King Fahd University of
 Petroleum \& Minerals
 Computer Engineering Dept

COE 342 - Data and Computer Communications
 Term 032
 Dr. Ashraf S. Hasan Mahmoud

Rm 22-148-3
Ext. 1724
Email: ashraf@ccse.kfupm.edu.sa

Lecture Contents

1. Fourier Analysis
a. Fourier Series Expansion
b. Fourier Transform
c. Ideal Low/band/high pass filters

Signals

- A signal is a function representing information
- Voice signal - microphone output
- Video signal - camera output
- Etc.
- Types of Signals
- Analog - continuous-value continuous-time
- Discrete - discrete-value continuous-time
- Digital - predetermined discrete levels - much easier to reproduce at receiver with no errors
- Binary - only two predetermined levels: e.g. 0 and 1

Example of Continuous-Value Continuous-time signal

- $s_{1}(t)$ and $s_{2}(t)$ are two example of analog signals

Example of Discrete-Value Continuous-time signal

- $d_{1}(t)$ and $d_{2}(t)$ are two example of discrete signals
- $d_{1}(t)$ - takes more than two levels
- $d_{2}(t)$ - takes only two levels - binary

Frequency - Bandwidth

- $\mathbf{s}_{\mathbf{2}}(\mathbf{t})$ faster than $\mathbf{s}_{\mathbf{1}}(\mathrm{t}) \rightarrow$
- $s_{2}(t)$ contains higher frequencies than those contained in $\mathrm{s}_{1}(\mathrm{t})$
- $s_{1}(t)$ and $s_{2}(t)$ contain more than one frequency
- Minimum frequency $=f_{\text {min }}$
- Maximum frequency $=f_{\text {max }}$
- Bandwidth = Range of frequencies contained in signal

$$
=\mathbf{f}_{\max }-\mathbf{f}_{\min }
$$

Applies to BOTH analog and digital signals

Frequency - Bandwidth (2)

- For our example signals, assume:
- S1(t): fmin = $\mathbf{1 0 ~ H z , ~ f m a x ~ = ~} 500 \mathrm{~Hz}$
- S2(t): fmin $=\mathbf{5 H z}$, fmax $=\mathbf{1 0 0 0} \mathbf{~ H z}$
- This means:
- $B W$ for $s_{1}(t)=500-10=490 ~ H z$
- BW for $\mathbf{s}_{\mathbf{2}}(\mathbf{t})=1000 \mathbf{- 5}=\mathbf{9 9 5} \mathbf{~ H z}$
- Note that: because $s_{2}(t)$ is "faster than" $s_{1}(t)$ it should contain frequencies higher than those in $s_{1}(t)$
- E.g. $s_{2}(t)$ contains frequencies $(500,100]$ which do not exist in $s_{1}(t)$

Frequency - Bandwidth (3)

- Consider the discrete signals $d_{1}(t)$ and $\mathrm{d}_{2}(\mathrm{t})$
- The function plots have points of infinite slope
- rate of change $=\infty \rightarrow$ frequency $=\infty$
- Therefore for signals that look like $d_{1}(t)$ and $d_{2}(t), f m a x=\infty$
- Furthermore, BW = $\quad \infty$
- Example:
- $d_{2}(t)$ contains frequencies from some minimum fmin Hz to fmax $=\infty \mathrm{Hz}$

Example of Signal BW

- Consider the human speech
- Typically fmin $\boldsymbol{\sim} \mathbf{1 0 0 H z}$
-

fmax ~ 3500 Hz

- BW of the human speech signal $=\mathbf{3 1 0 0} \mathbf{~ H z}$

Bandwidth for Systems

- For a system to respond (amplify, process, Tx, Rx, etc.) for a particular signal with all its details, the system should have an equal or greater bandwidth compared to that of the signal
- Example:
- The system required to process $s_{2}(t)$ should have a greater bandwidth than the system required to process $s_{1}(t)$

Bandwidth for Systems (2)

- Example 2: consider the human ear system
- Responds to a range of frequencies only
- $\quad \mathrm{fmin}=20 \mathrm{~Hz}$ fmax $=20,000 \mathrm{~Hz} \rightarrow \mathrm{BW}=19,980 \mathrm{~Hz}$
- It does not respond to sounds with frequencies outside this range
- Example 3: consider the copper wire
- It passes (electric) signals only between a certain fmin and a certain fmax
- The higher the quality of the wire - the wider the BW
- More on Systems BW later!

Frequency Representation

- How to represent signals and indicate their frequency content?
- The X-axis: frequency (in Hertz or Hz)
- What is the \mathbf{Y}-axis then? -the answer will be postponed!

Periodic Signals

- A periodic signal repeats itself every T seconds
- Period $\rightarrow \mathbf{T}$ seconds
- In calculus terms:
- $\mathbf{S}(\mathbf{t})$ is periodic if $\mathbf{s}(\mathbf{t})=\mathbf{s}(\mathbf{t}+\mathrm{T})$ for any $-\infty<t<\infty$
- For previous examples: $\mathbf{s}_{\mathbf{1}}(\mathbf{t}), \mathbf{s}_{\mathbf{2}}(\mathbf{t})$, and $d_{1}(t)$ are not periodic - however, $d_{2}(t)$ is periodic

Periodic Signals (2)

- A periodic signal has a FUNDAMENTAL FREQUENCY - \mathbf{f}_{0}
- $f_{0}=1 / T$ - where T is the period
- A periodic signal may also has frequencies other than the fundamental frequency f_{0}

- Examples of other periodic signals:

Energy/Power of Signals

- Energy for any signal is defined as

$$
E_{s}=\int|s(t)|^{2} d t
$$

where the integral is carried over ALL range of t

- In other words, Es is the area under the absolute squared of the signal
- The unit of energy is Joules

Applies to BOTH analog and digital signals

Energy/Power of Signals (2)

- Note that for periodic signal E_{s} is equal to infinity since it is defined on ($-\infty, \infty$)
- However power is FINITE for these type of signals
- Power is defined as the average of the absolute squared of the signal, i.e.
- The unit of power is Joules/sec or Watt

A VERY SPECIAL Analog Signal

- A function of the form

$$
\mathbf{s}(\mathrm{t})=\mathrm{A} \cos (2 \pi \mathrm{ft}+\theta)
$$

Characteristics of COSINE

- Completely specified by:
- Amplitude - A
- Phase- θ
- Frequency-f
- $\mathbf{s}(\mathbf{t}=\mathbf{0})=\mathbf{A} \cos (\theta)$
- Periodic signal - repeats itself every \mathbf{T} seconds

$$
\text { - } T=1 / f
$$

- Time to review your trigonometry !!
- E.g. $\sin (x)=\cos (x-\pi / 2)$

Characteristics of COSINE (2)

