King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 342 – Data and Computer Communications

Term 032

Dr. Ashraf S. Hasan Mahmoud

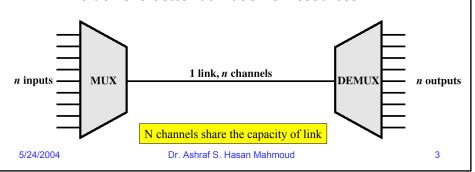
Rm 22-148

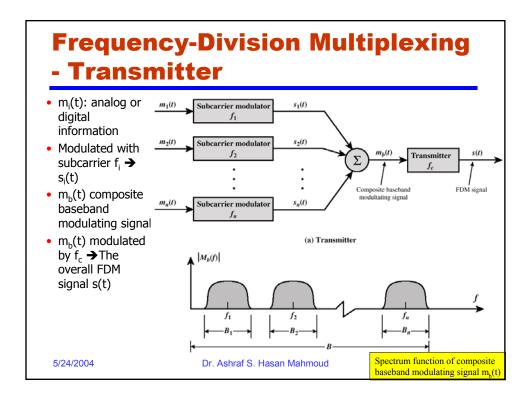
Ext. 1724

Email: ashraf@ccse.kfupm.edu.sa

5/24/2004 Dr. Ashraf S. Hasan Mahmoud

Lecture Contents

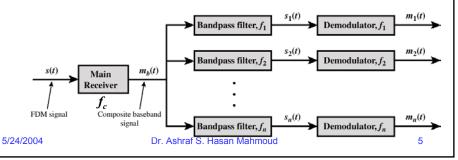

- 1. Frequency-Division Multiplexing
- 2. Synchronous Time-Division Multiplexing
- 3. Statistical Time-Division Multiplexing
- 4. DSL/ADSL Technology

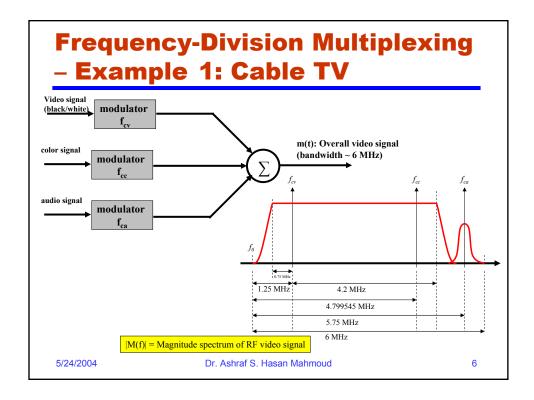

5/24/2004

Dr. Ashraf S. Hasan Mahmoud

What is MULTIPLEXING?

- A generic term used where more than one application or connection share the capacity of one link
- Why?
 - To achieve better utilization of resources





Frequency-Division Multiplexing

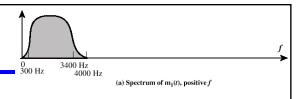
- Receiver

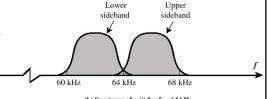
- m_b(t) is retrieved by demodulating the FDM signal s(t) using carrier f_c
- m_b(t) is passed through a parallel bank of bandpass filters
 centered around f_i
- The output of the ith filter is the ith signal s_i(t)
- m_i(t) is retrieved by demodulating s_i(t) using subcarrier f_i

Frequency-Division Multiplexing - Example 1: Cable TV - cont'd

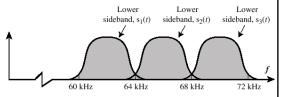
- Cable has BW ~ 500 MHz → 10s of TV channels can be carried simultaneously using FDM
- Table 8.1: Cable Television Channel Frequency Allocation (partial): 61 channels occupying bandwidth up to 450 MHz

Channel No	Band (MHz)	Channel No	Band (MHz)	Channel No	Band (MHz)
2	54-60	22	168-174	42	330-336
3	60-66	23	216-222	43	336-342
4	66-72	24	222-234	44	342-348
5	76-82	***			***
6	82-88				
7	174-180				
8	180-186				
9	186-192				
10	192-198				
11	198-204				
12	204-210				
13	210-216				
FM	88-108				
14	120-126				
15	126-132				
16					


