King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 342 – Data and Computer Communications

Term 032

Dr. Ashraf S. Hasan Mahmoud

Rm 22-148-3

Ext. 1724

Email: ashraf@ccse.kfupm.edu.sa

2/14/2004 Dr. Ashraf S. Hasan Mahmoud

1

Lecture Contents

- Communication Model:
 - a. Main blocks and functionality
 - b. Communication Tasks
- 2. Data Communications
- 3. Data Communication Networking:
 - a. Wide area networks
 - i. Circuit switching
 - ii. Message switching
 - iii. Packet switching
 - iv. ATM
 - v. ISDN and Broadband ISDN
 - b. Local area networks

2/14/2004

Dr. Ashraf S. Hasan Mahmoud

Lecture Contents- cont'd

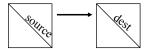
- 4. Protocols and Protocol Architecture (very brief
 - detailed in next set of slides)
 - a. Key elements of protocol
- Protocol Standardization and Standards Organizations

2/14/2004

Dr. Ashraf S. Hasan Mahmoud

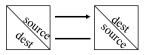
3

General Communications Model - Blocks and Functionality

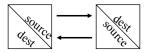

- **Source**: Generates signal or data to be communicated
- Transmitter: Transforms and/or encodes information to be communicated
 - E.g. modulation data encoding
- Transmission System/Medium: Transmission line, space, interconnected switching nodes, etc
- Receiver: accepts message and undoes transmitter procedures
 - E.g. demodulation data decoding
- Destination: receives raw signal or data

2/14/2004

Dr. Ashraf S. Hasan Mahmoud


Communications Modes (Duplexity)

- **Modes:**
 - Simplex: one way e.g. TV/Radio signals
 - Half Duplex: one direction at a time walky talky and CB
 - Full Duplex: both directions e.g. telephone
- Due to device and/or communication medium limitations

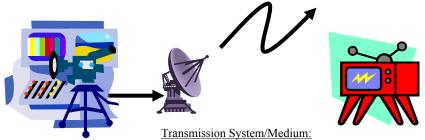

Simplex:

- only one path exists

Half duplex:

- two paths exist
- one direction active at one time

Full duplex:


- two paths exist
- two directions may be active at one time

2/14/2004

Dr. Ashraf S. Hasan Mahmoud

5

Communications Model – Example 1 - Analog (Simplex)

Source:

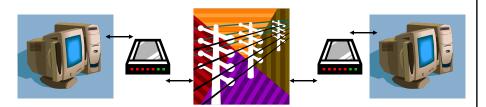
-Scene/audio to be transmitted

- Overall signal broadcast
- Maybe relayed through intermediate satellite/ground station

-Scene/audio

Destination:

Receiver:


- Receives electromagnetic signal
- Demodulates received signal and extracts original electrical signal
- generates original scene/audio information

Transmitter:

- Converts info to electrical signals
- Electrical signals modulate carrier
- Amplification and transmission using

antennas 2/14/2004 Dr. Ashraf S. Hasan Mahmoud

Communications Model – Example 2 (Full Duplex)

Transmission System/Medium:

- Public switched telephony network

Receiver:

Source.

- User data to be exchanged

Transmitter (Modem):

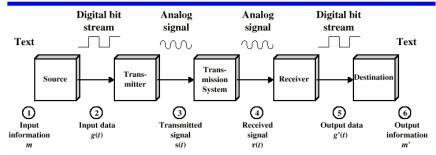
- Encodes data
- Encoded data modulates carrier
- Amplification and transmission using phone line

- User data

- Receives electrical signal
- Demodulates received signal and extracts original encoded data

Destination:

- data is decoded to obtain original data


2/14/2004 Dr. Ashraf S. Hasan Mahmoud

Communications Tasks

Task Name	Comments
Transmission System Utilization	Maximize usage of medium capacity through multiplexing, efficient/advanced comm techniques, etc.
Interfacing	The transport of signal from device to medium
Signal Generation	Creation of signal that is matched to the transmission medium and has original data
Synchronization	Orchestrated and coordinated operation of both transmitter and receiver
Error Detection and Correction	When errors can not be tolerated, a mechanism is required to detect and may be correct errors
Recovery	Reset of communication path
Addressing and Routing	For shared media – need to redirect comm using destination address
Network Management	Configuration – monitoring – signalling (typically not part of user comm)
Message formatting	The form of messages to be transmitted
Exchange Management	Coordination and cooperation of two communicating ends during session
Security	Encryption/Decryption of messages

2/14/2004 Dr. Ashraf S. Hasan Mahmoud

Data Communications

Characteristics:

- May involve buffering and/or encoding of digital data (chapter 5)
- Modulated signal s(t) matched to media (chapter 3/4)
- Transmission impairments: noise, distortion, etc (section 3.3)
- Ideally received info m' should be identical to original input info m (chapter 7)
- If not, error correction may help restore m (chapter 7)
- Else, retransmission is required (chapter 7)

2/14/2004

Dr. Ashraf S. Hasan Mahmoud

9

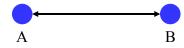
Data Communication Networking

• Full Connectivity of N nodes:

- Using dedicated links from each node to every other nodes number of links is N*(N-1)/2 = O(N²)
 - Expensive
 - Difficult manage and scale
 - Not reliable one path only between any two nodes
- Use a communication network to interconnect nodes
 - No dedicated links or connections for every path
 - · reduced number of links
 - easier to manage flexibility and scalability

Logical Topology Classification and **Requirements**

- Logical Topology for Networks:
 - Point-to-Point,
 - Multi-access links,
 - Internetworks
- Logical topology point of view
- May differ from physical implementation

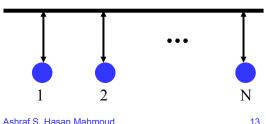

2/14/2004

Dr. Ashraf S. Hasan Mahmoud

11

Logical Topology Classification and **Requirements** – cont'd

- Point-to-Point:
 - No addressing is required
 - Medium: cables, air (wireless), fiber, etc.

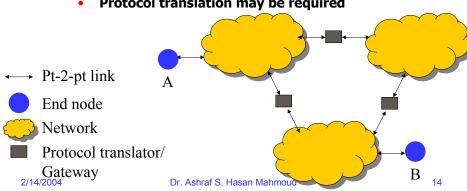


2/14/2004

Dr. Ashraf S. Hasan Mahmoud

Logical Topology Classification and Requirements - cont'd

- Multi-access links:
 - Addressing is REQUIRED
 - Medium: cables, air (wireless), fiber, etc.
 - Media Access Control is a main function
 - Bus arbitration and access coordination to resolve contention



2/14/2004

Dr. Ashraf S. Hasan Mahmoud

Logical Topology Classification and Requirements - cont'd

- Internetworks:
 - Addressing is REQUIRED
 - Routing is a main function:
 - Selection of optimal path
 - Protocol translation may be required

Logical Topology Classification and **Requirements** – cont'd

- Local Area Network (LAN):
 - Collection of nodes connected using point-topoint, or multi-access links
 - Example: Ethernet, token bus, FDDI, etc
- Wide Area Network (WAN):
 - Collection of LANs connected using protocol translators or gateways
 - Internetwork

2/14/2004

Dr. Ashraf S. Hasan Mahmoud

15

Data Communication Networks

- WANs (in more details):
 - Span a large geographical area
 - Consists of a number of interconnected switching nodes
 - Boundary v.s. Intermediate nodes:
 - Boundary:
 - May perform control, management, translation functions
 - · Pass (switch) user traffic to destination
 - Intermediate:
 - Pass (switch) traffic to destination

2/14/2004

Dr. Ashraf S. Hasan Mahmoud

Data Communication Networks – cont'd

- Switching Technologies:
 - Circuit Switching
 - Packet Switching
 - Frame Relay
 - ATM
 - ISDN and Broadband ISDN

2/14/2004

Dr. Ashraf S. Hasan Mahmoud

17

Data Communication Networks – cont'd

- Circuit Switching
 - A dedicated "physical" communication path is established between the two ends
 - Path is made of series of physical links
 - Intermediate nodes switch data or traffic from known input to know output ports with no delay
 - A communication session is usually divided into:
 - Call setup: dialup
 - Traffic exchange: conversation
 - Call termination: hang up
 - Example: public switching telephony network (PSTN)

2/14/2004

Dr. Ashraf S. Hasan Mahmoud

Data Communication Networks – cont'd

Packet Switching

- Communicated data is divided into a sequence of chunks or "packets"
- Each packet is passed from node to the next in the network along some path leading to the destination
- At each node, the entire packet is received, stored briefly, and then forwarded to the next node
- To combat errors:
 - Packets have overhead to correct/detect errors
 - Intermediate switching nodes may perform retransmission functions
- Designed for link speed around 64 kbps

2/14/2004 Dr. Ashraf S. Hasan Mahmoud

Data Communication Networks – cont'd

- Frame Relay
 - Newer technology compared to packet switching
 - Assumes more reliable transmission links and higher speeds – hence:
 - Overhead is not required
 - End nodes can detect and correct errors
 - Variable frame length
 - Up to 2 Mpbs

2/14/2004

Data Communication Networks – cont'd

- Asynchronous Transfer Mode (ATM)
 - Cell relay technology
 - Assumes even more reliable transmission links and higher speeds than frame relay
 - Negligible overhead and no error protection for payloads
 - Fixed payload sizes (48 Bytes)
 - Switching hardware extremely fast
 - Speeds up to Giga bps
 - Because of it high speed and efficiency, it can provide constant data rate connections (circuit switching) between two nodes

2/14/2004

Dr. Ashraf S. Hasan Mahmoud

21

Data Communication Networks – cont'd

- ISDN and BISDN
 - Integrated Services Digital Network
 - Voice and Data services
 - Digital to the home:
 - Bearer channel (B): 64 kbps for voice or data
 - Data channel (D): 16 or 64 kbps
 - Basic Rate Interface (BRI):
 - 2 B + 16kbps D = 144 kbps
 - Primary Rate Interface (PRI):
 - 23 B + 64 kbps D = 1536 kbps, or
 - 30 B + 64 kbps D = 1984 kbps
 - BISDN:
 - Aggregate rates in 100s of Mbps
 - ATM core

2/14/2004

Dr. Ashraf S. Hasan Mahmoud