- Energy for this signal, $\mathrm{E}_{\mathrm{s}}=$ infinity
- Power for this signal, $\mathbf{P}_{\mathrm{g}}=\mathbf{A}^{\mathbf{2} / 2}$
- Note P_{g} is dependent only on the amplitude A
- Exercise: Verify the above results using the power formula
- It contains ONLY ONE frequency f
- The "purist" form of analog signals
- Frequency representation:

Characteristics of COSINE (3)

- Very Useful Properties ($\mathrm{f}=1 / \mathrm{T}$)
$\int_{0}^{T} \cos (2 \pi f t+\theta) d t=0 \quad \frac{1}{T} \int_{0}^{T} \cos ^{2}(2 \pi f t+\theta) d t=1 / 2$
$\int_{0}^{T} \cos (2 \pi n f t+\theta) d t=0 \quad \frac{1}{T} \int_{0}^{T} \cos ^{2}(2 \pi n f t+\theta) d t=1 / 2$
$\frac{1}{T} \int_{0}^{T} \cos (2 \pi n f t) \cos (2 \pi m f t) d t=\left\{\begin{array}{cc}0 & n \neq m \\ 1 / 2 & n=m\end{array}\right.$

Example of Cosine Functions

- $\mathbf{Y}_{1}(\mathbf{t})$ - has
- a frequency \mathbf{f} of 2

Hz ($\mathrm{T}=1 / 2 \mathrm{sec}$)

- An amplitude of 3
- $\mathrm{P}_{\mathrm{Y}_{1}}=3^{2} / 2=4.5$ Watts
- $\quad Y_{2}(t)$ - has
- a frequency f of 1 $\mathrm{Hz}(\mathrm{T}=1 / 1=1$ sec)
- An amplitude of 1
- $P_{Y_{2}}=1^{2} / 2=0.5$

Watts

Fourier Series Expansion

- Can we use the basic cosine functions to represent periodic signals?
- YES - Fourier Series Expansion

Fourier Series Expansion (2)

- For a periodic signal s(t) can be represented as a sum of sinusoidal signals as in

$$
s(t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left[A_{n} \cos \left(2 \pi n f_{0} t\right)+B_{n} \sin \left(2 \pi n f_{0} t\right)\right]
$$

where the coefficients are computed using:

$$
\begin{array}{ll}
A_{0}=\frac{2}{T} \int_{0}^{T} s(t) d t & \begin{array}{l}
f_{0} \text { is the fundamental frequency } \\
\text { of } s(t) \text { and is equal to } 1 / \mathrm{T}
\end{array} \\
A_{n}=\frac{2}{T} \int_{0}^{T} s(t) \cos \left(2 \pi n f_{0} t\right) d t & B_{n}=\frac{2}{T} \int_{0}^{T} s(t) \sin \left(2 \pi n f_{0} t\right) d t
\end{array}
$$

Fourier Series Expansion (3)

- Another form for the series:

$$
s(t)=\frac{C_{0}}{2}+\sum_{n=1}^{\infty} C_{n} \cos \left(2 \pi n f_{0} t+\theta_{n}\right)
$$

where the coefficients are computed using:

$$
\begin{gathered}
C_{0}=A_{0} \\
C_{n}=\sqrt{A_{n}{ }^{2}+B_{n}^{2}} \\
\theta_{n}=\tan ^{-1}\left(\frac{-B_{n}}{A_{n}}\right)
\end{gathered}
$$

Notes on Fourier Series Expansion

- The representation (the sum of sinusoids) is completely identical and equivalent to the original specification of s(t)
- It is applies to any periodic signal analog or digital!

Very powerful tool - it reveals all frequencies contained in the original periodic signal $s(t)$

Notes on Fourier Series Expansion
 (2)

- In general, $\mathbf{s}(\mathbf{t})$ contains
- DC term - the zero frequency term = $A_{0} / 2$
- A (possibly infinite) number of harmonics (or sinusoids) at multiples of the fundamental frequency, f_{0}
- The contribution of a harmonic with frequency $\mathbf{n f}_{0}$ is proportional to

$$
\left|A_{n}^{2}+B_{n}^{2}\right| \text { or } C_{n}^{2}
$$

- E.g. if $\mathrm{C}_{\mathrm{n}}{ }^{2} \sim \mathbf{0}$, then we say the harmonic at nf_{0} (or higher does not contribute significantly towards building $s(t)$ - more on this when we discuss total power!

Notes on Fourier Series Expansion (3)

- A harmonic with frequency equal to $\mathbf{n f}_{\mathbf{0}}$ $(n>0)$, has a period of $1 /(n T)$
- In general the series expansion of $s(t)$ contains INFINITE number of terms (harmonics)
- However for less than 100\% accurate representation one can ignore higher terms - terms with frequencies greater than certain $\mathbf{n}^{*} \mathbf{f}_{\mathbf{0}}$

Notes on Fourier Series Expansion (4)

- Lets define the following function:

$$
\text { s_e(} n=k)
$$

To be the series expansion of $\boldsymbol{s}(\mathrm{t})$ up to and including the $\mathrm{n}=$ k term
It should be noted that $s _e(n=k)$ is periodic with period T

- Examples:

$$
\begin{aligned}
s_{-} e(n=0) & =A_{0} / 2 \\
s_{-} e(n=1) & =A_{0} / 2+A_{1} \cos \left(2 \pi f_{0} t\right)+B_{1} \sin \left(2 \pi f_{0} t\right) \\
& =A_{0} / 2+C_{1} \cos \left(2 \pi f_{0} t+\theta_{1}\right)
\end{aligned}
$$

Notes on Fourier Series Expansion
 (5)

- Examples - cont'd:

$$
\begin{aligned}
s_{-} e(n=2) & =A_{0} / 2+A_{1} \cos \left(2 \pi f_{0} t\right)+B_{1} \sin \left(2 \pi f_{0} t\right) \\
& +A_{2} \cos \left(2 \pi \times 2 f_{0} t\right)+B_{2} \sin \left(2 \pi \times 2 f_{0} t\right) \\
& =A_{0} / 2+C_{1} \cos \left(2 \pi f_{0} t+\theta_{1}\right)+C_{2} \cos \left(2 \pi \times 2 f_{0} t+\theta_{2}\right) \\
& \ddots
\end{aligned}
$$

$$
\begin{aligned}
s_{-} e(n=\infty) & =\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left[A_{n} \cos \left(2 \pi n f_{0} t\right)+B_{n} \sin \left(2 \pi n f_{0} t\right)\right] \\
& =A_{0} / 2+\sum_{n=1}^{\infty} C_{n} \cos \left(2 \pi n f_{0} t+\theta_{n}\right)
\end{aligned}
$$