5/24/2004


Dr. Ashraf S. Hasan Mahmoud

7


Frequency-Division Multiplexing – Example 2: Voiceband Signals

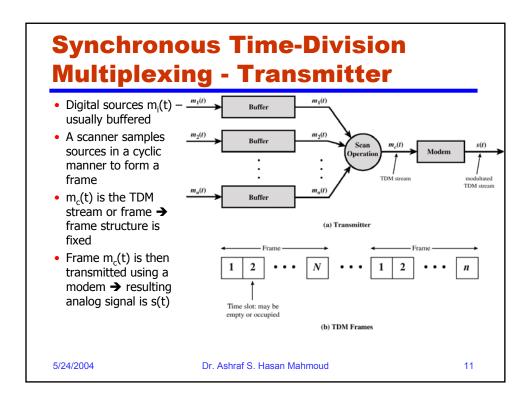
- m₁(t): voiceband signal bandwidth = 4000 Hz
- When modulated by a carrier f₁ = 64 KHz → two identical sidebands; overall bandwidth = 2X4KHz = 8 KHz
- Information of m₁(t) is preserved if one of the sidebands is eliminated (filtered out) → bandwidth of modulated signal = 4 KHz
- (c) shows spectrum for composite signal using three subcarriers

(b) Spectrum of $s_1(t)$ for $f_1 = 64$ kHz

(c) Spectrum of composite signal using subcarriers at 64 kHz, 68 kHz, and 72 kHz

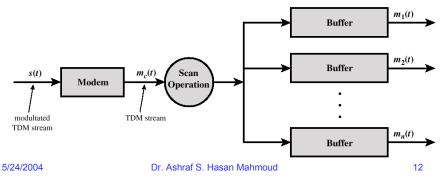
5/24/2004

Dr. Ashraf S. Hasan Mahmoud


Frequency-Division Multiplexing – Example 2: Voiceband Signals (2)

Animation of <u>FDM concept for voice calls</u>

5/24/2004


Dr. Ashraf S. Hasan Mahmoud

Synchronous Time-Division Multiplexing - Receiver

- TDM signal s(t) is demodulated → result is TDM digital frame m_c(t)
- m_c(t) is then scanned into n parallel buffers;
- \bullet The i^{th} buffer correspond to the original $m_i(t)$ digital information

Synchronous Time-Division Multiplexing

Animation of <u>Synchronous TDM concept</u>

5/24/2004 Dr. Ashraf S. Hasan Mahmoud

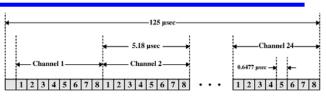
Synchronous Time-Division Multiplexing – Bit/Character Interleaving

- TDM frame: sequence of slots fixed structure NOTE: no header/error control for this frame
 - One or more slots per digital source
 - The order of the slots dictated by the scanner control
 - The slot length equals the transmitter buffer length:
 - · Bit: bit interleaving
 - Used for synchronous sources but can be used for asynchronous sources
 - Character: character-interleaving
 - Used for asynchronous sources
 - Start/stop bits removed at tx-er and re-inserted at rx-er
- Synchronous TDM: time slots are pre-assigned to sources and FIXED
 - If there is data, the slot is occupied
 - If there is no data, the slot is left unoccupied

This is a cause of inefficiency!

