

Error Detection – cont'd				
Hence, for a frame of F bits,				
Prob [frame is	correct] = Prob [0 bits in error] = $(1-BER)^{F}$			
Prob [frame is erro	oneous] = Prob[1 OR MORE bits in error] = $1 - Prob[0 bits in error]$ = $1 - (1-BER)^{F}$			
Prob [frame is erro	oneous] = Prob [1 bit in error] + Prob[2 bits in error] + + Prob[F bits in error] = 1 - Prob[0 bits in error] = 1 - (1-BER) ^F			
5/10/2004	Dr. Ashraf S. Hasan Mahmoud	18		

CRC Calculation (2)		
 <u>Design</u>: frame T such that it divides the pattern P with no remainder? <u>Solution</u>: Since the first component of T, M, is the data part, it is required to find F (or the FCS) such that T divides P with no remainder 		
Using the polynomial equivalent: $T(x) = X^nM(x) + F(x)$ One can show that $F(x) =$ remainder of $x^nM(x) / P(x)$ i.e if $x^nM(x) / P(x)$ is equal to $Q(x) + R(x)/P(x)$, then $F(X)$ is set to be equal to $R(X)$.		
Note that: Polynomial of degree k+n = polynomial of degree k + remainder polynomial of degree n-1		
Polynomial of degree n 5/10/2004 Dr. Ashraf S. Hasan Mahmoud	24	

E	rror Control	
•	Types of Errors:	
	Lost frame	
	Damaged frame	
•	Error control Techniques (Automatic Repeat Reques ARQ):	t -
	 Error detection – discussed previously 	
	+ve ACK	
	Retransmission after timeout	
	-ve ACK and retransmission	
٠	ARQ Procedures: convert an unreliable data link into	o a
	reliable one.	
	Stop-and-wait	
	Go-back-N	
	Selective-reject	
5/10	0/2004 Dr. Ashraf S. Hasan Mahmoud	38

HDLC – Frame Structure - Address Field				
1 2 3 4 5 6 7 8 9 10 0 0	1 12 13 14 15 16 8n			
Extended Address Field	1			
 Address field identifies the secondary station that transmitted or is to receive frame Not used (but included for uniformity) for point-to-point links Extendable – by prior arrangement Address = 11111111 (single octet) used for broadcasting; i.e. received by all secondary stations 				
5/10/2004 Dr. /	shraf S. Hasan Mahmoud 51			

