King Fahd University of Petroleum \& Minerals Computer Engineering Dept

COE 541 - Design and Analysis of Local Area Networks
Term 031
Dr. Ashraf S. Hasan Mahmoud
Rm 22-148-3
Ext. 1724

Email: ashraf@ccse.kfupm.edu.sa

Queuing Model

- Consider the following system:
A(t)
$\mathrm{N}(\mathrm{t})=\mathrm{A}(\mathrm{t})-\mathrm{D}(\mathrm{t})$
$\mathrm{D}(\mathrm{t})$
ith customer
arrives at time S_{i}

$$
\mathrm{T}_{\mathrm{i}}=\mathrm{D}_{\mathrm{i}}-\mathrm{S}_{\mathrm{i}}
$$

$\mathrm{A}(\mathrm{t})$ - number of arrivals in $(0, t]$
$\mathrm{D}(\mathrm{t})$ - number of departures in $(0, \mathrm{t}]$
$\mathrm{N}(\mathrm{t})$ - number of customers in system in $(0, \mathrm{t}]$
T_{i} - duration of time spent in system for ith customer

Number of Customers in System

- Blue curve: A(t)
- Red curve: $\mathbf{D}(\mathrm{t})$
- Total time spent in the system for all customers = area in between two curves

Little's Formula

- Consider the time average of the number of customers in the system $\mathbf{N}(\mathrm{t})$ during (0,t],

$$
\langle N\rangle_{t}=\frac{1}{t} \int_{0}^{t} N(\tau) d \tau
$$

i.e. average area under the curve for $\mathbf{N}(\mathbf{t})$
$\langle N\rangle_{t}$ is also given by

$$
\langle N\rangle_{t}=\frac{1}{t} \sum_{i=1}^{A(t)} T_{i}
$$

Little's Formula - cont'd

- The average arrival rate $\langle\lambda\rangle_{t}$ is given by

$$
\langle\lambda\rangle_{t}=\frac{A(t)}{t}
$$

- Combining the previous equations we get:

$$
\langle N\rangle_{t}=\langle\lambda\rangle_{t} \frac{1}{A(t)} \sum_{i=1}^{A(t)} T_{i}
$$

- Let the quantity $\langle T\rangle_{t}$ be the average time a customer spends in the system, then

$$
\langle T\rangle_{t}=\frac{1}{A(t)} \sum_{i=1}^{A(t)} T_{i}
$$

Little's Formula - cont'd

- Combining the last two equations:

$$
\langle N\rangle_{t}=\langle\lambda\rangle_{t}\langle T\rangle_{t}
$$

- Which relates the time averages of the arrival rate, the number of customers in the system and the average time spent in the system
- Let $\mathbf{t} \rightarrow \infty$, then one can write:

$$
E[N]=\lambda E[T]
$$

Little's Formula - cont'd

- Little's formula:

$$
E[N]=\lambda E[T]
$$

Holds for many service disciplines and for systems with arbitrary number of servers. It holds for many interpretations of the system as well

Example 1:

- Problem: Let $\mathrm{Ns}(\mathrm{t})$ be the number of customers being served at time t, and let τ denote the service time. If we designate the set of servers to be the "system"m then Little's formula becomes:

$$
\mathrm{E}[\mathrm{Ns}]=\mathrm{\lambda E}[\tau]
$$

Where $E[N s]$ is the average number of busy servers for a system in the steady state.

Example 1: cont'd

Note: for a single server $\mathrm{Ns}(\mathrm{t})$ can be either 0 or $1 \rightarrow \mathrm{E}[\mathrm{Ns}]$ represents the portion of time the server is busy. If $\mathbf{p}_{0}=$ $\operatorname{Prob}[\mathrm{Ns}(\mathrm{t})=0]$, then we have

$$
\begin{aligned}
\mathbf{1}-\mathbf{p}_{\mathbf{0}} & =\mathbf{E}[\mathbf{N s}]=\lambda \mathbf{E}[\tau], \mathbf{O r} \\
\mathbf{p}_{\mathbf{0}} & =\mathbf{1}-\boldsymbol{\lambda E}[\tau]
\end{aligned}
$$

