King Fahd University of **Petroleum & Minerals Computer Engineering Dept**

COE 541 - Design and Analysis of **Local Area Networks**

Term 041

Dr. Ashraf S. Hasan Mahmoud

Rm 22-144

Ext. 1724

Email: ashraf@ccse.kfupm.edu.sa

Dr. Ashraf S. Hasan Mahmoud

Revision - Fourier Transform

A "transformation" between the time domain and the frequency domain

Time (t) Frequency (f)
$$s(t) \leftarrow \Rightarrow S(f)$$

$$S(f) = \int_{-\infty}^{\infty} s(t)e^{-j2\pi ft}dt$$
 Fourier Transform
$$s(t) = \int_{0}^{\infty} S(f)e^{+j2\pi ft}df$$
 Inverse Fourier Transform

$$S(t) = \int\limits_{-\infty}^{\infty} S(f)e^{+j2\pi ft}df$$
 Inverse Fourier Transform

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

Revision - Fourier Transform (2)

- F.T. can be used to find the BANDWIDTH of a signal or system
 - **Bandwidth system: range of frequencies** passed (perhaps scaled) by system
 - Bandwidth signal: range of (+ve) frequencies contained in the signal

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

3

Revision - Fourier Transform (3)

Remember for periodic signals (i.e. s(t) =s(t+T) where T is the period) \rightarrow Fourier Series expansion:

$$s(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} \left[A_n \cos(2\pi n f_0 t) + B_n \sin(2\pi n f_0 t) \right]$$

$$s(t) = \frac{A_0}{2} + \sum_{n=1}^{\infty} \left[A_n \cos(2\pi n f_0 t) + B_n \sin(2\pi n f_0 t) \right]$$

$$A_0 = \frac{2}{T} \int_0^T s(t) dt \qquad B_n = \frac{2}{T} \int_0^T s(t) \sin(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

$$A_n = \frac{2}{T} \int_0^T s(t) \cos(2\pi n f_0 t) dt$$

Dr. Ashraf S. Hasan and is equal to 1/T

• Famous pairs – rectangular pulse (A =T = 1) • Famous pairs – rectangular pulse (A =T = 1) • Since function - A = T = 1

$$S(t) = \prod (t/T) \qquad S(f) = AT \frac{\sin(\pi f T)}{\pi f T}$$

9/23/2004 S(f) = AT for f = 0= 0 for f = n/T; n = +/-1, 2, ...

Provision – Fourier Transform (5)

• Famous pairs – Raised Cosine pulse (A = T = 1), as a function of α $s(t) = \frac{(2A)}{T} \frac{\cos(2\pi \alpha t)}{1 - (4\alpha t)^2} \frac{\sin(2\pi t/T)}{2\pi t/T}$ Solution of α $s(t) = \frac{(2A)}{T} \frac{\cos(2\pi \alpha t)}{1 - (4\alpha t)^2} \frac{\sin(2\pi t/T)}{2\pi t/T}$ Solution of α $s(t) = \frac{(2A)}{T} \frac{\cos(2\pi \alpha t)}{1 - (4\alpha t)^2} \frac{\sin(2\pi t/T)}{2\pi t/T}$ Solution of α $s(t) = \frac{(2A)}{T} \frac{\cos(2\pi \alpha t)}{1 - (4\alpha t)^2} \frac{\sin(2\pi t/T)}{2\pi t/T}$ Solution of α $s(t) = \frac{(2A)}{T} \frac{\cos(2\pi \alpha t)}{1 - (4\alpha t)^2} \frac{\sin(2\pi t/T)}{2\pi t/T}$ Solution of α $s(t) = \frac{(2A)}{T} \frac{\cos(2\pi \alpha t)}{1 - (4\alpha t)^2} \frac{\sin(2\pi t/T)}{2\pi t/T}$ Solution of α Solution of α $s(t) = \frac{(2A)}{T} \frac{\cos(2\pi \alpha t)}{1 - (4\alpha t)^2} \frac{\sin(2\pi t/T)}{2\pi t/T}$ Solution of α Solution of α $s(t) = \frac{(2A)}{T} \frac{\cos(2\pi \alpha t)}{1 - (4\alpha t)^2} \frac{\sin(2\pi t/T)}{2\pi t/T}$ Solution of α Solution

Revision - Fourier Transform (6)

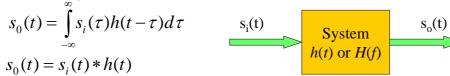
- Raised Cosine Pulse: $0 < \alpha < 1/T$
- Note that s(t) = 0 for t = nT/2 where n = +/- 1,2,
 - Very good for forming pulses
 - ZERO ISI for ideal situation
- BW for $s(t) = 1/T + \alpha$
 - Maximum = $2 \times 1/T$ (for $\alpha = 1/T$)
 - Minimum = 1/T (for $\alpha = 0$)

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

7

Revision - Fourier Transform (7)


Matlab code:

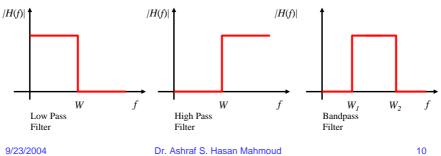
9/23/2004

Dr. Ashraf S. Hasan Mahmoud

Signals and Systems

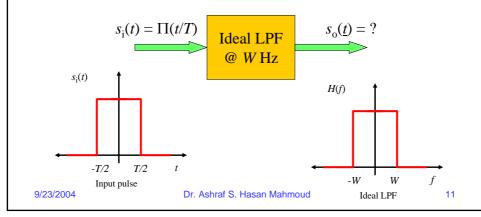
- **For linear Systems:**
 - h(t) is the system's impulse response i.e. $s_o(t) = h(t)$ when $s_i(t) = \delta(t)$
 - S_i(t) is system input signal
 - S_o(t) is system output signal

 $S_0(f) = S_i(f)H(f)$


A good introduction into linear systems is found at

9/23/2004

Dr. Ashraf S. Hasan Mahmoud


Signals and Systems (2)

- System bandwidth is determined by examining the Fourier transfer of the system function h(t), H(f)
- **Example (transmission) systems:**

Signals and Systems - Example

• Ideal Low Pass Filter – find the output signal for rectangular input pulse?

