 t = 0;      % system time
0043 
0044 while (t < A_max)
0045     t = min(A(i), D(j));
0046     if (t == A(i))
0047         N(k) = N(k-1) + 1;
0048         T(k) = t;
0049         k    = k + 1;
0050         i    = i + 1;  % get next arrival
0051     else % departure occurs
0052         N(k) = N(k-1) - 1;
0053         T(k) = t;
0054         k    = k + 1;
0055         j    = j + 1; % get next departure
0056     end
0057 end
0058 %
0059 % record remaining departure instants
0060 for i=j:1:length(D)
0061     t    = D(i);
0062     N(k) = N(k-1) - 1;
0063     T(k) = t;
0064     k    = k + 1;
0065 end
0066 
0067 k = k - 1; % decrement k to get real size of N and T
0068 %
0069 % compute means
0070 MeanW = mean(W);
0071 T_Intervales = T(2:k)-T(1:k-1);
0072 MeanN = sum(N(1:k-1).*T_Intervales) / T(k);
0073 IdleDurationsIndex = find(N(1:k-1) ~= 0);
0074 Utilization        = sum(T_Intervales(IdleDurationsIndex))/T(k);
0075 %
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Example: Queueing System – cont’d
0076 % Display results
0077 fprintf('Block #:  '); fprintf('%3d  ', [1:1:length(A)]); fprintf('\n');
0078 fprintf('Arrivals: '); fprintf('%3d  ', A); fprintf('\n');
0079 fprintf('Errors:   '); fprintf('%3d  ', Errors); fprintf('\n');
0080 fprintf('Service:  '); fprintf('%3d  ', S); fprintf('\n');
0081 fprintf('Departs:  '); fprintf('%3d  ', D); fprintf('\n');
0082 fprintf('Waiting:  '); fprintf('%3d  ', W); fprintf('\n');
0083 fprintf('\n\n');
0084 fprintf('Average no of customers in system = %7.3f\n', MeanN);
0085 fprintf('Average customer waiting time     = %7.3f microsec\n', MeanW);
0086 fprintf('Maximum simulation time           = %7.3f microsec\n', T(k));
0087 fprintf('Duration server busy              = %7.3f microsec\n', ...
0088          sum(T_Intervales(IdleDurationsIndex)));
0089 fprintf('Server utilization                = %7.4f\n', Utilization);
0090 fprintf('Server idle                       = %7.4f\n',1.0-Utilization);
0091 %
0092 % Plot results
0093 figure(1)
0094 h = stairs(T, N); grid
0095 set(h, 'LineWidth', 3);
0096 xlabel('Time');
0097 ylabel('No of customers in system, N(t)');
0098 
0099 figure(2);
0100 [AT, AA] = stairs(A, cumsum(ones(size(A))));
0101 [DT, DD] = stairs(D, cumsum(ones(size(D))));
0102 [NT, NN] = stairs(T, N);
0103 h = plot(AT, AA, '-', DT, DD,'--r', NT, NN,'-.'); grid
0104 set(h, 'LineWidth', 3);
0105 title('Queue sysystem simulation');
0106 ylabel('No of customers');
0107 xlabel('Time');
0108 legend('A(t)', 'D(t)', 'N(t)', 0);
0109 
0110 figure(3);
0111 h = stem(W); grid
0112 set(h, 'LineWidth', 3);
0113 ylabel('Waiting time');
0114 xlabel('Customer index');
0115 LegendStr = ['MeanW = ' num2str(MeanW)];
0116 legend(LegendStr, 0);
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Little’s Formula
• Little’s formula: 

E[N] = λE[T]

Holds for many service disciplines and for 
systems with arbitrary number of 
servers. It holds for many interpretations 
of the system as well
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Example 1: 
• Problem: Let Ns(t) be the number of 

customers being served at time t, and let 
τ denote the service time. If we 
designate the set of servers to be the 
“system”m then Little’s formula 
becomes:

E[Ns] = λE[τ]

Where E[Ns] is the average number of busy 
servers for a system in the steady state. 
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Example 1: cont’d
Note: for a single server Ns(t) can be either 0 or 1 E[Ns] 

represents the portion of time the server is busy. If p0 = 
Prob[Ns(t) = 0], then we have