5/24/2004

TDM Link Control

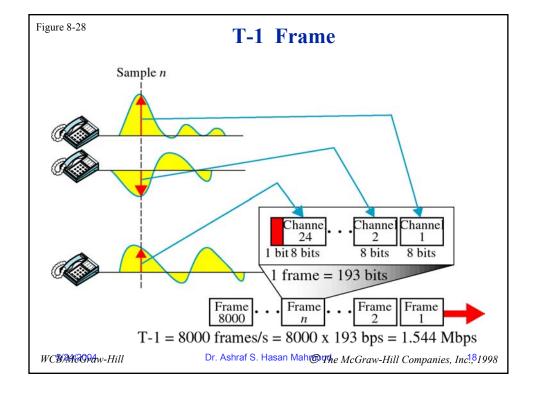

- TDM frame:
 - No header and no error detection/control these are per connection procedures
 - Frame synchronization is required to identify beginning and end of frame
 - Added-digit framing: One control bit is added to each start of frame all these bits from consecutive frame form an identifiable pattern (e.g. 1010101...)
 - These added bits for framing are inserted by system → control channel
 - Frame search mode: Rx-er parses incoming stream until it recognizes the pattern → then TDM frame is known
- Pulse stuffing:
 - · Different sources may have separate/different clocks
 - Source rates may not be related by a simple rational number
 - <u>Solution</u>: inflate lower source rates by inserting extra dummy bits or pulses to mach the locally generated clock speed

5/24/2004 Dr. Ashraf S. Hasan Mahmoud 15

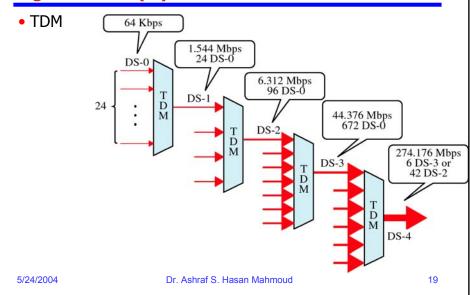
TDM – Example 1 Step1: convert analog sources to digital 2 kHz, analog 4 bit TDM PAM signal TDM PCM signal using PCM A/D • The *sampling* **theorem** determines From source 2 the no of samples/sec 4 kHz, analog 4 kHz The analog sources produce 16 sample/sec altogether 2 kHz, analog → 64 kb/s when converted to digital Note pulse stuffing is Pulse 8 kbps, digital From source 4 used to raise the 7.2 7.2 kbps, digital stuffing kb/s rate to 8 kb/s (a Pulse 8 kbps, digital TDM PCM rational fraction of 64 Scan 7.2 kbps, digital stuffing kb/s) for digital operation sources Pulse 8 kbps, digital From source 11 7.2 kbps, digital stuffing 5/24/2004 Dr. Ashraf S. Hasan Mahmoud 16

TDM – Example2: Digital Carrier Systems

- Voice call is PCM coded → 8 b/sample
- DS-0: PCM digitized voice call – R = 64 Kb/s
- Group 24 digitized voice calls into one frame as shown in figure →DS-1: 24 DS-0s
- Note channel 1 has a digitized sample from 1st call; channel 2 has a digitized sample from 2nd calls; etc.


Motor

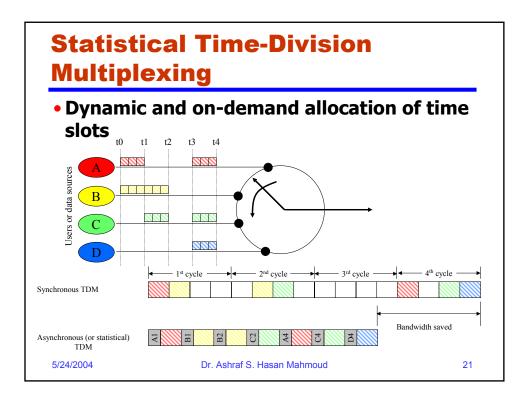
- 1. The first bit is a framing bit, used for synchronization.
- 2. Voice channels:
 - •8-bit PCM used on five of six frames.
 - •7-bit PCM used on every sixth frame; bit 8 of each channel is a signaling bit.
- 3. Data channels:
 - •Channel 24 is used for signaling only in some schemes.
 - •Bits 1-7 used for 56 kbps service
 - •Bits 2-7 used for 9.6, 4.8, and 2.4 kbps service.