Signals and Systems - Example

• The input signal $s_i(t)$ is given by:

$$s_i(t) = A$$
 $|t| \le T/2$
0 otherwise

• Where as it Fourier transform $S_i(t)$ is given by (note that $s_i(t)$ contains all frequencies from 0 till ∞ - refer to Fourier transform of rectangular pulse):

$$S_i(f) = AT - for all f$$
 $\pi f T$

 The Fourier transform of the system impulse response, H(f) is given by (note this transmission system limits frequencies to at most WHz):

$$H(f) = 1$$
 $|f| \le W$
0 otherwise

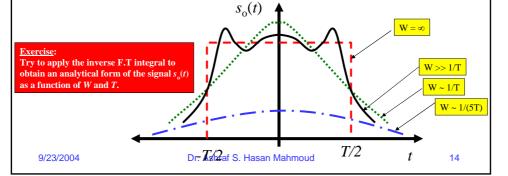
9/23/2004

Dr. Ashraf S. Hasan Mahmoud

Signals and Systems - Example

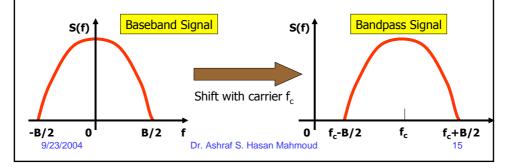
- Therefore the Fourier transform of the output signal is given by:
- $|S_0(f)| = |S_1(f)| \times |H(f)|$

$$sin(\pi fT)$$
= AT ------ for $|f| < W$
 πfT
= 0 otherwise


(note the output signal has frequencies up to W Hz only)

9/23/2004 Dr. Ashraf S. Hasan Mahmoud

13


Signals and Systems - Example

- To find the output signal $s_o(t)$, one has to use the inverse Fourier transform on $s_o(f)$
- As the BW of the system is increased, the output signal approaches a rectangular pulse (copy of input)

Baseband vs. Bandband

- Baseband Signal:
 - Spectrum not centered around non zero frequency
 - May have a DC component
- Bandpass Signal:
 - Does not have a DC component
 - Finite bandwidth around or at f

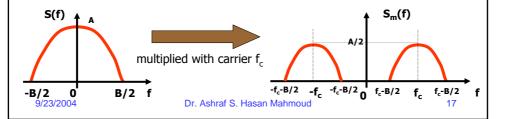
Modulation

- Is used to shift the frequency content of a baseband signal
 - Basis for AM modulation
 - Basis for Frequency Division Multiplexing (FDM)

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

Analog Communications


Modulation

Consider the signal s(t),

$$s_m(t) = s(t) \times cos(2\pi ft)$$

The spectrum for $s_m(t)$ is given by

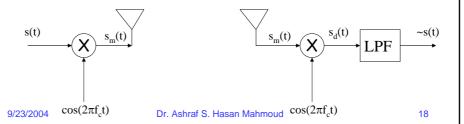
$$S_m(f) = \frac{1}{2} X \{S(f-f_c) + S(f+f_c)\}$$

Analog Communications

Modulation - Txer/Rxer

At the receiver side:

$$s_d(t) = s_m(t) X \cos(2\pi f_c t)$$


$$= s(t) \times \cos(2\pi f_c t) \times \cos(2\pi f_c t)$$

=
$$\frac{1}{2}$$
 s(t) + $\frac{1}{2}$ s(t) X cos($2\pi 2Xf_c t$)

desired term

undesired term – signal centered around $2f_c$

filtered out using the LPF

Nyquist Bandwidth

 For a noiseless channels of bandwidth B, the maximum attainable bit rate (or capacity) is given by

$$C = 2B \log_2(M)$$

Where M is the size of the signaling set

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

19

Shannon Capacity

Digital Communications

 Capacity of a channel of bandwidth B, in the presence of noise is given by

$$C = B \log_2(1 + SNR)$$

where SNR is the ratio of signal power to noise power – a measure of the signal quality

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

Example: Shannon Capacity

- Consider a GSM system with BW = 200 kHz. If SNR is equal to 15 dB, find the channel capacity?
- Solution:

SNR = 15 dB =
$$10^{(15/10)}$$
 = 31.6
C = $200X10^3 X log_2(1+31.6)$
= $1005.6 kb/s$

Note GSM operates at 273 kb/s which is \sim 27% of maximum capacity at SNR = 30 dB.

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

21

Eb/No Expression


Digital Communications

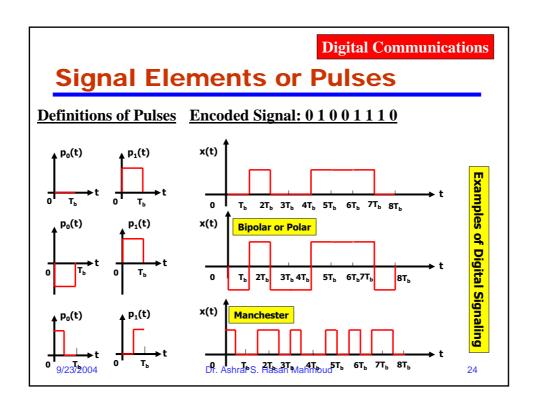
- An alternative representation of SNR
- Consider the bit stream shown in figure for bit of rate R, then each bit duration is equal to T_b = 1/R seconds
- Energy of signal for the bit duration is equal to A²X T_b, where its power is equal to bit energy / T_b or A².
- Noise power is equal to N₀ X B (refer to thermal noise section)
- Hence, SNR is given by signal power / noise power or