Notes on Fourier Series Expansion (6)

- It is obvious that $s(t)$ is $\mathbf{1 0 0 \%}$ represented by s_e(n=m)
- \quad s_e($n=n *<\infty)$ produces a less than 100% accurate representation of the original s(t)
- For most practical periodic signals s_e($n=10$) provides a more than enough accuracy in representing $s(t)$
- No need for infinite number of terms

Example 1:

- Consider the following $\mathbf{s}(\mathbf{t})$
- Over one period, the signal is defined as

$$
\begin{array}{rlrl}
s(t) & =A & -T / 4<t<=T / 4 \\
& =0 & T / 4<t<=3 / 4
\end{array}
$$

- Finding the Series Expansion:

- The DC term $\mathrm{A}_{\mathbf{0}}$

$$
\begin{aligned}
A_{0} & =\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) d t=\frac{2}{T} \times \frac{T}{2} \times A \\
& =A_{\text {Dr. Ashraf S. Hasan Mahmoud }}
\end{aligned}
$$

Example 1: cont'd

- The term $\mathbf{A}_{\mathbf{n}}$:

$$
\begin{aligned}
A_{n} & =\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) \cos \left(2 \pi n f_{0} t\right) d t=\frac{2 A}{T} \int_{-T / 4}^{T / 4} \cos \left(2 \pi n f_{0} t\right) d t \\
& =\left.\frac{2 A}{2 \pi n f_{0} T} \sin \left(2 \pi n f_{0} t\right)\right|_{t=-T / 4} ^{t=T / 4}=\frac{A}{\pi n} \times 2 \times \sin \left(\frac{n \pi}{2}\right) \\
& =\left\{\begin{array}{lll}
0 & n=2,4,6, \ldots \\
\frac{2 A}{\pi n} & n=1,5,9, \ldots & \begin{array}{ll}
\text { Remember } \\
-\frac{2 A}{\pi n} & n=3,7,11, \ldots
\end{array} \\
\begin{array}{ll}
\mathrm{f}_{0}=1 / \mathrm{T} \\
2 . & \text { Int }(\cos (\mathrm{ax}))=1 / \mathrm{a} \sin (\mathrm{ax}) \\
3 . & \sin (\mathrm{n} \pi)=0 \text { for integer } \mathrm{n} \\
4 . & \sin (\mathrm{n} \pi / 2)=1 \text { for } \mathrm{n}=1,5,9, \ldots \\
5 . \\
5 i n(\mathrm{n} \pi / 2)=-1 \text { for } \mathrm{n}=3,7,11, \ldots
\end{array}
\end{array}\right.
\end{aligned}
$$

Example 1: cont'd

- Therefore $\mathbf{A}_{\mathbf{n}}$ is given by:

$$
= \begin{cases}0 & n=2,4,6, \ldots \\ (-1)^{(n-1) / 2} \times \frac{2 A}{\pi n} & n=1,3,5,7, \ldots\end{cases}
$$

$$
\begin{aligned}
\frac{\text { Remember }}{(-1)^{(n-1) / 2}} & =1 \text { for } \mathrm{n}=1,5,9, \ldots \\
& =-1 \text { for } \mathrm{n}=3,7,11, \ldots
\end{aligned}
$$

Example 1: cont'd

- The term B_{n} :

$$
\begin{aligned}
B_{n} & =\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) \sin \left(2 \pi n f_{0} t\right) d t=\frac{2 A}{T} \int_{-T / 4}^{T / 4} \sin \left(2 \pi n f_{0} t\right) d t \\
& =\left.\frac{-2 A}{2 \pi n f_{0} T} \cos \left(2 \pi n f_{0} t\right)\right|_{t=-T / 4} ^{t=T / 4}=\frac{-2 A}{\pi n} \times\left\{\cos \left(\frac{n \pi}{2}\right)-\cos \left(-\frac{n \pi}{2}\right)\right\} \\
& =0
\end{aligned}
$$

Remember

1. $\int \cos (a x) d x=-1 / a \sin (a x)$
2. $\cos (x)=\cos (-x)$

Example 1: cont'd

- Therefore, the overall series expansion is given by

$$
\begin{aligned}
s(t)= & \frac{A}{2}+\frac{2 A}{\pi} \sum_{n=1,3,5}^{\infty} \frac{(-1)^{(n-1) / 2}}{n} \times \cos \left(2 \pi n f_{0} t\right) \\
s(t)= & \frac{A}{2}+\frac{2 A}{\pi} \times \cos \left(2 \pi f_{0} t\right)-\frac{2 A}{3 \pi} \cos \left(2 \pi \times 3 f_{0} t\right) \\
& +\frac{2 A}{5 \pi} \times \cos \left(2 \pi \times 5 f_{0} t\right)-\frac{2 A}{7 \pi} \cos \left(2 \pi \times 7 f_{0} t\right)+\ldots
\end{aligned}
$$

Example 1: cont'd

- Original $s(t)$ and the series up to and including n $=0$
- i.e. Comparing:
$\mathbf{s}(\mathbf{t})$
vs.
s_e($n=0)=A / 2$

Example 1: cont'd

- Original $s(t)$ and
the series up to and including $\mathbf{n}=$ 1
- i.e. Comparing:
$\mathbf{s}(\mathrm{t})$
vs.
s_e($n=1$) =
A/2 +
$2 A / \pi \cos \left(2 \pi f_{0} t\right)$

Example 1: cont'd

- Original $s(t)$ and the series up to and including $\mathbf{n}=$ 3
- i.e. Comparing:
$s(t)$
vs.
s_e($n=3$) =
A/2
$2 A / \pi \cos \left(2 \pi f_{0} t\right)-$ $2 A /(3 \pi) \cos \left(2 \pi 3 f_{0} t\right)$

Example 1: cont'd

- Original $s(t)$ and the series up to and including $\mathbf{n}=$ 11
- i.e. Comparing:
$s(t)$
vs.
s_e $(n=11)=$
$\bar{A} / 2+2 A / \pi \cos \left(2 \pi f_{0} t\right)$
$-2 A /(3 \pi) \cos \left(2 \pi 3 \mathrm{f}_{0} t\right)$
$+2 A /(5 \pi) \cos \left(2 \pi 5 f^{\prime} t\right)$
$-2 A /(7 \pi) \cos \left(2 \pi 7 f_{0} t\right)$
$+2 A /(11 \pi) \cos \left(2 \pi 11 f_{0} t\right)$

