King Fahd University of
 Petroleum \& Minerals
 Computer Engineering Dept

COE 543 - Mobile and Wireless
Networks
Term 032
Dr. Ashraf S. Hasan Mahmoud
Rm 22-148-3
Ext. 1724
Email: ashraf@ccse.kfupm.edu.sa

Lecture Contents

1. Traffic Engineering - Erlang C and Erlang B models

Performance of Fixed-Assignment Access Methods

- FDMA/TDMA provide a hard capacity limit (number of channels)
- FDMA - maximum number of carriers per cell
- TDMA - maximum number of slots per frame X number of carriers per cell
- CDMA-based also has a hard capacity limit dictated by the number of Walsh codes for example, but usually practical capacity is lower
- Soft-capacity figure: Near the capacity boundary, the addition of one extra user degrades the link quality for all
- Call admission control mechanism attempt to limit maximum number of ongoing calls before link quality degrades for all
- If you operate a maximum no of channels, then call blocking and call delay are the two important measures!

Erlang-B and Erlang-C Models

- More details to be provided in COE560
- Model designed to predict blocking probability (Erlang-B) and average call delay (Erlang-C) for a given number of channels and traffic intensity
- Valid for voice and traffic models conforming to the basic assumption (usually not applicable to data)
- Assumptions, Terminology and Parameters:
- Channels $\leftrightarrow \rightarrow$ Servers: c servers
- Users $\leftarrow \rightarrow$ Calls
- Calls arrive according to a Poisson process with rate $=\lambda$
- Inter-call arrival is an exponentially distributed r.v. with mean $1 / \lambda$
- Call duration is exponentially distributed r.v. with mean $=1 / \mu$
- Traffic intensity, $\rho=\lambda / \mu$

Erlang-B (M/M/c/c) Model - Call

 Blocking

- As was shown earlier - review previous notes, the call blocking probability is given by

$$
B(c, \rho)=\frac{\rho^{c} / c!}{\sum_{i=0}^{c} \rho^{i} / i!}
$$

- $\quad \rho$ - is referred to as the offered load, while $\rho X\left[1-B\left(c_{,} \rho\right)\right]$ is referred to as the carried load
- Note in this model - calls arriving while there are c calls are blocked - no buffering is employed

Erlang-C (M/M/c) Model - Call Delay

- The probability that an arriving call having to wait is given by

$$
\operatorname{Pr}(\text { delay }>0)=\frac{\rho^{c}}{\rho^{c}+c!\left(1-\frac{\rho}{c}\right) \sum_{k=0}^{c-1} \frac{\rho^{k}}{k!}}
$$

- The average delay is given by

$$
D=\operatorname{Pr}(\text { delay }>0) \times \frac{1}{\mu(c-\rho)}
$$

- The probability of the delay exceeding t time units is given by
$\operatorname{Pr}($ delay $>t)=\operatorname{Pr}($ delay $>0) e^{-(N-\rho) \mu t}$

Examples

- An IS-136 cellular provider owns 50 cell sites and 19 traffic carriers per carrier per cell each with bandwidth of 30 kHz .
Assuming each user makes three calls per hour and the average holding time per call is 5 minutes. Determine the total number of subscribers that the service provider can support with a blocking rate less than 2\%
- Solution:
c $=19 \times 3=57$ per cell
$B(57, \rho)=0.02 \rightarrow \rho=45$ Erlangs per cell
$(\lambda / \mu)_{\text {sub }}=3 / 60 * 5=0.25$ Erlangs per sub

Note that $\begin{aligned} \rho_{\text {all_subs }} & =(\lambda / \mu)_{\text {all subs }} \\ & =\lambda_{\text {all subs }} / \mu\end{aligned}$
whereas, $\rho_{\text {sub }}=(\lambda / \mu)_{\text {sub }}$
$=\lambda_{\text {sub }} / \mu$
$\lambda_{\text {all_subs }}=$ no of subs $X \lambda_{\text {sub }}$

Number of subs = total traffic / traffic per user

$$
\begin{aligned}
& =45 / 0.25 \\
& =180 \text { per cell }
\end{aligned}
$$

Number of subs for all sites $=180 \times 50=8,000$ subs

Background Slides

Queuing Model

- Consider the following system:

$$
A(t) \quad N(t)=A(t)-D(t) \quad D(t)
$$

$$
\mathrm{T}_{\mathrm{i}}=\mathrm{D}_{\mathrm{i}}-\mathrm{S}_{\mathrm{i}}
$$

$\mathrm{A}(\mathrm{t})$ - number of arrivals in $(0, \mathrm{t}]$
$D(t)$ - number of departures in $(0, t]$
$\mathrm{N}(\mathrm{t})$ - number of customers in system in $(0, \mathrm{t}]$
T_{i} - duration of time spent in system for ith customer
3/15/2004
Dr. Ashraf S. Hasan Mahmoud