1 - p0 = E[Ns] = λE[τ], Or
p0 = 1 - λE[τ]

The quantity λE[τ] is defined as the utilization for a single 
server. Usually, it is given the symbol ρ

ρ = λE[τ] 

For a c-server system, we define the utilization (the fraction of 
busy servers) to be

ρ = λE[τ] / c
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The M/M/1 Queue
• Consider a single server system where 

customers arrive according to a Poisson process 
of rate λ
• inter-arrival times are iid exponential r.v. with 

mean 1/λ
• Assume the service times are iid exponential r.v. 

with mean 1/µ

• Assume the inter-arrival times and service times 
are independent

• Assume the system can accommodate unlimited 
number of customers
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The M/M/1 Queue – cont’d
• What is the steady state pmf of N(t), the 

number of customers in the system?

• What is the PDF of T, the total customer 
delay in the system?
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The M/M/1 Queue – cont’d
• Consider the transition rate diagram for M/M/1 

system

• Note: 
• System state – number of customers in systems
• λ is rate of customer arrivals
• µ is rate of customer departure
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The M/M/1 Queue – Distribution of 
Number of Customers
• Writing the global balance equations for 

this Markov chain and solving for 
Prob[N(t) = j], yields (refer to previous 
example)

pj = Prob[N(t) = j]
= (1-ρ)ρj

for ρ = λ/µ < 1 

Note that for ρ = 1 arrival rate λ = service 
rate  µ
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The M/M/1 Queue – Expected 
Number of Customers
• The mean number of customer is given 

by
E[N] = ∑ j Prob[N(t) = j]

j

= ρ / (1-ρ)
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The M/M/1 Queue – Mean Customer 
Delay
• The mean total customer delay in the 

system is found using Little’s formula

E[T] = E[N]/ λ
= (ρ/λ) / (1-ρ)
= 1/(µ – λ) 
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The M/M/1 Queue – Mean Queueing
Time
• The mean waiting time in queue is given 

by
E[W] = E[T] – E[τ]

= ρ / (1-ρ)   E[τ]
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The M/M/1 Queue – Mean Number in 
Queue
• Again we employ Little’s formula:

E[Nq] = λE[W]

= ρ2 / (1-ρ)
Remember: 

server utilization ρ = λ/µ = 1-p0

All previous quantities E[N], E[T], E[W], and 
E[Nq] ∞ as ρ 1
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Scaling Effect for M/M/1 Queues
• Consider a queue of arrival rate λ whose 

service rate is µ
• ρ = λ/µ,
• The expected delay E[T] is given by

E[T] =  (1/µ) / (1-ρ)
• If the arrival rate increases by a factor of 

K, then we either
1. Have K queueing systems, each with a 

server of rate µ
2. Have one queueing system with a server of 

rate Kµ
• Which of the two options will perform 

better?
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Scaling Effect for M/M/1 Queues –
cont’d
• Example: K = 2: M/M/1 and M/M/2 

systems with the same arrival rate and 
the same maximum processing rate

λ
µ

λ µ/2

µ/2

10/17/2004 Dr. Ashraf S. Hasan Mahmoud 22

Scaling Effect for M/M/1 Queues –
cont’d
• Case 1: K queueing systems 

• Identical systems
• E[T] is the same for all – E[T] = (1/µ) / (1-ρ)

• Case 2: 1 queueing system with server of rate 
Kµ
• ρ for this system = (Kλ) /(Kµ) = λ/µ – same as the 

original system
• E[T’] = (1/(Kµ)) / (1-ρ) = (1/K) E[T]

• Therefore, the second option will provide a less 
total delay figure – significant delay 
performance improvement!
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Arriving Customer’s Distribution
• Let Na be the number of customers found in the 

system by a customer arrival

• Prob[Na = k] is the arriving customer 
distribution

• (Refer to handout for proof) –
Prob[Na = k] = Prob[N(t) = k]

= (1-ρ)ρk

where Prob[N(t) = k] is the customer distribution at 
any time!! –

• This is valid only for a POISSON ARRIVAL!
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Delay Distribution for M/M/1
• We have shown before the mean delay, 

E[T] = (1/µ) / (1-ρ)
• But what is the distribution for T?