The quantity $\lambda \mathrm{E}[\tau]$ is defined as the utilization for a single server. Usually, it is given the symbol ρ

$$
\rho=\boldsymbol{\lambda}[\tau]
$$

For a c-server system, we define the utilization (the fraction of busy servers) to be

$$
\rho=\lambda E[\tau] / \mathbf{c}
$$

The M/M/1 Queue

- Consider a single server system where customers arrive according to a Poisson process of rate λ
- $\quad \rightarrow$ inter-arrival times are iid exponential r.v. with mean 1/ λ
- Assume the service times are iid exponential r.v. with mean $1 / \mu$
- Assume the inter-arrival times and service times are independent
- Assume the system can accommodate unlimited number of customers

The M/M/1 Queue - cont'd

- What is the steady state pmf of $\mathbf{N}(\mathrm{t})$, the number of customers in the system?
- What is the PDF of T , the total customer delay in the system?

The M/M/1 Queue - cont'd

- Consider the transition rate diagram for M/M/1 system

- Note:
- System state - number of customers in systems
- $\quad \lambda$ is rate of customer arrivals
- $\quad \mu$ is rate of customer departure

The M/M/1 Queue - Distribution of Number of Customers

- Writing the global balance equations for this Markov chain and solving for $\operatorname{Prob}[\mathrm{N}(\mathrm{t})=\mathrm{j}$], yields (refer to previous example)

$$
\begin{aligned}
\mathbf{p}_{\mathrm{j}} & =\operatorname{Prob}[\mathrm{N}(\mathrm{t})=\mathrm{j}] \\
& =(1-\rho) \rho^{\mathrm{j}}
\end{aligned}
$$

$$
\text { for } \rho=\lambda / \mu<\mathbf{1}
$$

Note that for $\rho=\mathbf{1 \rightarrow}$ arrival rate $\boldsymbol{\lambda}=$ service rate μ

The M/M/1 Queue - Expected Number of Customers

- The mean number of customer is given by

$$
\begin{aligned}
E[N] & =\underset{j}{\sum j \operatorname{Prob}[N(t)=j]} \\
& =\rho /(1-\rho)
\end{aligned}
$$

The M/M/1 Queue - Mean Customer Delay

- The mean total customer delay in the system is found using Little's formula

$$
\begin{aligned}
E[T] & =E[N] / \lambda \\
& =(\rho / \lambda) /(1-\rho) \\
& =1 /(\mu-\lambda)
\end{aligned}
$$

The M/M/1 Queue - Mean Queueing Time

- The mean waiting time in queue is given by

$$
\begin{aligned}
\mathrm{E}[\mathrm{~W}] & =\mathrm{E}[\mathrm{~T}]-\mathrm{E}[\tau] \\
& =\rho /(1-\rho) \mathrm{E}[\tau]
\end{aligned}
$$

The M/M/1 Queue - Mean Number in Queue

- Again we employ Little's formula:

$$
\begin{aligned}
E[\mathrm{Nq}] & =\lambda E[\mathbf{W}] \\
& =\rho^{2} /(\mathbf{1}-\rho)
\end{aligned}
$$

Remember:
server utilization $\rho=\lambda / \mu=1-p_{0}$

All previous quantities $\mathrm{E}[\mathrm{N}], \mathrm{E}[\mathrm{T}], \mathrm{E}[\mathrm{W}]$, and $\mathrm{E}[\mathrm{Nq}] \rightarrow \infty$ as $\rho \rightarrow 1$

Scaling Effect for M/M/1 Queues

- Consider a queue of arrival rate $\boldsymbol{\lambda}$ whose service rate is μ
- $\rho=\lambda / \mu$,
- The expected delay $E[T]$ is given by

$$
E[T]=(1 / \mu) /(1-\rho)
$$

- If the arrival rate increases by a factor of K, then we either

1. Have K queueing systems, each with a server of rate μ
2. Have one queueing system with a server of rate $K \mu$

- Which of the two options will perform 10/26/better?

Scaling Effect for M/M/1 Queues cont'd

- Case 1: K queueing systems
- Identical systems
- $E[T]$ is the same for all $-E[T]=(1 / \mu) /(1-\rho)$
- Case 2: 1 queueing system with server of rate K μ
- ρ for this system $=(K \lambda) /(K \mu)=\lambda / \mu-$ same as the original system
- $E\left[T^{\prime}\right]=(1 /(K \mu)) /(1-\rho)=(1 / K) E[T]$
- Therefore, the second option will provide a less total delay figure - significant delay performance improvement!