Number of Customers in System

- Blue curve:

A(t)

- Red curve: $\mathbf{D}(\mathrm{t})$
- Total time spent in the system for all customers = area in between two curves

Little's Formula - cont'd

- Little's formula:

$$
E[N]=\lambda E[T]
$$

- Which relates the average arrival rate (λ), the average number of customers in the system ($E[N]$), and the average time spent in the system (E[T])
- Holds for many service disciplines and for systems with arbitrary number of servers. It holds for many interpretations of the system as well

Example 1:

- Problem: Let $\mathbf{N s}(\mathbf{t})$ be the number of customers being served at time t, and let τ denote the service time. If we designate the set of servers to be the "system"m then Little's formula becomes:

$$
\mathrm{E}[\mathbf{N s}]=\boldsymbol{\lambda} \mathbf{E}[\tau]
$$

Where $\mathrm{E}[\mathrm{Ns}]$ is the average number of busy servers for a system in the steady state.

Example 1: cont'd

Note: for a single server $\mathrm{Ns}(\mathrm{t})$ can be either $\mathbf{0}$ or $\mathbf{1} \rightarrow \mathrm{E}[\mathrm{Ns}]$ represents the portion of time the server is busy. If $p_{0}=$ $\operatorname{Prob}[\operatorname{Ns}(t)=0]$, then we have

$$
\begin{aligned}
1-\mathbf{p}_{0} & =\mathrm{E}[\mathrm{Ns}]=\lambda \mathrm{E}[\tau], \mathrm{Or} \\
\mathbf{p}_{0} & =\mathbf{1}-\boldsymbol{\lambda}[\tau]
\end{aligned}
$$

The quantity $\boldsymbol{\lambda E}[\tau]$ is defined as the utilization for a single server. Usually, it is given the symbol ρ

$$
\rho=\boldsymbol{\lambda}[[\tau]
$$

For a c-server system, we define the utilization (the fraction of busy servers) to be

$$
\rho=\lambda \mathrm{E}[\tau] / \mathbf{c}
$$

Multi-Server Systems: M/M/c

- The transition rate diagram for a multiserver $M / M / c$ queue is as follows:
- Departure rate $=\mathbf{k} \mu$ when k servers are busy

(c-1) $\mu \quad \mathrm{c} \mu$

$\mathrm{c} \mu$
$\mathrm{c} \mu$
$c \mu$

Multi-Server Systems: M/M/c cont'd

- When k servers are busy, the time until the next departure is given by:

$$
\mathbf{X}=\min \left(\tau_{1}, \tau_{2}, \ldots, \tau_{\mathbf{k}}\right)
$$

where τ_{i} are iid exponential r.v. with mean $1 / \mu$
The CDF for X is given by (refer to definition)

$$
\begin{aligned}
\operatorname{Prob}[X>\mathbf{t}] & =\operatorname{Prob}\left[\min \left(\tau_{1}, \tau_{2}, \ldots, \tau_{k}\right)>\mathbf{t}\right] \\
& =\operatorname{Prob}\left[\tau_{1}>\mathbf{t}, \tau_{2}>\mathbf{t}, \ldots, \tau_{\mathbf{k}}>\mathbf{t}\right] \\
& =\operatorname{Prob}\left[\tau_{1}>\mathbf{t}\right] \operatorname{Prob}\left[\tau_{2}>\mathbf{t}\right] \ldots \operatorname{Prob}\left[\tau_{\mathbf{k}}>\mathbf{t}\right] \\
& =\mathbf{e}^{-\mu t} \mathbf{e}^{-\mu t} \ldots \mathbf{e}^{-\mu t} \\
& =\mathbf{e}^{-k \mu t}
\end{aligned}
$$

Therefore, the time till the next departure (X) is an exponentially distributed r.v. with mean $\mathbf{1 / (k \mu)}$

Multi-Server Systems: M/M/c cont'd

- Writing the global balance equations:
$\boldsymbol{\lambda}$
$\mathrm{j} \mu \quad \mathrm{p}_{\mathrm{j}}=\lambda \mathrm{p}_{\mathrm{j}-1} \quad$ for $\mathrm{j}=1,2, \ldots, \mathrm{c}$
$\mathrm{c} \mu \quad \mathrm{p}_{\mathrm{j}}=\lambda \mathrm{p}_{\mathrm{j}-1}$ for $\mathrm{j}=\mathrm{c}, \mathrm{c}+\mathbf{1}, \ldots$
\rightarrow

$$
\begin{aligned}
& p_{j}=a^{j} / j!p_{0} \quad(\text { for } j=1,2, \ldots, c) \text { and } \\
& p_{j}=\rho^{j-c} / c!a^{c} p_{0}(\text { for } j=c, c+1, \ldots)
\end{aligned}
$$

where $a=\lambda / \mu$ and $\rho=a / c$

Multi-Server Systems: M/M/c cont'd

- To find p_{0}, we resort to the fact that $\Sigma p_{j}=1$
$\Rightarrow \quad p_{0}=\left\{\sum_{j=0}^{c-1} \frac{a^{j}}{j!}+\frac{a^{c}}{c!} \frac{1}{1-\rho}\right\}^{-1}$

