King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 541 – Design and Analysis of Local Area Networks Term 041 Dr. Ashraf S. Hasan Mahmoud Rm 22-148-3 Ext. 1724 Email: ashraf@ccse.kfupm.edu.sa

1

Example: Queueing System

c) What percent of the time is the decoder empty?

10/17/2004

Dr. Ashraf S. Hasan Mahmoud

3

Exam	ple	e: Q	uel	ıeir	ng S	sys	tem	ן – נ	cor	nt′d	_
<u>Solution</u>	<u>.</u>										
Interarri	ival t	time	= 10) µse	C						
Service t	time	= 1		if no	o erro	ors					
		1.	+5	if 1 (error						
		_					1 err	or			
The que belo		_							shov	wn	
Block #:	1	2	3	4	5	6	7	8	9	10	
Arrivals:	10	20	30	40	50	60	70	80	90	100	
Errors:	0	1	3	1	0	4	0	1	0	0	
Service:	1	6	21	6	1	21	1	6	1	1	
Departs:	11	26	51	57	58	81	82	88	91	101	
Waiting:	0	0	0	11	7	0	11	2	0	0	
10/17/2004			Dr. A	Ashraf S.	Hasan M	lahmoud	l			4	ŀ

Fxample: Olle	ueing System – cont'd
	acing of stern oont a
0001 % 0002 % Problem 9.3 - Leon Garcia's book	0033 % Compute N(t) 0034 T = []; % time axis
0002 % Problem 9.3 - Leon Garcia's book 0003 clear all	0034 T = []; % time axis 0035 T(1) = 0; % time origin
0003 Clear all 0004 A = [10:10:100];	0035 N = []; % number of cutomers
0004 A = [101101100]; 0005 Errors = [0 1 3 1 0 4 0 1 0 0];	0037 N(1) = 0; % initial condition
0006 S = zeros(size(A));	0038 k = 2: % place for next insert
0007 D = zeros(size(A));	0039 A max = A(length(A)); % last arrival instant
0008 %	0040 i = 1; % index for arrivals
0009 % this loop to computes service times	0041 j = 1; % index for departures
0010 for i=1:length(A);	0042 t = 0; % system time
<pre>0011 if (Errors(i)==0) S(i) = 1;</pre>	0043
0012 else	0044 while $(t < A max)$
<pre>0013 if (Errors(i)==1) S(i) = 6;</pre>	0045 t = min(A(i), D(j));
0014 else	0046 if (t == A(i))
0015 S(i) = 21;	0047 N(k) = N(k-1) + 1;
0016 end	0048 T(k) = t;
0017 end	0049 k = k + 1;
0018 %	0050 i = i + 1; % get next arrival
0019 % this section computes the departure	
the ith user	N(k) = N(k-1) - 1;
0020 if (i>1) % this is not the first user	0053 T(k) = t;
0021 if (D(i-1) < A(i)) D(i) = A(i) + S 0022 else	
0022 else 0023 D(i) = D(i-1) + S(i);	, , , , , , , , , , , , , , , , , , ,
D(1) = D(1-1) + S(1); 0024 end	0056 end 0057 end
0025 else	0058 %
D(i) = A(i)+S(i);	0059 % record remaining departure instants
0027 end	0060 for i=j:1:length(D)
0028 *	0061 t = D(1);
0029 % compute waiting time	0062 N(k) = N(k-1) - 1;
0030 $W(i) = D(i) - A(i) - S(i);$	0063 T(k) = t;
0031 end	0064 k = k + 1;
0032 %	0065 end
	0066
	0067 k = k - 1; % decrement k to get real size of N and T
	0068 %
	0069 % compute means
	0070 MeanW = mean(W);
	0071 T_Intervales = T(2:k)-T(1:k-1);
	0072 MeanN = sum(N(1:k-1).*T_Intervales) / T(k);
	<pre>0073 IdleDurationsIndex = find(N(1:k-1) ~= 0);</pre>
10/17/2004 Dr	. Ashraf S. 0074 Utilization = sum(T_Intervales(IdleDurationsIndex))/T(k)

<section-header>My functionSubstituting the states and s

Multi-Server Systems: M/M/c cont'd Writing the global balance equations: λ $p_0 = \mu p_1$ $p_j = \lambda p_{j-1}$ for j=1, 2, ..., c jμ $p_{i} = \lambda p_{i-1}$ for j = c, c+1, ...Cμ ➔ $p_j = a^j/j! p_0$ (for j=1, 2, ..., c) and $p_i = \rho^{j-c}/c! a^c p_0$ (for j=c, c+1, ...) where $\mathbf{a} = \mathbf{\lambda}/\mu$ and $\rho = \mathbf{a}/c$ 10/17/2004 Dr. Ashraf S. Hasan Mahmoud 36

Dr. Ashraf S. Hasan Mahmoud

10/17/2004

test

Example 2: cont'd

• Solution:

$$\lambda = \frac{1}{2}, \frac{1}{\mu} = 4, c = 4 \Rightarrow a = \frac{1}{\mu} = 2$$

$$\Rightarrow \rho = \frac{a}{c} = \frac{1}{2}$$

$$P_{0} = \frac{1+2+2^{2}}{2!+2^{3}}\frac{3!+2^{4}}{4!}(\frac{1}{(1-\rho)})^{-1}$$

$$= \frac{3}{23}$$

$$P_{c} = \frac{a^{c}}{c!} p_{0}$$

$$= \frac{2^{4}}{4!} \times \frac{3}{23}$$

$$Prob[W > 0] = \frac{p_{c}}{(1-r)}$$

$$= \frac{2^{4}}{4!} \times \frac{3}{23} \times \frac{1}{(1-1/2)}$$

$$= \frac{4}{23}$$

$$\approx 0.17$$
Dr. Ashraf S. Hasan Mahmoud

41

Example	3:	
• <u>Problem</u> : C systems.	Compare E[W] for M/M/1 and M/D/	1
parameter	the time, τ , is exponential r.v. with $\mu_{\mu} = 2/\mu^2$, $\delta_{\tau}^2 = 1/\mu^2$, $\mathbf{C}_{\tau}^2 = 1$	
1/μ	e time, τ , is constant with value $\tau = \mathbf{E}[\tau^2] = 1/\mu^2$, $\delta^2_{\tau} = 0$, $\mathbf{C}^2_{\tau} = 0$	
10/17/2004	Dr. Ashraf S. Hasan Mahmoud	58

Dr. Ashraf S. Hasan Mahmoud

59

10/17/2004

Examp	e 5: cont′d	
 <u>Answer</u>: The pdf of the s 	ervice time, τ, is	
	$f_{\tau}(t) = \frac{1}{9}\lambda e^{-\lambda t} + \frac{8}{9}2\lambda e^{-2\lambda t} \qquad t > 0$	
The mean servi	e time, E[τ] is given by	
Ε [τ] =	(1/9)Χ 1/λ + (8/9)Χ 1/(2λ)	
	5/(9)	
→ $ρ = λ E[τ] = 5$	/9	
The Laplace tra	nsform is given by	
	$\widehat{\tau}(s) = \frac{1}{9} \frac{\lambda}{s+\lambda} + \frac{8}{9} \frac{2\lambda}{s+2\lambda}$	
and	$=\frac{18\lambda^2+17\lambda s}{9(s+\lambda)(s+2\lambda)}$	
	$-\frac{1}{9(s+\lambda)(s+2\lambda)}$	
10/17/2004	Dr. Ashraf S. Hasan Mahmoud	76