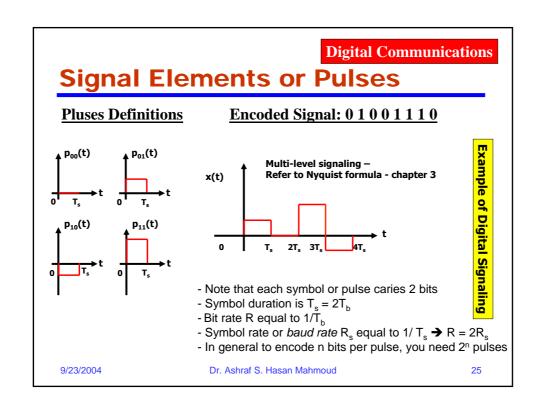
$$SNR = \frac{signal power}{N_0 B} = \frac{E_b}{N_0} \times \frac{R}{B}$$

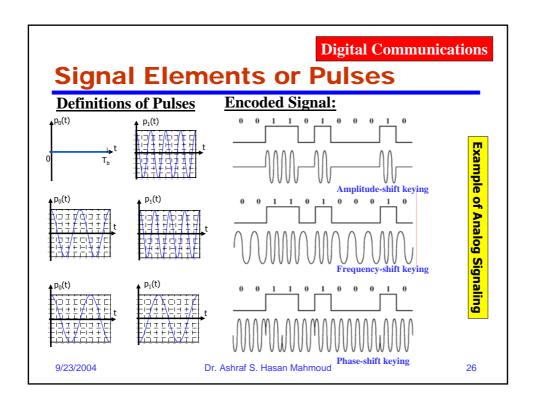
One can also write

$$\left(\frac{E_b}{N_0}\right)_{JB} = SignalPower(dBW) - 10\log R - 10\log k - 10\log T$$

9/23/2004

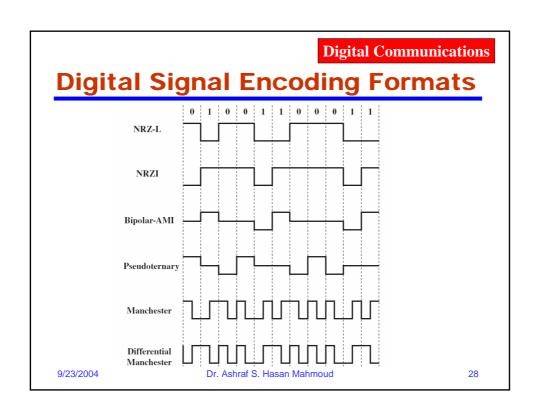

Dr. Ashraf S. Hasan Mahmoud

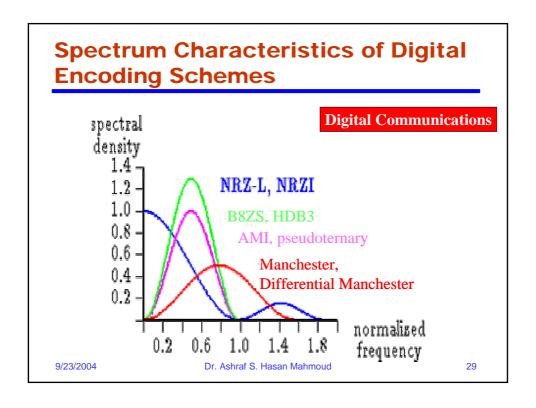

Signal Elements or Pulses


- Unit of transmission repeated to form the overall signal
- Shape of pulse determines the bandwidth of the transmitted signal
- Digital data is mapped or encoded to the different pulses or units of transmission
- Baud/Modulation or Symbol Rate (R_s)
 - The bit rate R_b = R_slog₂(M)
- Please refer to earlier examples of pulses and the corresponding BW

9/23/2004

Dr. Ashraf S. Hasan Mahmoud




Digital Signal Encoding Formats

- Nonreturn to Zero-Level (NRZ-L)
 - 0 = high level
 - 1 = low level
- Nonreturn to Zero Inverted (NRZI)
 - 0 = no transition at beginning of interval
 - 1 = transition at beginning of interval
- Bipolar-AMI
 - 0 = no line signal
 - 1 = +ve or -ve level; alternating successive ones
- **Pseudoternary**
 - 0 = +ve or -ve level; alternating for successive ones
 - 1 = no line signal
- Doubinary
 - 0 = no line signal
 - ${\bf 1}=+{\bf ve}$ or $-{\bf ve}$ level; depending on number of separating 0s (even same polarity, odd opposite polarity)
- Manchester
 - 0 = transition from high to low in middle of interval
 - 1 = transition from low to high in middle of interval
- Differential Manchester: Always transition in middle of interval
 - 0 = transition at beginning of interval
 1 = no transition at beginning of interval

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

Asynchronous Data Transmission

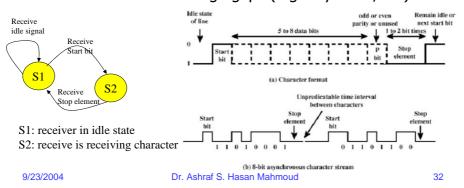
- Digital Info:
 - Bits
 - Characters
 - Packets
 - Messages or files
- Serial vs. Parallel character

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

Asynchronous Transmission

- Exploits: Rx-er can remain for short period in synch with Tx-er
- Used for short stream of bits data transmitted one character (5 ~ 8 bits) at a time
- Synchronization is needed to be maintained for the length of short transmission
- Character is delimited (start & end) by known signal elements: start bit – stop element
- Rx-er re-synchs with the arrival of new character


9/23/2004

Dr. Ashraf S. Hasan Mahmoud

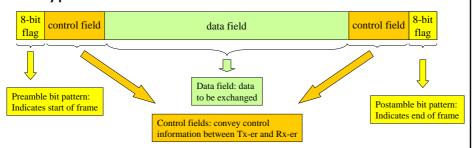
31

Asynchronous Transmission

- Simple / Cheap
- Efficiency: transmit 1 start bit + 8 bit of data +2 stop bits → Efficiency = 8/11 = 72% (or overhead = 3/11 = 28%)
- Good for data with large gaps (e.g. keyboard, etc)