Example: cont'd

```
clear all
T = 1;
A = 1;
t = -1:0.01:1;
n_max = 11;
s = (A*square (2*pi/T* (t+T/4))+A)/2;
figure(1)
plot(t, s);
grid
axis([00 1 -0.2 1.2]);
```

- The matlab code for plotting and evaluating the Fourier Series Expansion -This code builds the series incrementally using the "for" loop
- Make sure you study this code!!

```
s_e = A/2*ones(size(t));
for n=1:2:n_max
    s_e = s_e}+(-1)^((n-1)/2) * 2*A/(n*pi) * cos(2*pi*n/T*t)
end
figure (2)
plot(t, s,'b-', t, s_e,'r--');
axis([0 \(11-0.21 .2])\);
legend('original \(s(t) ', ~ ' u p ~ t o ~ n=11 ') ; ~\)
grid

\section*{Notes Previous Example}
- The more terms included in the series expansion \(\rightarrow\) the closer the
representation to the original \(s(t)\)
- i.e. comparing \(s(t)\) with \(s \_e\left(n=n^{*}\right)\), the greater the \(n\) * the closer the representation is
- How to measure "closeness"?
- Answer: Let's use power!!

\section*{Power Calculation Using Fourier Series Expansion}
- Rule: if \(s(t)\) is represented using Fourier Series expansion, then its power can be calculated using:
\[
\begin{aligned}
P_{s}=\frac{1}{T} \int_{0}^{T}|s(t)|^{2} d t & =\frac{A_{0}^{2}}{4}+\frac{1}{2} \sum_{n=1}^{\infty}\left[A_{n}^{2}+B_{n}^{2}\right] \\
& =\frac{A_{0}^{2}}{4}+\frac{1}{2} \sum_{n=1}^{\infty} C_{n}^{2}
\end{aligned}
\]

\section*{Power Calculation Using Fourier Series Expansion (2)}
- The previous result is based on the following two facts:
- (1) For \(f(t)=\) constant
\(\rightarrow\) power of \(f(t)=\) constant \(^{2}\)

Proof:
\[
\begin{aligned}
\text { power } & =1 / \mathrm{T} \times \int_{0}{ }^{\mathrm{T}} \text { constant }^{2} \mathrm{dt} \\
& =1 / \mathrm{T} \times \text { constant }^{2} \times \mathrm{T} \\
& =\text { constant }^{2} \text { Watts }
\end{aligned}
\]

\section*{Power Calculation Using Fourier Series Expansion (3)}
- The previous result is based on the following facts (continued):
- (2) \(\operatorname{For} f(t)=A \cos \left(2 \pi n f_{0} t+\theta\right)\)
\(\rightarrow\) power of \(f(t)=A^{2} / 2\)
Proof:
\[
\begin{aligned}
& P_{f}=\frac{1}{T} \int_{0}^{T}|f(t)|^{2} d t=\frac{A^{2}}{T} \int_{0}^{T} \cos ^{2}\left(2 \pi n f_{0} t+\theta\right) d t \\
&=\frac{A^{2}}{T} \int_{0}^{T}\left[\frac{1}{2}+\frac{1}{2} \cos \left(4 \pi n f_{0} t+2 \theta\right)\right] d t \\
&=\frac{A^{2}}{T}\left[\frac{1}{2 T}+0\right]=\frac{A^{2}}{2} \\
& \quad \text { Dr. Ashraf S. Hasan Mahmoud }
\end{aligned}
\]

\section*{Example 2:}
- Problem: What is the power of the signal \(s(t)\) used in previous example? And find \(n *\) such that the power contained in \(s \_e\left(n=n^{*}\right)\) is \(95 \%\) of that existing in \(\mathbf{s}(\mathrm{t})\) ?
- Solution:

Let the power of \(\mathbf{s}(\mathbf{t})\) be given by \(\mathbf{P}_{\mathbf{s}}\)
\[
P_{s}=\frac{1}{T} \int_{0}^{T}|s(t)|^{2} d t=\frac{1}{T} \times A^{2} \times \frac{T}{2}=\frac{A^{2}}{2}=0.5 A^{2}
\]

\section*{Example 2: cont'd}
- Now it is desired to compute the power using the Fourier Series Expansion
- What is the power in s_e( \(n=0)=A / 2\) ?
- Ans: we apply the power formula:
\[
\begin{aligned}
P_{s_{-} e(n=0)} & =\frac{1}{T} \int_{0}^{T}\left|S_{-} e(n=0)\right|^{2} d t \\
& =\frac{1}{T} \times \frac{A^{2}}{4} \times T=\frac{A^{2}}{4}=0.25 A^{2}
\end{aligned}
\]

\section*{Example 2: cont'd}
- What is the power in
\[
s \_e(n=1)=A / 2+2 A / \pi \cos \left(2 \pi f_{0} t\right)
\]
- Ans: we can use the result on slide Power Calculation Using Fourier Series Expansion:
\[
\begin{aligned}
P_{s_{-} e(n=1)} & =\frac{1}{T} \int_{0}^{T}\left|S_{-} e(n=1)\right|^{2} d t=\frac{A^{2}}{4}+\frac{2 A^{2}}{\pi^{2}} \\
& =\left(\frac{1}{4}+\frac{2}{\pi^{2}}\right) A^{2}=0.4526 A^{2}
\end{aligned}
\]

\section*{Example 2: cont'd}
- What is the power in
\[
\begin{gathered}
s \_e(n=3)=A / 2+2 A / \pi \cos \left(2 \pi f_{0} t\right)- \\
2 A /(3 \pi) \cos \left(2 \pi 3 f_{0} t\right)
\end{gathered}
\]
- Ans: we can use the result on slide Power

Calculation Using Fourier Series

\section*{Expansion:}
\[
\begin{aligned}
P_{s_{-}(n=3)} & =\frac{1}{T} \int_{0}^{T}\left|s_{-} e(n=3)\right|^{2} d t=\frac{A^{2}}{4}+\frac{2 A^{2}}{\pi^{2}}+\frac{2 A^{2}}{9 \pi^{2}} \\
& =\left(\frac{1}{4}+\frac{2}{\pi^{2}}+\frac{2}{9 \pi^{2}}\right) A^{2}=0.4752 A^{2}
\end{aligned}
\]

\section*{Example 2: cont'd}

\section*{- What is the power in}
\[
\begin{gathered}
s_{-} \mathrm{e}(\mathrm{n}=5)=\mathrm{A} / 2+2 \mathrm{~A} / \pi \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}\right)- \\
2 A /(3 \pi) \cos \left(2 \pi 3 \mathrm{f}_{0} t\right)+ \\
2 A /(5 \pi) \cos \left(2 \pi 5 f_{0} t\right)
\end{gathered}
\]
- Ans: we can use the result on slide Power

\section*{Calculation Using Fourier Series Expansion:}
\[
\begin{aligned}
P_{s_{-}(n=5)} & =\frac{1}{T} \int_{0}^{T}\left|S_{-} e(n=5)\right|^{2} d t=\frac{A^{2}}{4}+\frac{2 A^{2}}{\pi^{2}}+\frac{2 A^{2}}{9 \pi^{2}}+\frac{2 A^{2}}{25 \pi^{2}} \\
& =\left(\frac{1}{4}+\frac{2}{\pi^{2}}+\frac{2}{9 \pi^{2}}+\frac{2}{25 \pi^{2}}\right) A^{2}=0.4833 A^{2}
\end{aligned}
\]

\section*{Example 2: cont'd}
- What is the power in
\[
s_{-} e(n=\infty)=\frac{A}{2}+\frac{2 A}{\pi} \sum_{n=1,3,5}^{\infty} \frac{(-1)^{(n-1) / 2}}{n} \times \cos \left(2 \pi n f_{0} t\right)
\]