Arriving Customer's Distribution

- Let Na be the number of customers found in the system by a customer arrival
- $\operatorname{Prob}[\mathrm{Na}=\mathrm{k}] \leftarrow$ is the arriving customer distribution
- (Refer to handout for proof) -

$$
\operatorname{Prob}[\mathbf{N a}=k]=\operatorname{Prob}[\mathbf{N}(t)=k]
$$

$$
=(1-\rho) \rho^{k}
$$

where $\operatorname{Prob}[\mathbf{N}(\mathbf{t})=\mathrm{k}]$ is the customer distribution at any time!! -

- This is valid only for a POISSON ARRIVAL!

Delay Distribution for M/M/1

- We have shown before the mean delay, $\mathrm{E}[\mathrm{T}]=(1 / \mu) /(1-\rho)$
- But what is the distribution for T ?
- An arriving customer see's \mathbf{k} customers ahead
- Has to wait for k iid exp r.v. service times, each with mean $1 / \mu$
- Then, our arriving customer will go to service for an exp r.v. service time of mean $1 / \mu$

Delay Distribution for M/M/1 - cont'd

- Therefore, total delay, \mathbf{T}, is the sum of $k+1$ iid exponential r.v. each with mean $1 / \mu$
- The conditional ($\mathrm{Na}=\mathrm{k}$) distribution of T is given by the Gamma PDF (refer to Probability Theory slides)

$$
f_{T}\left(x / N_{a}=k\right)=\frac{(\mu x)^{k}}{k!} \mu e^{-\mu x} \quad x>0
$$

Delay Distribution for M/M/1 - cont'd

- The PDF of T can be found be deconditioning on Na -

$$
\begin{aligned}
f_{T}(x) & =\sum_{k=0}^{\infty} f_{T}\left(x / N_{a}=k\right) \operatorname{Pr}\left[N_{a}=k\right] \\
& =\sum_{k=0}^{\infty} \frac{(\mu x)^{k}}{k!} \mu e^{-\mu x}(1-\rho) \rho^{k} \\
& =(\mu-\lambda) e^{-(\mu-\lambda) x} \quad x>0
\end{aligned}
$$

Therefore, the total delay, T , is a random variable *exponentially distributed* with mean $1 /(\mu-\lambda)$

M/M/1/K - Finite Capacity Queue

- Consider an M/M/1 with finite capacity K $<\infty$
- For this queue - there can be at most K customers in the system
- 1 being served
- K-1 waiting
- A customer arriving while the system has K customers is BLOCKED (does not wait)!

M/M/1/K - Finite Capacity Queue cont'd

- Transition rate diagram for this queueing system is given by:
- $\mathbf{N}(\mathbf{t})$ - A continuous-time Markov chain which takes on the values from the set $\{0$, 1, ..., K\}

M/M/1/K - Finite Capacity Queue cont'd

- The global balance equations:
$\lambda \quad \mathbf{p}_{\mathbf{0}}=\mu \mathbf{p}_{1}$
$(\boldsymbol{\lambda}+\mu) \mathbf{p}_{\mathrm{j}}=\lambda \mathrm{p}_{\mathrm{j}-1}+\mu \mathrm{p}_{\mathrm{j}+1} \quad$ for $\mathrm{j}=1,2, \ldots, \mathrm{~K}-1$
$\mu \quad \mathbf{p}_{\mathrm{K}}=\boldsymbol{\lambda} \mathbf{p}_{\mathrm{K}-1}$
$\rightarrow \operatorname{Prob}[\mathbf{N}(\mathrm{t})=\mathrm{j}]=\mathrm{p}_{\mathbf{j}} \quad \mathbf{j}=\mathbf{0 , 1}, \ldots, \mathrm{K} ; \mathrm{\rho}<\mathbf{1}$
$=(1-\rho) \rho^{j} /\left(1-\rho^{K+1}\right)$

When $\rho=1, p_{j}=1 /(K+1)$ (all states are equiprobable)