Synchronous Data Transmission

- Two ends remain in sync for significant period of time
- Use of SYNC or PREAMPLE characters
- Noise + Data = may create another SYNC character → frame split
 - Solution use two SYNC characters
- Rx-er must buffer incoming frames and search for SYNC character(s)


9/23/2004

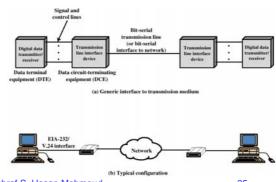
Dr. Ashraf S. Hasan Mahmoud

33

Synchronous Frame Format

Typical Frame Structure

- For large data blocks, synchronous transmission is far more efficient than asynchronous:
 - E.g. HDLC frame (to be discussed in Chapter 7): 48 bits are used for control, preamble, and postamble if 1000 bits are used for data → efficiency = 99.4% (or overhead = 0.6%)


9/23/2004

Dr. Ashraf S. Hasan Mahmoud

For more details refer to Chapter 6: The Data Communication Interface Data and Computer Communications, Stallings 6^{th} Edition, 2000

Interfacing

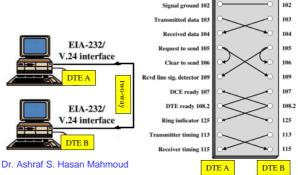
- Data Terminal Equipment (DTE): terminals or computers
- Data Circuit Equipment (DCE): modem
- Two DCEs
 exchanging data
 on behalf of DTEs
 must use exact
 same protocol

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

35

For more details refer to Chapter 6: The Data Communication Interface Data and Computer Communications, Stallings 6^{th} Edition, 2000


DTE-DCE Interface Definition

- Mechanical: physical specification of connection
 type, dimensions, location of pins, etc
- Electrical: voltage levels and timing signals used
- Functional: specify functions that are performed for circuits – rx circuit, tx circuit, etc.
- Procedural: specification of sequence of event for transmitting data based on functional specification
- Two examples:
 - V.24/EIA-232-F, and
 - ISDN physical interface

23/2004 Dr. Ashraf S. Hasan Mahmoud

V.24/EIA-232-F - Procedural Specification - Examples

- <u>Example:</u> Two terminals connected back-toback through the V.24 interface BUT with no DCEs
- This is referred to as the NULL modem connection
- For short distance connections

9/23/2004

Error Control

- Error Detection
 - Parity Checks
 - Cyclic Redundancy Check (CRC)
- For a channel of bit error rate (or BER) of P, the probability of m bits in error in a block of n bits (m <= n) is given by

$$\binom{n}{m}p^m(1-p)^{n-m}$$

or

$$\frac{n!}{(n-m)!m!} p^m (1-p)^{n-m}$$

The above simple formula assumes iid error probability across all bits in block – How realistic is that?

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

Error Control (2)

The probability the frame or block is correct is given by

$$(1-p)^n$$

Therefore the probability, the frame is in error (one or more bits in error) is given by

$$1 - (1 - p)^n$$

The above quantity is referred to as FER

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

39

Error Control - Example

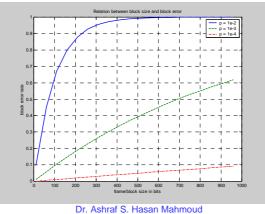
• Consider a channel with BER = 10^{-3} , for a block (packet of n = 100 bits), the probability of having one bit in error is equal to

$$100 \text{ X P X } (1-P)^{99} = 9 \text{ X } 10^{-2}$$

While the probability of having 4 bits in error is equal to

$$(100 \text{ choose 4}) \times P^4 \times (1-P)^{96} = 3.6 \times 10^{-6}$$

The probability that the frame is correct is equal to


$$(1-P)^{100} = 0.905$$
 \rightarrow i.e. ~10% of the time the frame is in error!!

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

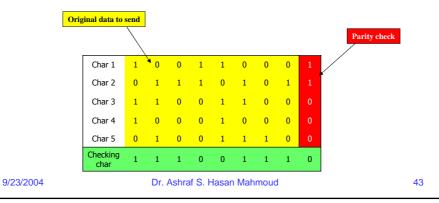
Error Control - Example (2)

• Relation between block size (n) and frame error rate (FER)

9/23/2004

41

Simple Parity Check


- Add one extra bit for each character such that:
 - Even Parity: no of 1s even
 - Odd Parity: no of 1s odd
- Simple
- Can not detect even no of errors in character
- Adding one extra bit to a group of n bits → Excess redundancy = 1/(n+1)

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

VRC/LRC Parity Check

 Extension of simple parity: Vertical Redundancy Check (VRC) and Longitudinal Redundancy Check (LRC)

VRC/LRC Parity Check (2)

- Can detect all odd errors same as the simple parity check
- Can detect any combination of even error in characters that DO NOT result in even number of errors in a column
- Excess Redundancy: 14/(40+14) = 0.26
- There could be undetected errors How?

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

Cyclic Redundancy Check (CRC)

k-bit block of data (M)

Processing: compute FCS (for some given an n+1 bit polynomial *P*)

k-bit block of data

n-bit file check sequence

k+n bit frame to be transmitted = T

- Modulo 2 arithmetic is used to generate the FCS:
 - $0 \pm 0 = 0$; $1 \pm 0 = 1$; $0 \pm 1 = 1$; $1 \pm 1 = 0$
 - $1 \times 0 = 0$; $0 \times 1 = 0$; $1 \times 1 = 1$

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

45

CRC - Mapping Binary Bits into Polynomials

 Consider the following k-bit word or frame and its polynomial equivalent:

$$b_{k\text{-}1}\ b_{k\text{-}2}\ ...\ b_2\ b_1\ b_0\ \ \boldsymbol{\rightarrow}\ \ b_{k\text{-}1}x^{k\text{-}1}+\ \ b_{k\text{-}2}x^{k\text{-}2}+\ ...\ +\ \ b_1x^1+\ b_0$$

where b_i (k-1 \leq i \leq 0) is either 1 or 0

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

CRC - Mapping Binary Bits into Polynomials - Examples

- Example1: an 8 bit word M = 11011001 is represented as $M(x) = x^7 + x^6 + x^4 + x^3 + 1$
- Example2: What is x⁴M(x) equal to?