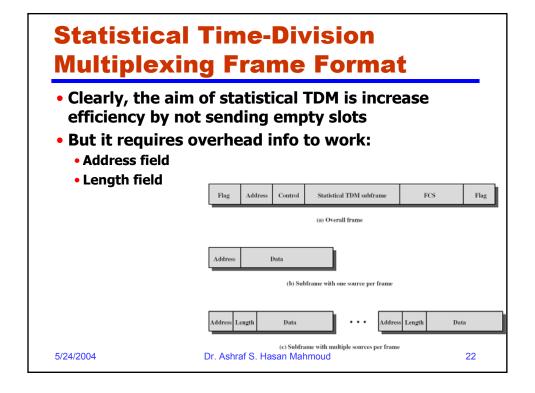

Figure 8.9 DS-1 Transmission Format

5/24/2004

Dr. Ashraf S. Hasan Mahmoud

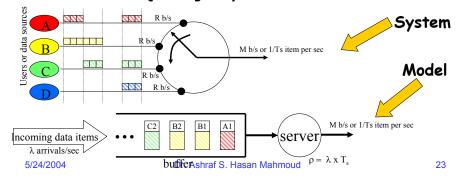
TDM – Example2: Digital Carrier Systems (2)

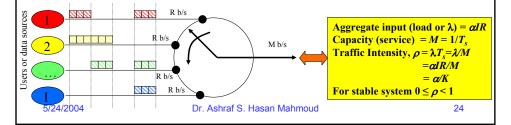



Example: Problem 8-8

 8-8: In the DS-1 format, what is the control signal data rate for each voice channel?
 Solution:

There is one control bit per channel per six frames. Each frame lasts 125 μ sec. Thus:


Data Rate =
$$1/(6 \times 125 \times 10^{-6}) = 1.33 \text{ kbps}$$


Statistical Time-Division Multiplexing – Modeling

- Data items (bits, bytes, etc) are generated at any time source may be intermittent (bursty) not constant
- R b/s is the peak rate for single source
 - αR b/s is the average rate for single source ($0 \le a \le 1$)
- The effective multiplexing line rate is M b/s
- Each data item requires T_s sec to be served or tx-ed
- Data items may accumulate in buffer before server is able to transmit them → Queueing delay

Statistical Time-Division Multiplexing - Performance

- Let I number of sources
 - R data rate for each source
 - M effective capacity of multiplexed line
 - α mean fraction of time each source is transmitting
 - K = M/(IR) ratio of multiplexed line capacity total maximum input

Statistical Time-Division **Multiplexing – Performance (2)**

- Notes:
 - K is a measure of compression achieved on the multiplexed line
 - α < K < 1:
 - **K** = 1 for synchronous TDM
 - If $K < \alpha$ (or $\rho > 1$) \rightarrow input is greater the line capacity (NOT STABLE)
 - ρ is measure of the load: for example, if M = 50kb/s and r = 0.25, then system load is ρM = 12.5 kb/s
- Queueing Model Perspective:

 λ : average number of arrivals per time unit

T_s: average time to serve an arrival

p: traffic intensity = λT_s For 5/24/2004 Dr. Ashraf S. Hasan Mahmoud

Aggregate input (load or λ) = αIR Capacity (service) = $M = 1/T_c$ Traffic Intensity, $\rho = \lambda T_s = \lambda M$ $=\alpha IR/M$ $= \alpha / K$

For stable system $0 \le \rho < 1$

Statistical Time-Division Multiplexing – Performance (3)

- (Refer to Queueing Model slide)
- Mean number of items in system (waiting & being served), N is given by:

$$\mathbf{N} = \frac{\rho^2}{\mathbf{2}(\mathbf{1} - \rho)} + \rho$$

 Mean residence time (waiting and service), T_r is equal to

$$T_r = N / \lambda$$

5/24/2004

Statistical TDM – Performance – Example

- 5 terminals are statistically multiplexed on 38.4 kb/s modem line; Each of the terminals transmits at a rate R = 9.6 kb/s 25% of the time. For each transmitted 5 bytes of user data (the data item), the asynchronous TDM frame contains 1 byte for address filed and 1 byte for length field.
- a) What is the average number of data items in the system?
- b) How many terminals we can connect to this system before the average delay exceeds 100 msec?