- Ans: we can use the result on slide Power

Calculation Using Fourier Series Expansion:
\[
\begin{aligned}
P_{s_{-} e(n=\infty)} & =\frac{1}{T} \int_{0}^{T}\left|s_{-} e(n=\infty)\right|^{2} d t=\frac{A^{2}}{4}+\frac{2 A^{2}}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \\
& =\left(\frac{1}{4}+\frac{2}{\pi^{2}} \sum_{n=1}^{\infty} \frac{1}{n^{2}}\right) A^{2}=0.5 A^{2}
\end{aligned}
\]

This the EXACT SAME power contained in \(s(t)\) -
This is expected since \(s(t)\) is \(100 \%\) represented by \(s \_e(n=\infty)\)

\section*{Example 2: cont'd}
\begin{tabular}{|c|c|c|c|}
\hline s_e(n=k) & Expression & Power & \% Power \({ }^{+}\) \\
\hline \(\mathrm{k}=0\) & A/2 & \(0.25 \mathrm{~A}^{2}\) & \[
\begin{gathered}
\left(0.255^{2}\right) /\left(0.5 A^{2}\right) \\
=50 \%
\end{gathered}
\] \\
\hline \(\mathrm{k}=1\) & \(\mathrm{A} / 2+2 \mathrm{~A} / \pi \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}\right)\) & \(0.4526 \mathrm{~A}^{2}\) & \[
\begin{aligned}
& \left(0.45566^{2}\right)\left(0.55^{2}\right) \\
& =90.5
\end{aligned}
\] \\
\hline \(\mathrm{k}=2^{*}\) & \(\mathrm{A} / 2+2 \mathrm{~A} / \pi \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}\right)\) & \(0.4526 \mathrm{~A}^{2}\) & 90.5\% \\
\hline \(\mathrm{k}=3\) & \[
\begin{aligned}
& \mathrm{A} / 2+2 \mathrm{~A} / \pi \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}\right)- \\
& 2 \mathrm{~A} /(3 \pi) \cos \left(2 \pi 3 \mathrm{f}_{0} \mathrm{t}\right) \\
& \hline
\end{aligned}
\] & \(0.4752 \mathrm{~A}^{2}\) & 95.0\% \\
\hline \(\mathrm{k}=5\) & \[
\begin{aligned}
& \mathrm{A} / 2+2 \mathrm{~A} / \pi \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}\right)- \\
& 2 \mathrm{~A} /(3 \pi) \cos \left(2 \pi 3 \mathrm{f}_{0} \mathrm{t}\right)+ \\
& 2 \mathrm{~A} /(5 \pi) \cos \left(2 \pi 5 \mathrm{f}_{0} \mathrm{t}\right) \\
& \hline
\end{aligned}
\] & \(0.4833 \mathrm{~A}^{2}\) & 96.7\% \\
\hline
\end{tabular}

\section*{Example 2: cont'd}
- Therefore, s_e(n=n*) such that 95\% of power is contained \(\rightarrow n^{*}=3\)

\section*{Power Spectral Density Function}
- Fourier Series Expansion:
- Specifies all the basic harmonics contained in the original function \(s(t)\)
- \(\mathrm{C}_{\mathrm{n}}{ }^{2} / 2=\left(\mathrm{A}_{\mathrm{n}}{ }^{2}+\mathrm{B}_{\mathrm{n}}{ }^{2}\right) / 2\) determines the power contribution of the nth harmonic with frequency \(\mathrm{nf}_{0}\)
- The power Spectral Density function is a function specifying: how much power contributed at a given frequency

\section*{Power Spectral Density Function \\ (2)}
- Typical PSD function for periodic signals:

Periodic \(s(t)\)

(1) Fourier Series Expansion


\section*{Power Spectral Density Function \\ (3)}
- A mathematical expression for PSD(f) can be written as
\[
\operatorname{PSD}(f)=\left\{\begin{array}{c}
A_{0}{ }^{2} / 4 \quad f=0 \\
C_{n}{ }^{2} / 2 \quad f=n \times f_{0} \\
0 \quad \text { otherwise }
\end{array}\right.
\]
- Another way (more compact) of writing PSD(f) is as follows:
\[
\operatorname{PSD}(f)=\frac{A_{0}{ }^{2}}{4} \times \delta(f)+\frac{1}{2} \sum_{n=1}^{\infty} C_{n}{ }^{2} \times \delta\left(f-n f_{0}\right)
\]
where \(\delta(t)\) is defined by
\[
\delta(f)= \begin{cases}1 & f=0 \\ 0 & f \neq 0\end{cases}
\]

\section*{Power Spectral Density Function \\ (4)}
- \(\delta(f)\) is referred to as the dirac function or unit impulse function


\section*{Note on the PSD Function}
- PSD function has units of Watts/Hz
- For periodic signals \(\rightarrow\) PSD is a discrete function - defined for integer multiples of the fundamental frequency
- Specifies the power contribution of every harmonic component \(\mathbf{C}_{\mathbf{n}}{ }^{\mathbf{2}} / \mathbf{2} \leftrightarrow \mathbf{~ n f}_{\mathbf{0}}\)
- The separation between the discrete components is at least \(f_{0}\)
- It is exactly \(f_{0}\) if all \(C_{n}\) 's are not zeros
- E.g. for the previous \(s(t)\) example, \(\mathrm{C}_{\mathrm{n}}=\mathbf{0}\) for even \(\boldsymbol{n} \boldsymbol{\rightarrow}\) separation \(=\mathbf{2 f}_{\mathbf{0}}\)

\section*{Note on the PSD Function (2)}
- To calculate the total power of signal \(\rightarrow\) Integrate PSD over all contained frequencies
- For discrete PSD: integration = summation
- Therefore total power of \(s(t)\),
\[
P_{s}=\left(A_{n} / 2\right)^{2}+\sum C_{n}^{2} / 2 \text { in Watts }
\]

\section*{Example 3:}
- Find the PSD function of the periodic signal \(s(t)\) considered in Example 1.
- From Example \(1, \mathbf{s}(\mathbf{t})\) is given by
\[
s(t)=\frac{A}{2}+\frac{2 A}{\pi} \sum_{n=1,3,5}^{\infty} \frac{(-1)^{(n-1) / 2}}{n} \times \cos \left(2 \pi n f_{0} t\right)
\]
- Using Example 2:
- \(\quad\) Power at the zero frequency \(=(A / 2)^{2}=A^{2} / 4\)
- Power at the \(n\)th harmonic ( \(n\) odd) is equal to \(\mathbf{2 A} A^{\mathbf{2}} /(\mathrm{n} \pi)^{\mathbf{2}}\)
- Power at the nth harmonic ( \(n\) even) is zero
- Therefore the PSD function is given by
\[
\operatorname{PSD}(f)=\frac{A^{2}}{4} \times \delta(f)+\frac{2 A^{2}}{\pi^{2}} \sum_{n=1,3,5}^{\infty} \frac{1}{n^{2}} \times \delta\left(f-n f_{0}\right)
\]

\section*{Example 3: cont'd}
- The PSD is plotted as shown \((\mathrm{A}=1, \mathrm{~T}=1)\)


\section*{Example 3: cont'd}
- Matlab Code to plot PSD
```