 $x^4M(x) = x^4(x^7+x^6+x^4+x^3+1) = x^{11}+x^{10}+x^8+x^7+x^4$, the equivalent bit pattern is 110110010000 (i.e. four zeros added to the right of the original M pattern)

• Example3: What is $x^4M(x) + (x^3+x+1)$?

 $x^4M(x) + (x^3+x+1) = x^{11}+x^{10}+x^8+x^7+x^4+$ x^3+x+1 , the equivalent bit pattern is 110110011011 (i.e. pattern 1011 = x^3+x+1 added to the right of the original M pattern)

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

47

CRC Calculation

- T = (k+n)-bit frame to be tx-ed, n < k
- M = k-bit message, the first k bits of frame T
- F = n-bit FCS, the last n bits of frame T
- P = pattern of n+1 bits (a predetermined divisor)

T = (n+k)-bit frame

M = k-bit message

F = n-bit FCS

Note

P = (n+1) bit divisor

- $\overline{-T(x)}$ is the polynomial (of k+n-1st degree or less) representation of frame T
- -M(x) is the polynomial (of k-1 $^{\rm st}$ degree or less) representation of message M
- F(x) is the polynomial (of n-1st degree or less) representation of FCS
- P(x) is the polynomial (of nth degree or less) representation of the divisor P
- $-T(x) = X^n M(x) + F(x)$ refer to example 3 on previous slide

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

CRC Calculation (2)

- <u>Design</u>: frame T such that it divides the pattern P with no remainder?
- <u>Solution:</u> Since the first component of T, M, is the data part, it is required to find F (or the FCS) such that T divides P with no remainder

Using the polynomial equivalent:

 $T(x) = X^n M(x) + F(x)$

One can show that $F(x) = \text{remainder of } x^n M(x) / P(x)$

i.e if $x^nM(x) / P(x)$ is equal to Q(x) + R(x)/P(x), then F(X) is set to be equal to R(X).

Note that:

Polynomial of degree k+n

--- = polynomial of degree k + remainder polynomial of degree n or less

Polynomial of degree n

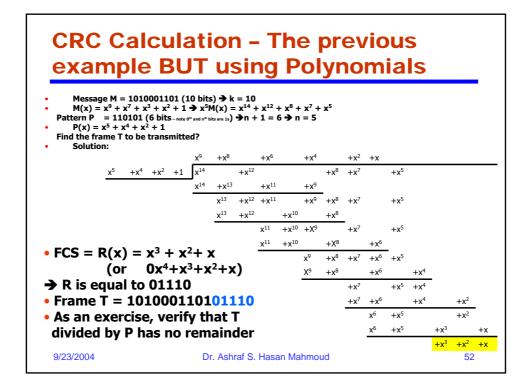
9/23/2004

Dr. Ashraf S. Hasan Mahmoud

49

CRC Calculation - Procedure

- 1. Shift pattern M n bits to the lift
- 2. Divide the new pattern 2ⁿM by the pattern P
- 3. The remainder of the division R (n bits) is set to be the FCS
- **4.** The desired frame T is 2ⁿM plus the FCS bits


Note:

 2^nM is the pattern resulting from shifting the pattern M n bits to the left. In other words, the polynomial equivalent of the pattern 2^nM is $x^nM(x)$

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

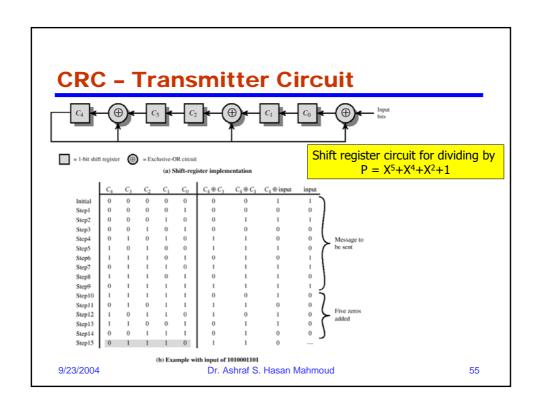
CRC Calculation - Example Message M = 1010001101 (10 bits) \rightarrow k = 10 Pattern P = 110101 (6 bits – note 0th and nth bits are 1s) \rightarrow n + 1 = 6 \rightarrow n = 5 Find the frame T to be transmitted? **Solution:** 1 1 0 1 0 1 • FCS = R is equal to 01110 1 1 0 1 0 1 1 1 1 0 1 0 • Frame T = 101000110101110 1 1 0 1 0 1 V V Size of M = k As an exercise, verify that T Size of P = n+1divided by P has no remainder 1 0 1 1 0 0 Size of R or FCS = n1 1 0 1 0 1 Size of T = n+k9/23/2004 Dr. Ashraf S. Hasan Mahmoud

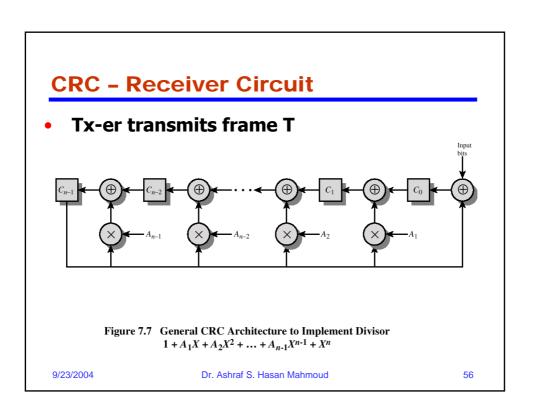
CRC Calculation - The previous example BUT using Polynomials - cont'd