5/24/2004

Dr. Ashraf S. Hasan Mahmoud

27

Statistical TDM – Performance – Example - Solution

a) I = 5 terminals; R = 9.6 kb/s; α = 0.25;
 M = 38.4 kb/s - note for every 5 bytes of data the link transmits 7 bytes → Effective M = (5/7) * 38.4 = 27.4 kb/s

 $\lambda = \alpha IR = 12$ kb/s, and $\rho = \lambda/M = 0.4374$ N = $\rho^2/(2(1-\rho) + \rho = 0.6076$ data item T_r = N/ $\lambda = 0.051$ second

b) What is maximum I such that $T_r \le 0.1$ sec using the above values for R, α_r and Effective M and allowing I to vary from 5, 6, ...,11*

For I = 8, $T_r = 0.079$ sec For I = 9, $T_r = 0.104$ sec

Therefore the maximum no of terminal to connect without making T_r exceed 100 msec is I = 8

*note that 11 is the maximum possible value for I regardless of T_r – this is because ρ should always remain ≤ 1 , but $\rho = \alpha IR/M \leq 1$; which means $I \leq M/(\alpha R) = 11.4$; therefore the maximum number of terminals without consideration for T_r can be 11

Statistical Time-Division Multiplexing

Animation of Asynchronous TDM concept

5/24/2004

Dr. Ashraf S. Hasan Mahmoud

29

Example: Problem 8-13

 8-13: Ten 9.6 kb/s lines are to be multiplexed using TDM. Ignoring overhead bits, what is the total capacity required for synchronous TDM? Assuming that we wish to limit the average multiplexed line utilization to 0.8, and assuming that each line is busy 50% of the time, what is the capacity required for statistical TDM?

5/24/2004

Example: Problem 8-13 - solution

```
Synchronous TDM: M = IR; R = 9.6kb/s, I = 10 \rightarrow M = ? M = 9600 \text{ bps} \times 10 = 96 \text{ kbps}
```

Statistical TDM:

```
Remember that \rho = \alpha IR/M;

\rho = 0.8, \alpha = 0.5, R = 9.6kb/s, I = 10 \Rightarrow M = ?

M = 9600 \text{ bps} \times 10 \times 0.5/0.8 = 60 \text{ kbps}
```

5/24/2004

Dr. Ashraf S. Hasan Mahmoud

31

Asymmetric Digital Subscriber Line (ADSL)

- References:
 - Chapter 8 section 4
 - http://whatis.techtarget.com/definition/0,28 9893,sid9 gci213915,00.html#dslsumry
 - DSL forum at:

http://www.dslforum.org/about_dsl.htm?pag
e=aboutdsl/tech_info.html

5/24/2004

Dr. Ashraf S. Hasan Mahmoud

Digital Subscriber Line (DSL) Technology

- Provides access to wide area public digital network – or the internet
- Uses the existing telephone wire at home
 - The wire originally deployed to carry voice (up to 4 kHz) signal
 - The wire has a bandwidth ~ MHz or more depending on distance
- DSL modem a modem that provides high-speed digital transmission over ordinary telephone wire
- xDSL: refers to the different flavors of the DSL technology: ADSL, HDSL, VDSL, and RADSL

5/24/2004 Dr. Ashraf S. Hasan Mahmoud

Digital Subscriber Line (DSL) Technology - Evolution VDSL ~1998 (51.84 Mb/s) ADSL ~1994 (6.1 Mb/s)HDSL ~1990 (1.544 Mb/s) ISDN ~1986 (64-192 kb/s) Frequency ~ 0.1 ~ 0.5 ~ 1.0 ~ 10+ MHz

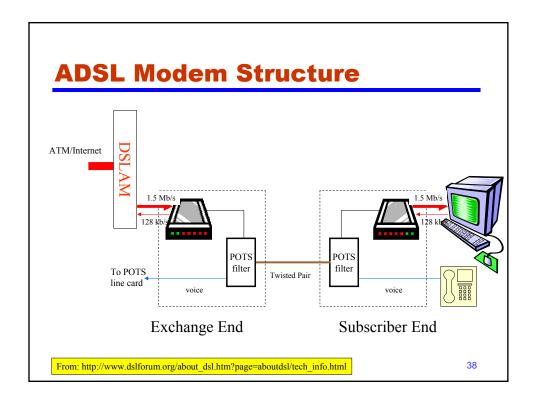
Digital Subscriber Line (DSL) Technology