M/M/1/K - Mean Number of
 Customers

- Mean number of customers, $\mathrm{E}[\mathrm{N}]$ is given by:

$$
\begin{aligned}
E[N] & =\sum_{j=0}^{K} j \operatorname{Pr}[N(t)=j] \\
& = \begin{cases}\frac{\rho}{1-\rho}-\frac{(K+1) \rho^{K+1}}{1-\rho^{K+1}} & \rho<1 \\
K / 2 & \rho=1\end{cases}
\end{aligned}
$$

M/M/1/K - Blocking Rate

- A customer arriving while the system is in state K is BLOCKED (does not wait)!
- Therefore, rate of blocking, λ_{b} is given by

$$
\lambda_{\mathrm{b}}=\boldsymbol{\lambda} \mathbf{p}_{\mathrm{K}}
$$

- The actual arrival rate into the system is $\boldsymbol{\lambda}_{\mathrm{a}}$ given

$$
\begin{aligned}
\lambda_{\mathrm{a}} & =\lambda-\lambda_{\mathrm{b}} \\
& =\lambda\left(\mathbf{1}-\mathrm{p}_{\mathrm{K}}\right)
\end{aligned}
$$

M/M/1/K - Blocking Rate - cont'd

- The mean total delay $\mathrm{E}[\mathrm{T}]$ is given by

$$
E[T]=E[N] / \lambda_{a}
$$

Multi-Server Systems: M/M/c

- The transition rate diagram for a multiserver $M / M / c$ queue is as follows:
- Departure rate $=k \mu$ when k servers are busy

Multi-Server Systems: M/M/c cont'd

- When k servers are busy, the time until the next departure is given by:

$$
X=\min \left(\tau_{1}, \tau_{2}, \ldots, \tau_{k}\right)
$$

where τ_{i} are iid exponential r.v. with mean $1 / \mu$
The CDF for \mathbf{X} is given by (refer to definition)

$$
\begin{aligned}
\operatorname{Prob}[\mathrm{X}>\mathbf{t}] & =\operatorname{Prob}\left[\min \left(\tau_{1}, \tau_{2 \prime}, \ldots, \tau_{\mathbf{k}}\right)>\mathbf{t}\right] \\
& =\operatorname{Prob}\left[\tau_{1}>\mathbf{t}, \tau_{2}>\mathbf{t}, \ldots, \tau_{\mathbf{k}}>\mathbf{t}\right] \\
& =\operatorname{Prob}\left[\tau_{1}>\mathbf{t}\right] \operatorname{Prob}\left[\tau_{2}>\mathbf{t}\right] \ldots \operatorname{Prob}\left[\tau_{\mathbf{k}}>\mathbf{t}\right] \\
& =\mathbf{e}^{-\mu \mathrm{t}} \mathbf{e}^{-\mu \mathbf{t}} \ldots \mathbf{e}^{-\mu \mathrm{t}} \\
& =\mathbf{e}^{-k \mu t}
\end{aligned}
$$

Therefore, the time till the next departure (X) is an exponentially distributed r.v. with mean $1 /(k \mu)$

Multi-Server Systems: M/M/c cont'd

- Writing the global balance equations:
$\lambda \quad \mathbf{p}_{0}=\mu \mathbf{p}_{1}$
$j \mu \quad p_{j}=\lambda p_{j-1} \quad$ for $j=1,2, \ldots, c$
$c \mu \quad p_{j}=\lambda p_{j-1}$ for $j=c, c+1, \ldots$
\rightarrow

$$
\begin{aligned}
& p_{j}=a^{j} / j!p_{0} \quad(\text { for } j=1,2, \ldots, c) \text { and } \\
& p_{j}=\rho^{j-c} / c!a^{c} p_{0}(\text { for } j=c, c+1, \ldots)
\end{aligned}
$$

where $a=\lambda / \mu$ and $\rho=a / c$

Multi-Server Systems: M/M/c cont'd

- To find p_{0}, we resort to the fact that $\boldsymbol{\Sigma} \mathbf{p}_{\mathrm{j}}=\mathbf{1}$
$\rightarrow \quad p_{0}=\left\{\sum_{j=0}^{c-1} \frac{a^{j}}{j!}+\frac{a^{c}}{c!} \frac{1}{1-\rho}\right\}^{-1}$
The probability that an arriving customer has to wait

$$
\begin{aligned}
\operatorname{Prob}[W>0] & =\operatorname{Prob}[\mathbf{N} \geq \mathbf{c}] \\
& =\mathbf{p}_{\mathbf{c}}+\mathbf{p}_{\mathbf{c + 1}}+\mathbf{p}_{\mathbf{c}+2}+\ldots \\
& =\mathbf{p}_{\mathrm{c}} /(\mathbf{1}-\rho)
\end{aligned}
$$