- Message M = 1010001101 (10 bits)
- \rightarrow M(x) = $x^9 + x^7 + x^3 + x^2 + 1$
- $\Rightarrow x^5M(x) = x^{14} + x^{12} + x^8 + x^7 + x^5$
- Pattern P = 110101
- \rightarrow P(x) = x⁵ + x⁴ + x² + 1
- $R(x) = x^3 + x^2 + x$
- $Q(x) = x^9 + x^8 + x^6 + x^4 + x^2 + x$
- $T(X) = x^5M(x) + R(x)$ = $x^{14} + x^{12} + x^8 + x^7 + x^5 + x^3 + x^2 + x$, or T = 101000110101110
- Exercise: Verify that $Q(x) P(x) + R(x) = x^5 M(x)$

9/23/2004

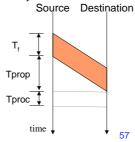
Dr. Ashraf S. Hasan Mahmoud


53

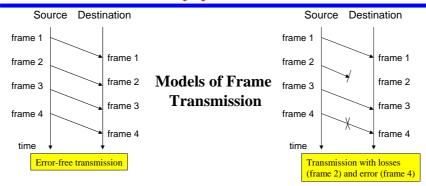

CRC - Receiver Procedure

- Tx-er transmits frame T
- Channel introduces error pattern E
- Rx-er receives frame $T_r = T \oplus E$ (note that if E = 000..000, then Tr is equal to T, i.e. error free transmission)
- T_r is divided by P, Remainder of division is R
- if R is ZERO, Rx-er assumes no errors in frame; else Rx-er assumes erroneous frame
- If an error occurs and T_r is still divisible by P → UNDETECTABLE error (this means the E is also divisible by P)

9/23/2004


Dr. Ashraf S. Hasan Mahmoud

Flow Control


- A scheme to ensure that transmitter does not overwhelm receiver with data
- Transmission of one frame:
 - T_f: time to transmit frame
 - Tprop: time for signal to propagate
 - Tproc: time for destination to process received frame small delay (usually ignored if not specified)
- Tproc may be ignored if not specified

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

Flow Control (2)

- The destination has a limited buffer space. How will the source know that destination is ready to receive the next frame?
- In case of errors or lost frame, the source need to retransmit frames i.e. a copy of transmitted frames must be kept. How will the source know when to discard copies of old frames?
- Etc.

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

Stop-and-Wait Protocol

- Protocol:
 - Source transmits a frame
 - After the destination receives frame, it sends ACK
 - Source, upon the receipt of ACK, can now send the next frame
- Destination can stop source by withholding the ACK
- Simple
- Animation for Stop-and-Wait
- NOTE: ONLY one frame can be in transit at any time

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

59

Stop-and-Wait Protocol: Efficiency

- After every frame, source must wait till acknowledgment → Hence link propagation time is significant
- Total time to for one frame:

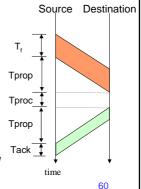
 $T_{total} = Tf + 2Tprop + Tproc + Tack$ if we ignore Tproc and Tack (usually very small)

 $T_{total} = Tf + 2Tprop$

Link utilization, U is equal to

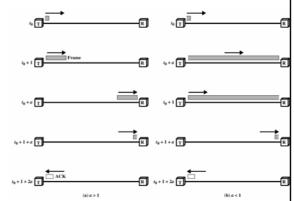
 $U = Tf/(T_total)$, or

= 1 / (1+2(Tprop/Tf)) = 1 / (1 + 2 a)


where a = Tprop/Tf = length of link in bits

- If a < 1 (i.e. Tf > Tprop when 1st transmitted bit reaches destination, source will still be transmitting → U is close 100%
- If a > 1 (i.e. Tf < Tprop frame transmission is completed before 1st bit reaches destination →U is low

• See figure 7.2


9/23/2004

Dr. Ashraf S. Hasan Mahmoud

Stop-and-Wait Protocol: Efficiency (2)

- Remember: a = Tprop/Tf = length of link in bits
- If a < 1 (i.e. Tf > Tprop when 1st transmitted bit reaches destination, source will still be transmitting → U is close 100%
- If a > 1 (i.e. Tf < Tprop frame transmission is completed before 1st bit reaches destination →U is low
- Stop-and-Wait is efficient for links where a << 1 (long frames compared to propagation time)

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

61

Sliding Window Protocol

- Stop-and-Wait can be very inefficient when a > 1
- Protocol:
 - Assumes full duplex line
 - Source A and Destination B have buffers each of size W frames
 - For k-bit sequence numbers:
 - Frames are numbered: 0, 1, 2, ..., 2^{k} -1, 0, 1, ... (modulo 2^{k})
 - ACKs (RRs) are numbered: 0, 1, 2, ..., 2^k-1, 0, 1, ... (modulo 2^k)
 - A is allowed to transmit up to W frames without waiting for an ACK
 - B can receive up to W consecutive frames
 - ACK J (or RR J), where 0<=J<= 2^k-1, sent by B means B is have received frames up to frame J-1 and is ready to receive frame J
 - B can also send RNR J: B have received all frames up to J-1 and is not ready to receive any more
- Window size, W can be less or equal to 2^k-1

9/23/2004

Dr. Ashraf S. Hasan Mahmoud


Sliding Window Protocol (2)

Example of Sliding-Window-Protocol: k = 3 bits, W = 7

Observations:

- A may tx W = 7 frames (F0, F1, ..., F6)
- After F0, F1, & F2 are txed, window is shrunk (i.e. can not transmit except F3, F4, ..., F6)
- When B sends RR3, A knows F0, F1 & F2 have been received and B is ready to receive F3
- Window is advanced to cover 7 frames (starting with F3 up to F1)
- A sends F3, F4, F5, & F6
- B responds with RR4 when F3 is received – A advances the window by one position to include F2

9/23/2004

Sliding Window Protocol - Piggybacking

- When using sliding window protocol in full duplex connections:
 - Node A maintains its own transmit window
 - Node B maintains its own transmit window
 - A frame contains: data field + ACK field
 - There is a sequence number for the data field, and a sequence number for the ACK field

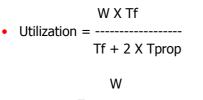
9/23/2004

Dr. Ashraf S. Hasan Mahmoud

Sliding Window Protocol - Efficiency

- Again we can distinguish two cases:
- Case 1: W ≥ 2a + 1
- Case 2: W < 2a + 1

9/23/2004


Dr. Ashraf S. Hasan Mahmoud

65

Sliding Window Protocol -Efficiency - Case 1 • Assume k=3, W = 7 Destination Source (ignoring Tack) Source can continuously keep Tprop transmitting!! WXTf Because the ACK can Tprop arrive to source before the window is completed Utilization = 100% Sending ACK0 as soon as F0 is received is the maximum help the destination can do to increase utilization 9/23/2004 Dr. Ashraf S. Hasan Mahmoud 66

Sliding Window Protocol -Efficiency - Case 2

- Assume k = 3, W = 3 (ignoring Tack)
- Source can NOT continuously keep transmitting!!
 - Because the ACK can NOT arrive to source before the window is completed

1 + 2a

Source Destination WXTf Tprop Tprop time

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

Sliding Window Protocol -Efficiency

- Refer to Appendix A
- When window size is W (for error free), link utilization, U, is given by

$$U = \begin{cases} \frac{1}{W} & W \ge (2a+1) \\ \frac{W}{2a+1} & W < (2a+1) \end{cases}$$

where a = Tprop/Tf or length of link in bits

 Sliding window protocol can achieve 100% utilization if W >= (2a + 1)

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

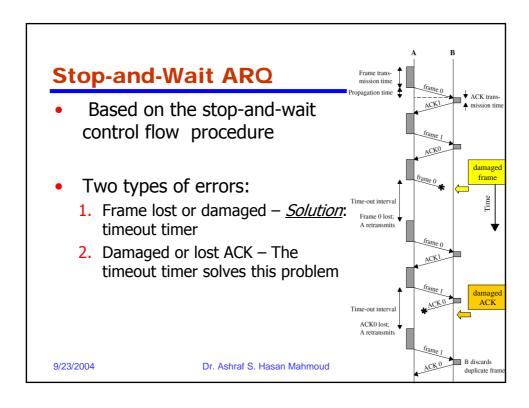
68

Sliding Window Protocol

- Animation for **Sliding Window** protocol
- <u>Sliding Window Protocol Simulation</u>
 (http://www.cs.stir.ac.uk/~kjt/software/comms/jasper/SWP3.html)

9/23/2004

Dr. Ashraf S. Hasan Mahmoud


69

Automatic Repeat Request - ARQ

- Types of Errors:
 - Lost frame
 - Damaged frame
- Error control Techniques:
 - Error detection discussed previously
 - +ve ACK
 - Retransmission after timeout
 - -ve ACK and retransmission
- ARQ Procedures: convert an unreliable data link into a reliable one.
 - Stop-and-wait
 - Go-back-N
 - Selective-reject

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

Sliding Window Protocol

- Stop-and-Wait can be very inefficient when a > 1
- Protocol:
 - Assumes full duplex line
 - Source A and Destination B have buffers each of size W frames
 - For k-bit sequence numbers:
 - Frames are numbered: 0, 1, 2, ..., 2^{k} -1, 0, 1, ... (modulo 2^{k})
 - ACKs (RRs) are numbered: 0, 1, 2, ..., 2^{k-1} , 0, 1, ... (modulo 2^{k})
 - A is allowed to transmit up to W frames without waiting for an ACK
 - B can receive up to W consecutive frames
 - ACK J (or RR J), where 0<=J<= 2^k-1, sent by B means B is have received frames up to frame J-1 and is ready to receive frame J
 - B can also send RNR J: B have received all frames up to J-1 and is not ready to receive any more
- Window size, W can be less or equal to 2^k-1

9/23/2004 Dr. Ashraf S. Hasan Mahmoud

Go-Back-N ARQ

- Based on the sliding-window flow control procedure
- If the ith frame is lost or deemed lost (i.e. i+1st is received before the ith frame), the ith frame and all subsequent frames are retransmitted

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

73

Selective-Reject ARQ

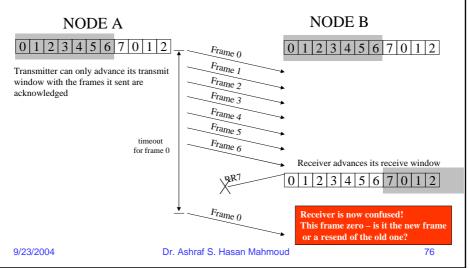
- In contrast to Go-Back-N, the only frames retransmitted are those that receive –ve ACK (called SREJ) or those that time out
- More efficient:
 - Rx-er must have large enough buffer to save post-SREJ frames
 - Buffer manipulation re-insertion of out-of-order frames

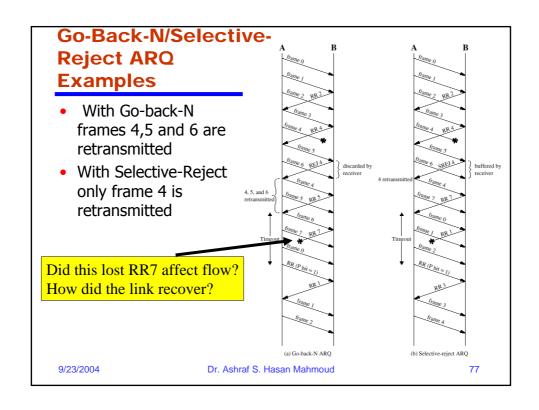
9/23/2004

Dr. Ashraf S. Hasan Mahmoud

Window Size for Selective-Reject ARQ - Why?

