KING FAHD UNIVERSITY OF PETROLEUM \& MINERALS COLLEGE OF COMPUTER SCIENCES \& ENGINEERING

COMPUTER ENGINEERING DEPARTMENT

COE 541 - Local and Metropolitan Area Networks
Assignment 2 - Due Nov 2 ${ }^{\text {nd }}, 2004$ in class

Problem 1:

A ternary communication channel is shown in figure. Suppose that the input symbols $0,1,2$ occur with probability $1 / 2,1 / 4$, and $1 / 4$, respectively.
a) Find the probability of the output symbols.
b) Suppose a 1 is observed as an output. What is the probability that the input was $0,1,2$? (Hint: what is required is P (input $=i /$ output $=1$) for $i=0,1,2$)

Bonus: 30% - if the channel is modeled the analytical is result is matched to simulation results.

Problem 2:

Let $G_{N}(z)$ be the probability generating function for the non-negative integer valued random variable N. Prove that the variance of N is given by $\operatorname{Var}[N]=G^{\prime \prime}{ }_{N}(1)+G_{N}^{\prime}(1)-\left[G_{N}^{\prime}(1)\right]^{2}$.

Problem 3:

Let N be a binomial random variable with parameters n and p, i.e. the pmf for N is given by

$$
p_{k}=P(N=k)=\binom{n}{k} p^{k}(1-p)^{n-k} \quad k=0,1, \ldots, n
$$

Fine the expression for p_{k} as n approaches infinity and p approaches zero such that $\alpha=n p$ remains fixed.
(Hint: Limit of $(1-x / n)^{n}=\mathrm{e}^{-x}$ as n approaches infinity).

Problem 4:

Suppose that a queueing system is empty at time $t=0$, and let the arrival times of the first six customers be $1,3,4,7,8$, and let their respective service times be $3.5,4,2,1,1.5$. Tabulate the arrival of $\mathrm{i}^{\text {th }}$ customer $\left(A_{i}\right)$, service duration of $\mathrm{i}^{\text {th }}$ customer $\left(\tau_{i}\right)$, departure time of $\mathrm{i}^{\text {th }}$ customer $\left(D_{i}\right)$, waiting time of $\mathrm{i}^{\text {th }}$ customer (W_{i}), total delay time of $\mathrm{i}^{\text {th }}$ customer $\left(T_{i}\right)$ for $i=$ $1,2,3,4,5$; Sketch $N(t)$ versus t; and check Little's formula by computer $\langle N\rangle_{t},\langle\lambda\rangle_{t}$, and $\langle T\rangle_{t}$ for each of the following three service disciplines:
a) First-come-first-served
b) Last-come-first served
c) Shortest-job first

Bonus: 20% for each of the parts a, b, and c (i.e. 60% in total) if the results are produced using code. Note the code has to be correct for any arrival/service sequence and not only for this particular problem.