• An arriving customer see’s k customers 
ahead
• Has to wait for k iid exp r.v. service times, 

each with mean 1/µ
• Then, our arriving customer will go to 

service for an exp r.v. service time of mean 
1/µ



test

13

10/17/2004 Dr. Ashraf S. Hasan Mahmoud 25

Delay Distribution for M/M/1 – cont’d
• Therefore, total delay, T, is the sum of 

k+1 iid exponential r.v. each with mean 
1/µ

• The conditional (Na = k) distribution of T 
is given by the Gamma PDF (refer to 
Probability Theory slides)

( ) ( ) 0
!

/ >== − xe
k
xkNxf x

k

aT
µµµ
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Delay Distribution for M/M/1 – cont’d
• The PDF of T can be found be de-

conditioning on Na -

( ) ( ) ]Pr[/
0

kNkNxfxf a
k

aTT === ∑
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x ρρµµ µ )1(
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Therefore, the total delay, T, is a random variable 
*exponentially distributed* with mean 1/(µ-λ)
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M/M/1/K – Finite Capacity Queue
• Consider an M/M/1 with finite capacity K 

< ∞

• For this queue – there can be at most K 
customers in the system
• 1 being served 
• K-1 waiting

• A customer arriving while the system has 
K customers is BLOCKED (does not wait)!
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M/M/1/K – Finite Capacity Queue –
cont’d
• Transition rate diagram for this queueing

system is given by:
• N(t) - A continuous-time Markov chain 

which takes on the values from the set {0, 
1, …, K}
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M/M/1/K – Finite Capacity Queue –
cont’d
• The global balance equations:

λ p0 = µp1

(λ + µ)pj = λpj-1 + µpj+1 for j=1, 2, …, K-1
µ pK = λpK-1

Prob[N(t) = j] = pj j=0,1, …, K; ρ<1
= (1-ρ)ρj/(1-ρK+1)

When ρ = 1, pj = 1/(K+1) (all states are 
equiprobable)
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M/M/1/K – Mean Number of 
Customers
• Mean number of customers, E[N] is given 

by:

∑
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M/M/1/K – Blocking Rate
• A customer arriving while the system is 

in state K is BLOCKED (does not wait)!

• Therefore, rate of blocking, λb is given by

λb = λ pK

• The actual arrival rate into the system is λa
given 

λa = λ - λb

= λ(1 - pK)
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M/M/1/K – Blocking Rate – cont’d

Queueing System

λa: actual 
(serviced) arrivals

λb: blocked (not
serviced) arrivals

λ: total 
arrivals
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M/M/1/K – Mean Delay

• The mean total delay E[T] is given by

E[T] = E[N] / λa
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Multi-Server Systems: M/M/c
• The transition rate diagram for a multi-

server M/M/c queue is as follows:
• Departure rate = kµ when k servers are busy
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Multi-Server Systems: M/M/c –
cont’d
• When k servers are busy, the time until the next 

departure is given by:
X = min(τ1, τ2, …, τk)

where τi are iid exponential r.v. with mean 1/µ

The CDF for X is given by (refer to definition)

Prob[X > t] = Prob[min(τ1, τ2, …, τk) > t]
= Prob[τ1>t, τ2>t, …, τk>t] 
= Prob[τ1>t] Prob[τ2>t] … Prob[τk>t]
= e-µt e-µt … e-µt

= e-kµt

Therefore, the time till the next departure (X) is an 
exponentially distributed r.v. with mean 1/(kµ) 
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Multi-Server Systems: M/M/c –
cont’d
• Writing the global balance equations:

λ p0 = µp1

jµ pj = λpj-1 for   j=1, 2, …, c
cµ pj = λpj-1 for   j= c, c+1, …

pj= aj/j! p0 (for j=1, 2, …, c) and
pj= ρj-c/c! ac p0 (for j=c, c+1, …)

where a = λ/µ and ρ = a/c
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Multi-Server Systems: M/M/c –
cont’d
• To find p0, we resort to the fact that ∑ pj = 1

The probability that an arriving customer has to 
wait

Prob[W > 0] = Prob[N ≥ c]
= pc + pc+1 + pc+2 + …
= pc/(1-ρ)

1
1

0
0 1

1
!!