- Connects home/small businesses to the central office
- Provides up to 8.448 Mb/s on downlink motion video (on demand) is possible
- Typical ADSL bit rates:
 - Downlink 512 kb/s ~ 1.544 Mb/s
 - Uplink 128 kb/s

5/24/2004

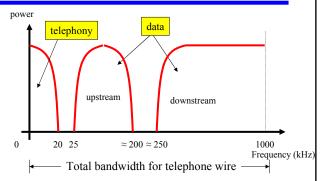
Dr. Ashraf S. Hasan Mahmoud

35


Asymmetric Digital Subscriber Line (ADSL) – cont'd

- Asymmetric bit rate provided on downlink (from central office to subscriber) is greater than bit rate provided on uplink (from subscriber to central office)
 - Matches our use of the internet more downloads compared to uploads
- ADSL uses FDM or Echo Canceling on the telephone wire

5/24/2004


Dr. Ashraf S. Hasan Mahmoud

ADSL and **FDM**

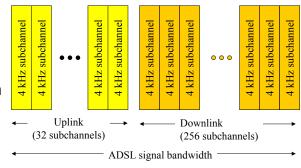
- Lower range 0-4 kHzvoice
- Data uses 25 kHz and
 - Uplink: 25 to ~200 kHz
 - Downlink: ~250 to 1000 kHz
- FDM is used to multiplex voice, uplink, and downlink signals

- FDM is used within the uplink band and downlink bands to multiplex multiple bit streams
- Echo cancellation: in this case the uplink and downlink bands overlap logic at both ends is required to separate the two signals (variable uplink bandwidth – avoiding using the higher bandwidth of the wire)

5/24/2004 Dr. Ashraf S. Hasan Mahmoud

Discrete Multitone

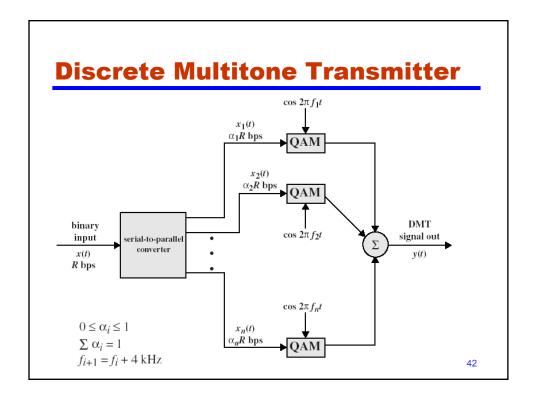
- The modulation technique used for ADSL
- The available transmission bandwidth (upstream or downstream) is divided into 4-kHz subchannels
 - Each has it own subcarrier or TONE (therefore the name multitone!)


5/24/2004

Dr. Ashraf S. Hasan Mahmoud

40

Discrete Multitone - Subchannels


- Total usable bandwidth is divided into 4 kHz subchannels
- Each channel can send up to 64 kb/s
- During modem initialization – modem sends test signals on each of these subchannels

• Ith Subchannel is assigned a rate equal to α_i X 60 kb/s where $0 \le \alpha_i \le 1$

5/24/2004

Dr. Ashraf S. Hasan Mahmoud

DSLAM (Digital Subscriber Line Access Multiplexer)

 DSLAMs sit in a carrier's central office between a subscriber line and the subscriber's service-provider network. They separate voice and DSL traffic and then control and route DSL traffic between the subscriber and the service provider.

5/24/2004

Dr. Ashraf S. Hasan Mahmoud

43

Problems of INTEREST

- Problem List: 8-9, 8-10, 8-11, 8-12, 8-13, and 8-17
- Example on slide 25

5/24/2004

Dr. Ashraf S. Hasan Mahmoud