clear all
T = 1;
A = 1;
t = -1:0.01:1;
n_max = 11;
Frequency = [0:1:n_max];
PwrSepctrald = zeros(\overline{size(Frequency));}
% Record the DC term power at f = 0
PwrSepctralD(1) = (A/2)^2;
% Record the nth harmonic power at f = nf0
for n=1:2:n_max
PwrSepctrald (n+1) = (2*A/ (n*pi))^2 / 2;
end
figure(1)
stem(Frequency, PwrSepctrald,'rx');
title('Power Spectral Density function for s(t) - A = 1, T = 1');
xlabel('frequency - Hz');
grid
3/10/2004

Example 4:

This is a typical exam question

- Problem: Consider the periodic half-wave rectified signal $\mathbf{s}(\mathrm{t})$ depicted in figure.
- Write a mathematical expression for $s(t)$
- Calculate the Fourier Series Expansion for $s(t)$
- Calculate the total power for $s(t)$
- Find n^{*} such that s_e(n*) has 95\% of the total power
- Determine the PSD function for $s(t)$
- Plot the PSD function for $\mathbf{s}(\mathrm{t})$

Example 4: cont'd

- Answer:
(a) To write a mathematical expression for $s(t)$, remember that the general form of a sinusoidal function is given by
$A \cos (2 \pi X$ Freq $X t)$, or
$A \cos (2 \pi /$ Period $X t)$

Therefore $s(t)$ is given by

$$
\begin{array}{rlrl}
s(t) & =A \cos (2 \pi / T t) & -T / 4<t \leq T / 4 \\
& =0 & & T / 4<t \leq 3 T / 4
\end{array}
$$

Example 4: cont'd

- Answer:
(b) The F.S.E of $s(t)$:

The DC term is given by

$$
\begin{aligned}
A_{0} & =\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) d t=\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos (2 \pi t / T) d t \\
& =\frac{A}{\pi} \times\left.\sin (2 \pi t / T)\right|_{t=-T / 4} ^{t=T / 4}=\frac{A}{\pi}[\sin (\pi / 2)-\sin (-\pi / 2)] \\
& =\frac{2 A}{\pi}
\end{aligned}
$$

Remember:

 - Answer:

The An term is given by (remember $\mathbf{1 / T}=\mathbf{f}_{\mathbf{0}}$)
$A_{n}=\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) \cos \left(2 \pi n f_{0} t\right) d t=\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos (2 \pi t / T) \cos \left(2 \pi n f_{0} t\right) d t$

$$
=\frac{2 A}{T} \times\left.\left[\frac{\sin \left(2 \pi(n+1) f_{0} t\right)}{4 \pi(n+1) f_{0}}+\frac{\sin \left(2 \pi(n-1) f_{0} t\right)}{4 \pi(n-1) f_{0}}\right]\right|_{t=-T / 4} ^{t=T / 4} \text { For } \mathbf{n} \neq \mathbf{1}
$$

$$
=\frac{A}{\pi} \times\left[\frac{\cos (n \pi / 2)}{(n+1)}+\frac{-\cos (n \pi / 2)}{(n-1)}\right]
$$

Example 4: cont'd

But

$$
\begin{aligned}
\cos (n \pi / 2) & =0 & & n=\text { odd, } n \neq 1 \\
& =(-1)^{(1+n / 2)} & & n=\text { even }
\end{aligned}
$$

Therefore

$$
\begin{aligned}
A_{n} & =\frac{A}{\pi} \times\left[\frac{(-1)^{(1+n / 2)}}{(n+1)}+\frac{(-1)(-1)^{(1+n / 2)}}{(n-1)}\right] & & \text { For } \mathbf{n} \text { even } \\
& =0 & & \text { For } \mathbf{n} \text { odd, } \mathbf{n} \neq \mathbf{1}
\end{aligned}
$$

Example 4: cont'd

The expression for An (for even n) can be further simplified to

$$
\begin{aligned}
A_{n} & =\frac{A}{\pi} \times\left[\frac{(-1)^{(1+n / 2)}}{(n+1)}+\frac{(-1)(-1)^{(1+n / 2)}}{(n-1)}\right] \\
& =\frac{A}{\pi} \times\left[\frac{(-1)^{(1+n / 2)}(n-1)+(-1)(-1)^{(1+n / 2)}(n+1)}{(n+1)(n-1)}\right] \\
& =\frac{A}{\pi\left(n^{2}-1\right)^{(1+n / 2)}} \times\left[(-1)^{(1+n / 2)}(n-1)-(-1)^{(1+n / 2)}(n+1)\right] \\
& =\frac{2 A(-1)^{(1+n)}}{\pi\left(n^{2}-1\right)_{\text {br. Ashraf s. Hasan Mahmoud }} \quad \text { For n even }}
\end{aligned}
$$