−
−

= ⎭
⎬
⎫

⎩
⎨
⎧

−
+= ∑ ρ

c

j

cj

c
a

j
ap

Erlang-C 
formula
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Multi-Server Systems: M/M/c –
cont’d
• The mean number of customers in queue 

(waiting):

( )∑
∞

=

=−=
cj

q jtNcjNE ])(Pr[][

( )∑
∞

=

−−=
cj

c
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Multi-Server Systems: M/M/c –
cont’d
• The mean waiting time in queue:

• The mean total delay in system:

• The mean number of customers in 
system:

λ/][][ qNEWE =

][][][ τEWETE +=
µ/1][ += WE

][][ TENE λ=

aNE q += ][ Why?
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Example 2:
• A company has a system with four private 

telephone lines connecting two of its sites. 
Suppose that requests for these lines arrive 
according to a Poisson process at rate of one 
call every 2 minutes, and suppose that call 
durations are exponentially distributed with 
mean 4 minutes. When all lines are busy, the 
system delays (i.e. queues) call requests until a 
line becomes available. Find the probability of 
having to wait for a line.
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Example 2: cont’d
• Solution: 

λ = ½, 1/µ = 4, c = 4 a = λ/µ = 2
ρ = a/c  = ½

p0 = {1+2+22/2!+23/3!+24/4! (1/(1-ρ))}-1

= 3/23

pc = ac/c! p0
= 24/4! X 3/23

Prob[W > 0] = pc/(1-r)
= 24/4! X 3/23 X 1/(1-1/2)
= 4/23
≈ 0.17

10/17/2004 Dr. Ashraf S. Hasan Mahmoud 42

Waiting Time Distribution for M/M/c
• An arriving customer to the system, either 

• Does not wait, if number of busy servers is less than c
• Does wait if number of busy servers is c

• If there are k > 0 customers waiting (as 
observed by an arriving customer), the total 
waiting time for the arriving customer = the 
sum of: remaining service time of the earliest 
job to finish + service time for these k 
customers
• i.e. W = τ + τ1 + τ2 + … + τk, where τ’s ~ iid

exponentially distributed r.v. with mean E[τ] = 1/µ
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Waiting Time Distribution for M/M/c 
– cont’d

Observation of an 
arriving customers

Less than c Greater or equal to c

No of busy servers?

Prob = p0 + p1 + … + pc-1 Prob = pc + pc+1 + … 

Customer does not wait, OR
W = 0

Customer waits:
If there are k waiting, then T = sum of
k+1 iid exp r.v with parameter µ
Remember k=0, 1, 2, …
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Waiting Time Distribution for M/M/c 
– cont’d
• We have seen before that (given there 

are k ahead), the distribution of W 
follows the gamma distribution with 
parameter cµ. I.e. 

( ) ( ) ,...2,1,0,0
!

/ =>=+= − kxec
k
xckcNxf xc

k

W
µµµ
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Waiting Time Distribution for M/M/c 
– cont’d
• We can find the overall pdf of W given N 

>= c (i.e. summing over all ks) as 
follows:

• Equivalently, we can write:

( ) ( ) 0]Pr[/0/
0

>+=+==> ∑
∞

=

xkcNkcNxfWxf
k

WW

( ) ( ) 0]Pr[/0/
0

>+=+==> ∑
∞

=

xkcNkcNxFWxF
k

WW
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Waiting Time Distribution for M/M/c 
– cont’d
• But (refer to handout for proof)

Pro[N = c + k/N ≥c] = (1-ρ)ρk k=0,1,2 …

• Substituting in previous formula for 
FW(x/W>0) and simplifying, yields

( ) 010/ )1( >−=> −− xeWxF xc
W

ρ

This is all assuming the customer will have to wait!!
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Waiting Time Distribution for M/M/c 
– cont’d
• The general expression for the CDF 