- Window size: should less or equal to half range of sequence numbers
 - For n-bit sequence numbers, Window size is $\leq 2^{n-1}$ (remember sequence numbers range from 0,1, ..., $2^{n}-1$)
- Why? See next example


9/23/2004

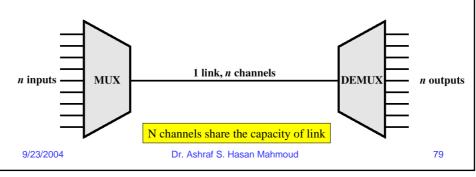

Dr. Ashraf S. Hasan Mahmoud

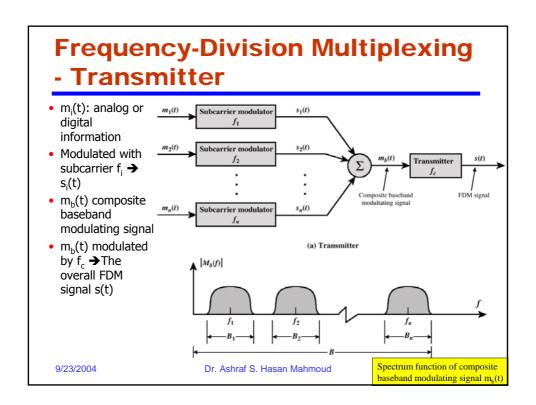
75

Window Size for Selective-Reject ARQ - Why? (2)

• Example: Consider 3-bit sequence number and window size of 7

Switching

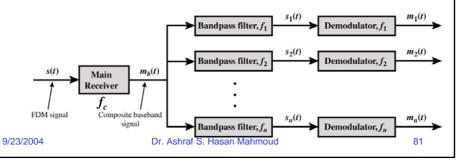

- Circuit Switching
 - Call Setup
 - Data Exchange
 - Call Termination
- Store-and-forward (Packet Switching)
 - Virtual Circuit
 - Datagram

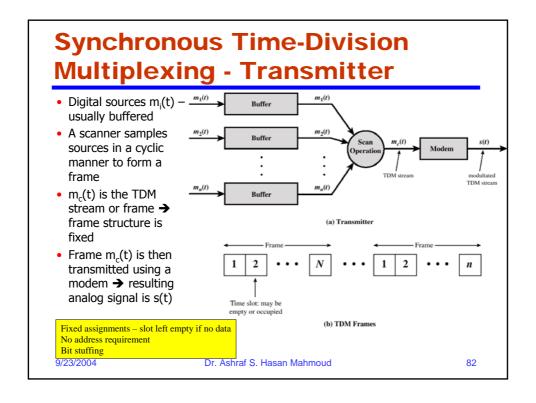

9/23/2004

Dr. Ashraf S. Hasan Mahmoud

What is MULTIPLEXING?

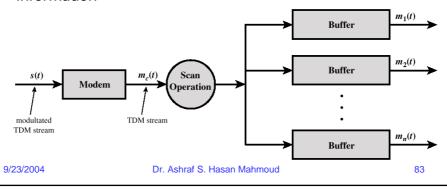
- A generic term used where more than one application or connection share the capacity of one link
- Why?
 - To achieve better utilization of resources

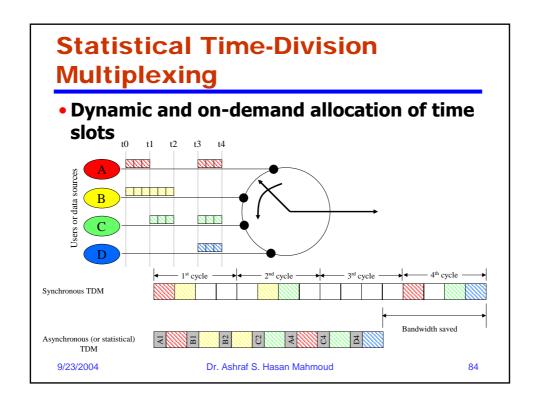




Frequency-Division Multiplexing

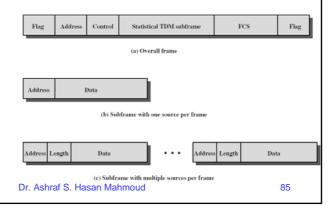
- Receiver


- m_b(t) is retrieved by demodulating the FDM signal s(t) using carrier f_c
- $m_b(t)$ is passed through a parallel bank of bandpass filters centered around f_i
- The output of the ith filter is the ith signal s_i(t)
- m_i(t) is retrieved by demodulating s_i(t) using subcarrier f_i



Synchronous Time-Division Multiplexing - Receiver

- TDM signal s(t) is demodulated → result is TDM digital frame m_c(t)
- m_c(t) is then scanned into n parallel buffers;
- \bullet The i^{th} buffer correspond to the original $m_i(t)$ digital information



Statistical Time-Division Multiplexing Frame Format


- Clearly, the aim of statistical TDM is increase efficiency by not sending empty slots
- But it requires overhead info to work:
 - Address field
 - Length field

9/23/2004

Statistical Time-Division
Multiplexing - Modeling

- Data items (bits, bytes, etc) are generated at any time source may be intermittent (bursty) not constant
- R b/s is the peak rate for single source
 - αR b/s is the average rate for single source ($0 \le a \le 1$)
- The effective multiplexing line rate is M b/s
- Each data item requires T_s sec to be served or tx-ed
- Data items may accumulate in buffer before server is able to transmit them → Queueing delay