Erlang-C formula

Multi-Server Systems: M/M/c cont'd

- The mean number of customers in queue (waiting):

$$
\begin{aligned}
E\left[N_{q}\right] & =\sum_{j=c}^{\infty}(j-c) \operatorname{Pr}[N(t)=j] \\
& =\sum_{j=c}^{\infty}(j-c) \rho^{j-c} p_{c} \\
& =\frac{\rho}{(1-\rho)^{2}} p_{c} \\
& =\frac{\rho}{1-\rho} \operatorname{Pr}[W>0]
\end{aligned}
$$

Multi-Server Systems: M/M/c cont'd

- The mean waiting time in queue:

$$
E[W]=E\left[N_{q}\right] / \lambda
$$

- The mean total delay in system:

$$
\begin{aligned}
E[T] & =E[W]+E[\tau] \\
& =E[W]+1 / \mu
\end{aligned}
$$

- The mean number of customers in system:

$$
\begin{aligned}
E[N] & =\lambda E[T] \\
& =E\left[N_{q}\right]+a
\end{aligned}
$$

Example 2:

- A company has a system with four private telephone lines connecting two of its sites. Suppose that requests for these lines arrive according to a Poisson process at rate of one call every 2 minutes, and suppose that call durations are exponentially distributed with mean 4 minutes. When all lines are busy, the system delays (i.e. queues) call requests until a line becomes available. Find the probability of having to wait for a line.

Example 2: cont'd

- Solution:

$$
\lambda=1 / 2,1 / \mu=4, c=4 \rightarrow a=\lambda / \mu=2
$$

$$
\rightarrow \rho=a / c=1 / 2
$$

$$
\begin{aligned}
p_{0} & =\left\{1+2+2^{2} / 2!+2^{3} / 3!+2^{4} / 4!(1 /(1-\rho))\right\}^{-1} \\
& =3 / 23
\end{aligned}
$$

$$
p_{c}=a c / c!p 0
$$

$$
=2^{4} / 4!\times 3 / 23
$$

$$
\begin{aligned}
\text { Prob }[W>0] & =p_{c} /(1-r) \\
& =2^{4} / 4!\times 3 / 23 \times 1 /(1-1 / 2) \\
& =4 / 23 \\
& \approx 0.17
\end{aligned}
$$

Waiting Time Distribution for M/M/c

- An arriving customer to the system, either
- Does not wait, if number of busy servers is less than c
- Does wait if number of busy servers is \mathbf{c}
- If there are $\mathbf{k}>\mathbf{0}$ customers waiting (as observed by an arriving customer), the total waiting time for the arriving customer $=$ the sum of: remaining service time of the earliest job to finish + service time for these k customers
- i.e. $\mathbf{W}=\tau+\tau_{1}+\tau_{2}+\ldots+\tau_{\mathrm{k}}$, where τ^{\prime} s \sim iid exponentially distributed r.v. with mean $E[\tau]=1 / \mu$

Waiting Time Distribution for M/M/c
 - cont'd

Customer does not wait, OR W = 0

Customer waits:
If there are k waiting, then $\mathrm{T}=$ sum o $\mathrm{k}+1$ iid $\exp \mathrm{r} . \mathrm{v}$ with parameter μ Remember $\mathrm{k}=0,1,2, \ldots$

Waiting Time Distribution for M/M/c
 - cont'd

- We have seen before that (given there are k ahead), the distribution of \mathbf{W} follows the gamma distribution with parameter $\mathbf{c} \mu$. I.e.

$$
f_{W}(x / N=c+k)=\frac{(c \mu x)^{k}}{k!} c \mu e^{-c \mu x} \quad x>0, k=0,1,2, \ldots
$$

Waiting Time Distribution for M/M/c
 - cont'd

- We can find the overall pdf of \mathbf{W} given \mathbf{N} >= c (i.e. summing over all ks) as follows:

$$
f_{W}(x / W>0)=\sum_{k=0}^{\infty} f_{W}(x / N=c+k) \operatorname{Pr}[N=c+k] \quad x>0
$$