(waiting and not waiting):

( ) ( ) ]0Pr[0/1]0Pr[ >>+×== WWxFWxF WW

0]0Pr[1 )1( >>−= −− xeW xc ρµ

0
1

1 )1( >
−

−= −− xep xcc ρµ

ρ
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Multi-Server Systems: M/M/c/c
• The transition rate diagram for a multi-

server with no waiting room (M/M/c/c) 
queue is as follows:
• Departure rate = kµ when k servers are busy

0 1

λ

µ

c-1 c

λ

cµ

λ

2µ (c-1)µ

λ
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PMF for Number of Customers for 
M/M/c/c

• Writing the global balance 
equations, one can show:

pj= aj/j! p0 (for j=0, 1, …, c) 

where a = λ/µ (the offered load)
• To find p0, we resort to the fact that ∑ pj

= 1 1

0
0 !

−

= ⎭
⎬
⎫

⎩
⎨
⎧

= ∑
c

j

j

j
ap

10/17/2004 Dr. Ashraf S. Hasan Mahmoud 50

Erlang-B Formula
• Erlang-B formula is defined as the 

probability that all servers are busy:

cpcN == ]Pr[

!/...!2/1
!/

2 caaa
ja

c
c

++++
=
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Expected Number of customers in 
M/M/c/c

• The actual arrival rate into the 
system:

• Average total delay figure:

• Average number of customers:

)1( ca p−= λλ

][][ τETE = Why?

][][ τλ ENE a=
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M/G/1 Queues 
• Poisson arrival process (i.e. exponential 

r.v. interarrival times)
• Service time: general distribution fτ(x)

• For M/M/1, fτ(x) = µe-µx for x > 0

• The state of the M/G/1 system at time t 
is specified by
1. N(t)
2. The remaining (residual) service time of the 

customer being served
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The Residual Service Time 
• Mean residual time (see example and 

derivation in handout) is given by
E[τ2]

E[R] = ---------
2E[τ]
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Mean Waiting Time in M/G/1 
• The waiting time of a customer is the 

sum of the residual service time R’ of the 
customer (if any) found in service and 
the Nq(t)= k-1 service time of the 
customers (if any) found in queue

E[W] = E[R’] + E[Nq] E[τ]
= E[R’] + λE[W]E[τ]
= E[R’] + ρ E[W]
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Mean Waiting Time in M/G/1 – cont’d 
• But residual service time R’ (as observed by an 

arriving customers) is either
• 0 is the server is free
• R if the server is busy

• Therefore, mean of R’ is given by

E[R’] = 0 X Pro[N(t)=0] + E[R](1-Pro[N(t)=0])
= E[τ2]/(2E[τ]) X ρ
= λE[τ2]/2
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Mean Waiting Time in M/G/1 – cont’d 
• Substituting back, yields

λE[τ2]
E[W] = ----------

2(1-ρ)

λ(δ2
τ+E[τ]2) 

= ----------------
2(1-ρ)

ρ (1 + Cτ
2) 

= ---------------- E[τ]
2(1-ρ)

Remember: 
- E[τ2] = δ2

τ+E[τ]2

- C2
τ = δ2τ/E[τ]2

Pollaczek-Khinchin (P-K)
Mean Value Formula
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Mean Delay in M/G/1 – cont’d 
• The mean waiting time, E[T] is found by 

adding mean service time to E[W]:

E[T] = E[τ] + E[W]

ρ (1 + Cτ
2) 

= E[τ] + ---------------- E[τ]
2(1-ρ)
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Example 3:  
• Problem: Compare E[W] for M/M/1 and M/D/1 

systems. 