The probability that an arriving customer has to wait
$\operatorname{Prob}[W>0]=\operatorname{Prob}[N \geq c]$

$$
\begin{aligned}
& =\mathbf{p}_{\mathbf{c}}+\mathbf{p}_{\mathbf{c}+1}+\mathbf{p}_{\mathrm{c}+2}+\ldots \\
& =\mathbf{p}_{\mathrm{c}} /(1-\rho)
\end{aligned}
$$

Multi-Server Systems: M/M/c cont'd

- The mean number of customers in queue (waiting):

$$
\begin{aligned}
E\left[N_{q}\right] & =\sum_{j=c}^{\infty}(j-c) \operatorname{Pr}[N(t)=j] \\
& =\sum_{j=c}^{\infty}(j-c) \rho^{j-c} p_{c} \\
& =\frac{\rho}{(1-\rho)^{2}} p_{c} \\
& =\frac{\rho}{1-\rho} \operatorname{Pr}[W>0]
\end{aligned}
$$

Multi-Server Systems: M/M/c cont'd

- The mean waiting time in queue:

$$
E[W]=E\left[N_{q}\right] / \lambda
$$

- The mean total delay in system:

$$
\begin{aligned}
E[T] & =E[W]+E[\tau] \\
& =E[W]+1 / \mu
\end{aligned}
$$

- The mean number of customers in system:

$$
\begin{aligned}
E[N] & =\lambda E[T] \\
& =E\left[N_{q}\right]+a
\end{aligned}
$$

Example:

- A company has a system with four private telephone lines connecting two of its sites. Suppose that requests for these lines arrive according to a Poisson process at rate of one call every 2 minutes, and suppose that call durations are exponentially distributed with mean 4 minutes. When all lines are busy, the system delays (i.e. queues) call requests until a line becomes available. Find the probability of having to wait for a line.

Example: cont'd

- Solution:

$$
\begin{aligned}
\lambda=1 / 2,1 / \mu=4, c=4 & \rightarrow a=\lambda / \mu=2 \\
& \rightarrow \rho=a / c=1 / 2
\end{aligned}
$$

$p_{0}=\left\{1+2+2^{2} / 2!+2^{3} / 3!+2^{4} / 4!(1 /(1-\rho))\right\}^{-1}$
$=3 / 23$
$p_{c}=\mathbf{a} / \mathrm{c}!\mathrm{pO}$
$=2^{4} / 4!\times 3 / 23$
$\operatorname{Prob}[W>0]=p_{c} /(1-r)$

$$
\begin{aligned}
& =2^{4} / 4!\times 3 / 23 \times 1 /(1-1 / 2) \\
& =4 / 23 \\
& \approx 0.17
\end{aligned}
$$

Multi-Server Systems: M/M/c/c

- The transition rate diagram for a multiserver with no waiting room (M/M/c/c) queue is as follows:
- Departure rate $=\mathbf{k} \mu$ when \mathbf{k} servers are busy

(c-1) $\mu \quad \mathrm{c} \mu$

PMF for Number of Customers for M/M/c/c

- Writing the global balance equations, one can show:

$$
p_{j}=a^{j} / j!p_{0} \quad(f o r j=0,1, \ldots, c)
$$

where $\mathbf{a}=\lambda / \mu$ (the offered load)

- To find p_{0}, we resort to the fact that $\boldsymbol{\Sigma} \mathbf{p}_{j}$ = 1

$$
p_{0}=\left\{\sum_{j=0}^{c} \frac{a^{j}}{j!}\right\}^{-1}
$$

Erlang-B Formula

- Erlang-B formula is defined as the probability that all servers are busy:

$$
\begin{aligned}
\operatorname{Pr}[N=c] & =p_{c} \\
& =\frac{a_{c} / j!}{1+a+a^{2} / 2!+\ldots+a^{c} / c!}
\end{aligned}
$$

Expected Number of customers in M/M/c/c

- The actual arrival rate into the system:

$$
\lambda_{a}=\lambda\left(1-p_{c}\right)
$$

- Average total delay figure:

$$
E[T]=E[\tau]
$$

- Average number of customers:

$$
E[N]=\lambda_{a} E[\tau]
$$