- Equivalently, we can write:

$$
F_{W}(x / W>0)=\sum_{k=0}^{\infty} F_{W}(x / N=c+k) \operatorname{Pr}[N=c+k] \quad x>0
$$

Waiting Time Distribution for M/M/c
 - cont'd

- But (refer to handout for proof)

$$
\operatorname{Pro}[N=c+k / N \geq c]=(1-\rho) \rho^{k} \quad k=0,1,2 \ldots
$$

- Substituting in previous formula for $F_{w}(x / W>0)$ and simplifying, yields

$$
F_{W}(x / W>0)=1-e^{-c(1-\rho) x} \quad x>0
$$

This is all assuming the customer will have to wait!!

Waiting Time Distribution for M/M/c
 - cont'd

- The general expression for the CDF (waiting and not waiting):

$$
\begin{aligned}
F_{W}(x) & =\operatorname{Pr}[W=0] \times 1+F_{W}(x / W>0) \operatorname{Pr}[W>0] \\
& =1-\operatorname{Pr}[W>0] e^{-c \mu(1-\rho) x} \quad x>0 \\
& =1-\frac{p_{c}}{1-\rho} e^{-c \mu(1-\rho) x} \quad x>0
\end{aligned}
$$

Multi-Server Systems: M/M/c/c

- The transition rate diagram for a multiserver with no waiting room (M/M/c/c) queue is as follows:
- Departure rate $=k \mu$ when k servers are busy

(c-1) $\mu \quad \mathrm{c} \mu$

PMF for Number of Customers for M/M/c/c

- Writing the global balance equations, one can show:

$$
p_{j}=a^{j} / j!p_{0} \quad(\text { for } j=0,1, \ldots, c
$$

where $\mathbf{a}=\lambda / \mu$ (the offered load)

- To find p_{0}, we resort to the fact that $\boldsymbol{\Sigma} \mathbf{p}_{j}$
$=1$

$$
p_{0}=\left\{\sum_{j=0}^{c} \frac{a^{j}}{j!}\right\}^{-1}
$$

Erlang-B Formula

- Erlang-B formula is defined as the probability that all servers are busy:

$$
\begin{aligned}
\operatorname{Pr}[N=c] & =p_{c} \\
& =\frac{a_{c} / j!}{1+a+a^{2} / 2!+\ldots+a^{c} / c!}
\end{aligned}
$$

Expected Number of customers in M/M/c/c

- The actual arrival rate into the system:

$$
\lambda_{a}=\lambda\left(1-p_{c}\right)
$$

- Average total delay figure:

$$
E[T]=E[\tau]
$$

- Average number of customers:

$$
E[N]=\lambda_{a} E[\tau]
$$

M/G/1 Queues

- Poisson arrival process (i.e. exponential r.v. interarrival times)
- Service time: general distribution $f_{\tau}(x)$
- For M/M/1, $f_{\tau}(x)=\mu e^{-\mu x}$ for $x>0$
- The state of the M/G/1 system at time \mathbf{t} is specified by

1. $\mathbf{N}(\mathrm{t})$
2. The remaining (residual) service time of the customer being served

The Residual Service Time

- Mean residual time (see example and derivation in handout) is given by $\mathrm{E}\left[\tau^{2}\right]$
$E[R]=$
2E[$\tau]$

Mean Waiting Time in M/G/1

- The waiting time of a customer is the sum of the residual service time R^{\prime} of the customer (if any) found in service and the $\mathrm{Nq}(\mathrm{t})=\mathrm{k}-1$ service time of the customers (if any) found in queue

$$
\begin{aligned}
\mathrm{E}[\mathrm{~W}] & =\mathrm{E}\left[\mathrm{R}^{\prime}\right]+\mathrm{E}[\mathrm{Nq}] \mathrm{E}[\tau] \\
& =\mathrm{E}\left[\mathbf{R}^{\prime}\right]+\lambda \mathrm{E}[\mathbf{W}] \mathrm{E}[\tau] \\
& =\mathrm{E}\left[\mathbf{R}^{\prime}\right]+\rho \mathrm{E}[\mathbf{W}]
\end{aligned}
$$