Example 4: cont'd

An is still not completely specified - we still need to calculate it for $\mathrm{n}=1$; in other words we need to calculate A1:
$A_{n=1}=\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) \cos \left(2 \pi \times 1 \times f_{0} t\right) d t=\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos (2 \pi t / T) \cos \left(2 \pi f_{0} t\right) d t$
Therefore:

$$
\begin{aligned}
A_{1} & =\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos ^{2}\left(2 \pi f_{0} t\right) d t \\
& =\frac{2 A}{T} \times\left.\left[\frac{t}{2}+\frac{1}{4 \times 2 \pi f_{0}} \sin \left(4 \pi f_{0} t\right)\right]\right|_{t=-T / 4} ^{t=T / 4}=\frac{2 A}{T} \times\left[\frac{T}{4}+\frac{\sin (\pi)-\sin (-\pi)}{8 \pi f_{0}}\right] \\
& =\frac{A}{2} \quad \text { Dr. Ashraf S. Hasan Mahmoud }
\end{aligned}
$$

Example 4: cont'd

This mean A_{n} is equal to the following:
$A_{n}=2 A / \pi$

$$
\mathrm{n}=0
$$

$$
0 \quad n \text { odd, } n \neq 1
$$

$$
A / 2 \quad n=1
$$

$$
2 A(-1)^{(1+n / 2)}
$$

$$
n=2,4,6, \ldots
$$

$$
\pi\left(\mathbf{n}^{2}-1\right)
$$

The above expression specifies A_{n} for ALL POSSIBLE values of $\mathrm{n} \rightarrow$ specification is complete

	Remember: $-\cos (a x+b x) \quad \cos (a x-b x)$
Example 4: cont	$\begin{aligned} \int[\sin (a x) \cos (b x)] d x= & -\cdots--\cdots----\cdots \\ & 2(a+b) \end{aligned}$

We still need to compute $B_{\mathbf{n}}$:

$$
\begin{aligned}
B_{n} & =\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) \sin \left(2 \pi n f_{0} t\right) d t=\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos (2 \pi t / T) \sin \left(2 \pi n f_{0} t\right) d t \\
& =\frac{2 A}{T} \times\left.\left[\frac{\cos \left(2 \pi(n+1) f_{0} t\right)}{4 \pi(n+1) f_{0}}-\frac{\cos \left(2 \pi(n-1) f_{0} t\right)}{4 \pi(n-1) f_{0}}\right]\right|_{t=-T / 4} ^{t=T / 4} \text { For } \mathbf{n} \neq \mathbf{1} \\
& =\frac{A}{2 \pi} \times\left[\frac{-\cos (\pi / 2(n+1))+\cos (-\pi / 2(n+1)))}{(n+1)}-\frac{\cos (\pi / 2(n-1))-\cos (-\pi / 2(n-1))}{(n-1)}\right]
\end{aligned}
$$

$$
=0
$$

For $\mathbf{n} \neq 1$

Example 4: cont'd

B_{n} is still NOT completely specified - we still need to calculate it for $\mathrm{n}=1$; in other words we need to calculate B_{1} :
$B_{n=1}=\frac{2}{T} \int_{-T / 4}^{T / 4} s(t) \sin \left(2 \pi \times 1 \times f_{0} t\right) d t=\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos (2 \pi t / T) \sin \left(2 \pi f_{0} t\right) d t$
Therefore:

$$
\begin{aligned}
& B_{1}=\frac{2 A}{T} \times \int_{-T / 4}^{T / 4} \cos \left(2 \pi f_{0} t\right) \sin \left(2 \pi f_{0} t\right) d t=\frac{A}{T} \times \int_{-T / 4}^{T / 4} \sin \left(4 \pi f_{0} t\right) d t \\
&=\frac{-A}{4 \pi} \times\left.\cos \left(4 \pi f_{0} t\right)\right|_{t-T / 4} ^{t=T / 4}=\frac{-A}{4 \pi} \times[\cos (\pi)-\cos (-\pi)] \\
&=0 \quad \rightarrow \text { This means } \mathbf{B}_{\mathbf{n}}=\mathbf{0} \text { for all } \mathbf{n} \\
& 3 / 10 / 2004
\end{aligned}
$$

Example 4: cont'd

- To summarize:

$$
\begin{array}{rlr}
A_{n}= & 2 A / \pi & n=0 \\
0 & n \text { odd, } n \neq 1 \\
A / 2 & n=1 \\
& 2 A(-1)^{(1+n / 2)} & \\
\hdashline-{\left(n^{2}-1\right)} & n=2,4,6, \ldots
\end{array}
$$

And

$$
B_{\mathrm{n}}=0 \quad \text { for all } \mathbf{n}
$$

- Having computed A_{n} and B_{n} we are now in a position to write the Fourier Series Expansion for $s(t)$

Example 4: cont'd

- The Fourier Series Expansion for $s(t)$ is given by

$$
\begin{aligned}
s(t) & =\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left[A_{n} \cos \left(2 \pi n f_{0} t\right)+B_{n} \sin \left(2 \pi n f_{0} t\right)\right] \\
& =\frac{A}{\pi}+\frac{A}{2} \cos \left(2 \pi f_{0} t\right)+\frac{2 A}{\pi} \sum_{n=2,4,6}^{\infty} \frac{(-1)^{(1+n / 2)}}{n^{2}-1} \cos \left(2 \pi n f_{0} t\right)
\end{aligned}
$$

The C_{n} terms (there is a typo in the textbook) are as follows:		
$\begin{aligned} & \mathrm{C}_{0}=\mathrm{A} / \pi \\ & \mathrm{C}_{1}=\mathrm{A} / 2 \end{aligned}$		
	$\mathrm{C}_{\mathrm{n}}=$	$\mathrm{n}=2,4,6,$
	0	n odd, $\mathrm{n} \neq 1$

Example 4: cont'd

Example 4: cont'd

- The total power of $s(t)$ is given by:

$$
\begin{aligned}
P_{s} & =\frac{1}{T} \int_{-T / 4}^{3 T / 4}|s(t)|^{2} d t=\frac{A^{2}}{T} \times \int_{-T / 4}^{T / 4} \cos ^{2}(2 \pi t / T) \\
& =\frac{A^{2}}{T} \times\left.\left[\frac{t}{2}+\frac{\sin (4 \pi t / T)}{8 \pi t / T}\right]\right|_{t=-T / 4} ^{t=T / 4} \\
& =\frac{A^{2}}{4}
\end{aligned}
$$