• Answer: 
M/M/1: service time, τ, is exponential r.v. with 

parameter µ
E[τ] = 1/µ , E[τ2] = 2/µ2 , δ2

τ= 1/µ2 , C2
τ= 1

M/D/1: service time, τ, is constant with value τ = 
1/µ

E[t] = 1/µ , E[τ2] = 1/µ2 , δ2
τ= 0 , C2

τ= 0
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Example 3: cont’d 
• Answer: cont’d 
Substitute in P-K mean value formula
M/M/1:   

λE[τ2]                ρ
E[WM/M/1] = ---------- =    ---------- E[τ]

2(1-ρ)           (1-ρ)

M/D/1:                              λE[τ2]               ρ
E[WM/D/1] = ---------- =   ---------- E[τ]

2(1-ρ)          2 (1-ρ) 

1
= -- E[WM/M/1] 

2

The waiting time in an 
M/D/1 queue is half of 
that of an M/M/1 system

10/17/2004 Dr. Ashraf S. Hasan Mahmoud 60

M/G/1 with Priority Service 
Discipline 
• Handles K priority classes of customers
• Head-of-line priority service discipline
• Type k ={1, 2, …, K} arrive according to Poisson 

arrival process
• A separate queue is kept for each priority class
• Server utilization from type k customers:

ρk = λk E[τk]

• Total server utilization
ρ = ρ1 + ρ2 + … + ρK < 1   

for a stable system
• Assume class 1 is the highest priority while class 

K is the lowest
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Mean Waiting Time in M/G/1 with 
Priority Service Discipline 
• An arriving customer of type 1 finds 

Nq1(t) = k1 type 1 customers in queue
• Assuming FCFS for each queue
• The mean waiting time for type one 

customer: 

E[W1] = E[R’’] + E[Nq1] E[τ1]

where E[R’’] is the residual time of the 
customer (if any) found in service
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Mean Waiting Time in M/G/1 with 
Priority Service Discipline – cont’d
• We also know (Little’s formula) that:

E[Nq1] = λ1 E[W1]

Substituting and solving for E[W1], yields, 

E[W1] = E[R’’] / (1-ρ1)
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Mean Waiting Time in M/G/1 with 
Priority Service Discipline – cont’d
• Consider a type 2 customer – Because of the 

priority scheme one can write

E[W2] = E[R’’] + E[Nq1] E[τ1] + E[Nq2] E[τ2] + 
E[M1] E[τ1]

Where 
• E[R’’] is the residual time of the customer (if any) 

found in service
• E[Nq1] E[τ1] time to service already existing class 1 

customers  (remember E[Nq1] = λ1 E[W1])
• E[Nq2] E[τ2] time to service already existing class 2 

customers (remember E[Nq2] = λ2 E[W2])
• E[M1] E[τ1] time to service class 1 customers arriving 

during our customer waiting time - E[M1] = λ1 E[W2]
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Mean Waiting Time in M/G/1 with 
Priority Service Discipline – cont’d
• E[M1] is given by

E[M1] =  λ1 E[W2]

• Substituting and solving for E[W2], 
yields,

E[R’’]
E[W2] = ------------------------

( 1 - ρ1) (1 - ρ1 – ρ2)
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Mean Waiting Time in M/G/1 with 
Priority Service Discipline – cont’d
• In general we can show the mean 

waiting time for a customer of type k, 
E[Wk] is given by

E[R’’]
E[Wk] = -----------------------------------

( 1 - ρ1 - …- ρk-1) (1 - ρ1 …- ρk)
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Mean Waiting Time in M/G/1 with 
Priority Service Discipline – cont’d
• What is E[R’’]?

• Remember R’’ is the residual service time of a 
customer (if any) found in service – of any type

• Recall that mean residual time E[R’’] is 
computed by

E[R’’] = λ E[τ2]/2    (refer to slide 52)

But E[τ2] for which type of customers? 
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Mean Waiting Time in M/G/1 with 
Priority Service Discipline – cont’d
• E[τ2] – is the mean service-time squared 

for ANY type:

E[τ2] = (λ1/λ)E[τ1
2] + (λ2/λ)E[τ2

2] + … + (λK/λ)E[τK
2]

where λ = λ1 + λ2 + … λK

10/17/2004 Dr. Ashraf S. Hasan Mahmoud 68

Mean Waiting Time in M/G/1 with 
Priority Service Discipline – cont’d
• Therefore, the mean waiting time of type 

k customers:

• The mean delay for type k customer is 
then equal to

( )( )kk

K

j
jj

k

E
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ρρρρ
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M/G/1 Analysis Using Embedded 
Markov Chain
• Pollaczek-Khinchin (P-K) Transform 