Mean Waiting Time in M/G/1 - cont'd

- But residual service time R^{\prime} (as observed by an arriving customers) is either
- 0 is the server is free
- $\quad R$ if the server is busy
- Therefore, mean of R^{\prime} is given by

$$
\begin{aligned}
E\left[\mathbf{R}^{\prime}\right] & =0 \times \operatorname{Pro}[\mathbf{N}(\mathbf{t})=0]+\mathrm{E}[\mathbf{R}](1-\operatorname{Pro}[\mathbf{N}(\mathbf{t})=0]) \\
& =\mathrm{E}\left[\tau^{2}\right] /(2 E[\tau]) \mathbf{X} \rho \\
& =\lambda E\left[\tau^{2}\right] / 2
\end{aligned}
$$

Mean Waiting Time in M/G/1 - cont'd

- Substituting back, yields

$\lambda E\left[\tau^{2}\right]$	
2(1-p)	Remember:
$\boldsymbol{\lambda}\left(\boldsymbol{\delta}^{2}{ }_{\tau}+\mathrm{E}[\tau]{ }^{\mathbf{2}}\right)$	$\begin{aligned} & -\mathrm{E}\left[\tau^{2}\right]=\delta^{2}+\mathrm{E}[\tau]^{2} \\ & -\mathrm{C}^{2}{ }_{\tau}=\delta^{2} \tau / \mathrm{E}[\tau]^{2} \end{aligned}$
2(1-p)	
$\rho\left(1+C_{\tau}^{2}\right)$	
= -------------- E[τ]	Pollaczek-Khinchin (P-K)
2(1-p)	Mean Value Formula

Mean Delay in M/G/1 - cont'd

- The mean waiting time, $\mathrm{E}[\mathrm{T}]$ is found by adding mean service time to $E[W]$:

$$
\begin{aligned}
\mathrm{E}[\mathrm{~T}] & =\mathrm{E}[\tau]+\mathrm{E}[\mathrm{~W}] \\
& =\mathrm{E}[\tau]+\frac{\rho\left(\mathbf{1}+\mathbf{C}_{\tau}{ }^{2}\right)}{2(1-\rho)} \mathrm{E}[\tau]
\end{aligned}
$$

Example 3:

- Problem: Compare E[W] for M/M/1 and M/D/1 systems.
- Answer:

M/M/1: service time, τ, is exponential r.v. with parameter μ
$\rightarrow \mathbf{E}[\tau]=\mathbf{1} / \mu, \mathbf{E}\left[\tau^{2}\right]=\mathbf{2} / \mu^{2}, \boldsymbol{\delta}^{2}{ }_{\tau}=\mathbf{1} / \mu^{2}, \mathbf{C}^{2}=\mathbf{1}$

M/D/1: service time, τ, is constant with value $\tau=$ $1 / \mu$
$\rightarrow \mathbf{E}[\mathbf{t}]=\mathbf{1} / \mu, \mathbf{E}\left[\tau^{2}\right]=\mathbf{1} / \mu^{2}, \boldsymbol{\delta}^{\mathbf{2}}=\mathbf{0}, \mathbf{C}^{\mathbf{2}}=\mathbf{0}$

Example 3: cont'd

- Answer: cont'd

Substitute in P-K mean value formula M/M/1:

M/D/1:

$$
E\left[W_{M / D / 1}\right]=\frac{\lambda E\left[\tau^{2}\right]}{2(1-\rho)}=\frac{\rho}{2(1-\rho)} \mathbf{E [\tau]}
$$

$$
=\frac{\mathbf{1}}{\mathbf{2}} \mathbf{E}\left[\mathbf{W}_{\mathbf{M} / \mathrm{M} / \mathbf{1}}\right] \quad \begin{aligned}
& \text { The waiting time in an } \\
& \mathrm{M} / \mathrm{D} / 1 \text { queue is half of } \\
& \text { that of an } \mathrm{M} / \mathrm{M} / 1 \text { system }
\end{aligned}
$$

M/G/1 with Priority Service Discipline

- Handles K priority classes of customers
- Head-of-line priority service discipline
- Type $k=\{1,2, \ldots, K\}$ arrive according to Poisson arrival process
- A separate queue is kept for each priority class
- Server utilization from type \mathbf{k} customers:

$$
\rho_{\mathrm{k}}=\lambda_{\mathrm{k}} \mathrm{E}\left[\tau_{\mathrm{k}}\right]
$$