Therefore total power of $s(t)=0.25 A^{2}$

Example 4: cont'd

- To find $n *$ such that power of s_e($n=n^{*}$) = 95\% of total power:

s_e(n=k)	Expression	Power	\% Power ${ }^{+}$
$\mathrm{k}=0$	A/ π	$0.1013 \mathrm{~A}^{2}$	$\begin{gathered} \left(0.10133^{2}\right) /(0.25 \\ \left.A^{2}\right)= \\ 40.5 \% \end{gathered}$
$\mathrm{k}=1$	$\mathrm{A} / \pi+\mathrm{A} / 2 \cos \left(2 \pi \mathrm{f}_{0} \mathrm{t}\right)$	$0.2263 \mathrm{~A}^{2}$	$\begin{aligned} & \left(0.22622^{2}\right)\left(0.2025^{2}\right) \\ & =90.5 \% \end{aligned}$
$\mathrm{k}=2$	$\begin{array}{\|l} \mathrm{A} / \pi+\mathrm{A} / 2 \cos \left(2 \pi \mathrm{f}_{\mathrm{t}} \mathrm{t}\right)+ \\ 2 \mathrm{~A} /(3 \pi) \cos \left(2 \pi 2 \mathrm{f}_{0} \mathrm{t}\right) \\ \hline \end{array}$	$0.2488 \mathrm{~A}^{2}$	$\begin{gathered} \left(0.2488 \alpha^{2}\right)\left(0.255^{2}\right) \\ 99.5 \% \end{gathered}$

Therefore $n^{\star}=2 \rightarrow$ power of s_e $(n=2)=0.2488 A^{2}$ which is 99.5% of total power of $s(t)$

Example 4: cont'd

- The PSD function for $s(t)$ is as follows:
- Power for DC term $=(A / \pi)^{2}$
- Power for harmonic at $f=f_{0}:(A / 2)^{\mathbf{2}} / 2=A^{2} / 8$
- Power for harmonic at $f=\mathrm{nf}_{0}(\mathrm{n}=2,4,6, \ldots)$: $\left[2 A /\left(\pi\left(n^{2}-1\right)\right)\right]^{2} / 2=2 A^{2} /\left(\pi\left(n^{2}-1\right)\right)^{2}$
- Therefore PSD function equals to

$$
\operatorname{PSD}(f)=\left(\frac{A}{\pi}\right)^{2} \delta(f)+\frac{A^{2}}{8} \delta\left(f-f_{0}\right)+\frac{2 A^{2}}{\pi^{2}} \sum_{n=2,4,6}^{\infty} \frac{\delta\left(f-n f_{0}\right)}{\left(n^{2}-1\right)^{2}}
$$

Example 4: cont'd

- Plot of The PSD function for $s(t)$

Fourier Transform

- Fourier Series Expansion analysis is applicable for PERIODIC signals ONLY
- There are important signals that are not periodic such as
- Your voice waveform
- Pulse signal $p(t)$ - used for modulation and transmission
- Examples: $\mathbf{p}_{\mathbf{1}}(\mathbf{t})$ and $\mathbf{p}_{\mathbf{2}}(\mathbf{t})$

Fourier Transform (2)

- How to find the frequency content of such signals?
- Use FOURIER TRANSFORM

$$
\begin{aligned}
& X(f)=\int_{-\infty}^{\infty} x(t) e^{-2 \pi j f} d t \\
& x(t)=\int_{-\infty}^{\infty} X(f) e^{2 \pi j f t} d f
\end{aligned}
$$

Notes on Fourier Transform

- F.T describes a two-way transformation

$$
x(t) \leftarrow \rightarrow X(f)
$$

where $x(t)$ is the time representation of the signal, while $X(f)$ is the frequency representation of the signal

- $X(f)$ is defined on a continuous range of frequencies
- All frequencies within the range of $X(f)$ where $X(f)$ is not zero contribute towards building $\mathbf{x}(\mathbf{t})$

Notes on Fourier Transform (2)

- The magnitude of the contribution of a particular frequency f^{*} in $x(t)$ is proportional to $|X(f *)|^{2}$
- Example: Consider the F.T. pair shown below -
 contribute more significantly compared to frequencies belonging to $(1 / \tau, \infty)$ or $(-\infty,-1 / \tau)$

Properties of Fourier Transform

- If $x(t)$ is time-limited $\rightarrow X(f)$ is not frequency-limited
- i.e. the range of $X(f)=(-\infty, \infty)$
- If $\mathbf{x (t)}$ is a real-valued symmetric \rightarrow $X(f)$ is real-valued

Relation between Fourier Series Expansion and Fourier Transform

- Consider the following two signals:

Relation between Fourier Series Expansion and Fourier Transform (2)

- The separation between spectral lines for a periodic signal is $1 / T$
- As $\mathbf{T} \rightarrow$ infinity and $s(t)$ becomes non periodic \rightarrow the separation between spectral lines \rightarrow zero (i.e. it becomes continuous)

Example 5:

- Problem: Consider the square pulse function shown in figure:
- Write a mathematical expression for $p(t)$
- Find the Fourier transform for $p(t)$
- Plot P(f)

Example 5: cont'd

- Answer: p(t) can be expressed as

$$
\begin{aligned}
\mathbf{p}(\mathbf{t}) & =\mathbf{A} & & |\mathbf{t}| \leq \tau / 2 \\
& =\mathbf{0} & & \text { otherwise }
\end{aligned}
$$

The F.T. for $p(t), P(f)$ is given by

$$
P(f)=\int_{-\infty}^{\infty} p(t) e^{-2 \pi j f} d t
$$

Example 5: cont'd

- Which is equal to

$$
\begin{aligned}
P(f) & =\int_{-\infty}^{\infty} p(t) e^{-2 \pi j f t} d t=\int_{-\tau / 2}^{\tau / 2} A e^{-2 \pi j f t} d t \\
& =\frac{A}{-2 \pi j f} \int_{-\tau / 2}^{\tau / 2} e^{-2 \pi j f t} d t=-\frac{A}{2 \pi j f} \times\left(e^{-\pi j f \tau}-e^{\pi j f \tau}\right) \\
& =\frac{A}{\pi f} \times \frac{\left(e^{\pi j \tau \tau}-e^{-\pi j f \tau}\right)}{2 j} \\
& =A \tau \frac{\sin (\pi f \tau)}{\pi f \tau}
\end{aligned}
$$

Example 5: cont'd

- $\mathbf{P}(\mathbf{f})$ plot for $\mathbf{A}=1$ and τ
$=1$
- Note:
- $P(f)$ is define on ($-\infty, \infty$)
- $\mathbf{P (f)}$ is continuous
- $\mathbf{P}(\mathbf{f})=$ ZERO for $\mathbf{f}=\mathbf{n} / \tau$
- For practical pulses P(f) approaches zero as $\boldsymbol{f} \rightarrow \pm \infty$
- Most of the energy of $p(t)$ is contained in the period of ($-1 / \tau, 1 / \tau$)