Equation

where:
- GN(z): moment generating function of the 

r.v. N(t)
- is the Laplace transform of r.v. τ

( )( ) ( )( )
( )( )zz

zzzGN −−
−−−

=
1

111)(
λτ

λτρ
)

)

)(sτ)

See derivation in handout
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Example 4:
• Problem: Use the P-K transform equation 

to find the steady state pmf of an M/M/1

• Answer:

For an M/M/1 the steady state pmf for N(t) 
is given by (refer to slide 13)

pj = Prob[N(t) = j]
= (1-ρ)ρj
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Example 4: cont’d
• Answer: cont’d

The moment generating function, GN(z), is 
then given by

∑
∞

=

=
0

)(
j

j
jN zpzG

( )∑
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=

−=
0

1
j

jj zρρ
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Example 4: cont’d
• Answer: cont’d
Now let’s use the P-K transform and see if 

we get the same answer!
For M/M/1, τ is exp r.v the pdf for τ is 

The Laplace transform of τ is given by
0)( >= − tetf tµ

τ µ

∫
∞

−=
0

)()( dtetfs st
ττ)

µ
µ
+

=
s
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Example 4: cont’d
• Answer: cont’d
Therefore, is given by

We are now in a position to substitute in the 
P-K transform equation

))1(( z−λτ)

µλ
µλτ

+−
=−

)1(
))1((

z
z)
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Example 4: cont’d
• Answer: cont’d

( )( ) ( )( )
( )( )zz

zzzGN −−
−−−

=
1

111)(
λτ

λτρ
)

)

( )( )( )
( )µλµ
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=
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( )
( )zρ

ρ
−
−

=
1
1 Which the same M.G.F for 

N(t) derived previously!
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Example 5:
• Problem: M/H2/1

What is Prob[N(t) = k] =? 

λ

2λ

λ
1/9

8/9
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Example 5: cont’d
• Answer: 
The pdf of the service time, τ, is

The mean service time, E[τ] is given by

E[τ] = (1/9)X 1/λ + (8/9)X 1/(2λ)
= 5/(9λ)

ρ = λ E[τ] = 5/9

The Laplace transform is given by

and

02
9
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Example 5: cont’d
• Answer: 
Substituting λ(1-z) for every s in the 

previous expression, and writing GN(z), 
yields,  

( )( ) ( )( )
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Partial Fraction 
Expansion – How?
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Example 5: cont’d
• Answer: 
Therefore, GN(z) is given by

Since the coefficient of zk is Prob[N(t) = k], 
then we finally have:
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Total Delay Distribution for M/G/1 
System
• If, T is the total delay variable, then the 

Laplace transform of T is given by (see 
handout for derivation)

• The pdf for T, fT(t), is obtained by 
inverting the above expression 
analytically or numerically 

( ) ( )
( )ss
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P-K transform equation
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Waiting Time Distribution for M/G/1 
System
• Since T = W + τ Therefore, 

• Hence, the Laplace transform of the 
waiting time is given by

)()()( ssWsT τ)
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=
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τλλ

ρ
)

)

+−
−

=
1)(

P-K transform equation
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Example 6:
• Problem: Verify the result obtained 

previously for the total delay time 
distribution of an M/M/1 queue using P-
K transform equations for M/G/1 
systems

• Answer: for M/M/1 the service time, τ, is 
exp r.v. 

or 

0)( >= − tetf tµ
τ µ

µ
µτ
+

=
s
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Example 6: cont’d
• Substituting in the P-K transform 

equations

Inverting the above expression, yields
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Example 6: cont’d
• This means the total delay is 

exponentially distributed with mean1/(µ-
λ) – Same result as obtained before! 
(refer to slide 23)

• The waiting time is obtained using
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Example 6: cont’d
• Therefore the pdf of W is given by

• The δ(t) term indicates there is a ZERO 
waiting time with probability equal to 1-ρ
– i.e. when server is free

( ) ( ) ( ) 01)(1)( 1 >−+−= −− tettf t
W

ρµρλδρ