- Total server utilization

$$
\rho=\rho_{1}+\rho_{2}+\ldots+\rho_{k}<\mathbf{1}
$$

for a stable system

- Assume class 1 is the highest priority while class K is the lowest

Mean Waiting Time in M/G/1 with Priority Service Discipline

- An arriving customer of type 1 finds $\mathrm{N}_{\mathrm{q} 1}(\mathrm{t})=\mathrm{k} 1$ type 1 customers in queue
- Assuming FCFS for each queue
- The mean waiting time for type one customer:

$$
E\left[W_{1}\right]=E\left[R^{\prime \prime}\right]+E\left[N_{q_{1}}\right] E\left[\tau_{1}\right]
$$

Where $E\left[R^{\prime \prime}\right]$ is the residual time of the customer (if any) found in service

Mean Waiting Time in M/G/1 with Priority Service Discipline - cont'd

- We also know (Little's formula) that:

$$
E\left[N_{q 1}\right]=\lambda_{1} E\left[W_{1}\right]
$$

Substituting and solving for $\mathrm{E}[\mathrm{W} 1]$, yields,

$$
E\left[W_{1}\right]=E\left[R^{\prime \prime}\right] /\left(1-\rho_{1}\right)
$$

Mean Waiting Time in M/G/1 with Priority Service Discipline - cont'd

- Consider a type 2 customer - Because of the priority scheme one can write

$$
\begin{aligned}
\mathrm{E}\left[\mathbf{W}_{2}\right]= & \mathbf{E}\left[\mathbf{R}^{\prime \prime}\right]+\mathbf{E}\left[\mathbf{N}_{\mathbf{q} 1}\right] \mathbf{E}\left[\tau_{1}\right]+\mathbf{E}\left[\mathbf{N}_{\mathbf{q} 2}\right] \mathrm{E}\left[\tau_{2}\right]+ \\
& \mathbf{E}\left[\mathbf{M}_{1}\right] \mathrm{E}\left[\tau_{1}\right]
\end{aligned}
$$

Where

- $E\left[R^{\prime \prime}\right]$ is the residual time of the customer (if any) found in service
- $\quad \mathbf{E}\left[\mathbf{N}_{\mathrm{a}_{1}}\right] \mathbf{E}\left[\tau_{1}\right]$ time to service already existing class 1 customers (remember $E\left[N_{q_{1}}\right]=\lambda_{1} E\left[W_{1}\right]$)
- $\quad \mathbf{E}\left[\mathbf{N}_{\mathrm{q}_{2}}\right] \mathrm{E}\left[\tau_{2}\right]$ time to service already existing class 2 customers (remember $\mathrm{E}\left[\mathrm{N}_{\mathrm{q} 2}\right]=\boldsymbol{\lambda}_{2} \mathrm{E}\left[\mathrm{W}_{2}\right]$)
- $E\left[M_{1}\right] E\left[\tau_{1}\right]$ time to service class 1 customers arriving during our customer waiting time $-E\left[M_{1}\right]=\lambda_{1} E\left[W_{2}\right]$

Mean Waiting Time in M/G/1 with
 Priority Service Discipline - cont'd
 - $E\left[M_{1}\right]$ is given by

$$
E\left[M_{1}\right]=\lambda_{1} E\left[W_{2}\right]
$$

- Substituting and solving for $\mathrm{E}\left[\mathrm{W}_{2}\right]$, yields,
$E\left[W_{2}\right]=$

$$
\left(1-\rho_{1}\right)\left(1-\rho_{1}-\rho_{2}\right)
$$

> Mean Waiting Time in M/G/1 with Priority Service Discipline - cont'd

- In general we can show the mean waiting time for a customer of type k, $E\left[W_{k}\right]$ is given by

$$
\begin{aligned}
& \text { E[R"] } \\
& E\left[W_{k}\right]= \\
& \left(1-\rho_{1}-\ldots-\rho_{k-1}\right)\left(1-\rho_{1} \ldots-\rho_{k}\right)
\end{aligned}
$$

Mean Waiting Time in M/G/1 with
 Priority Service Discipline - cont'd
 - What is $E\left[R^{\prime \prime}\right]$?

- Remember $R^{\prime \prime}$ is the residual service time of a customer (if any) found in service - of any type
- Recall that mean residual time $E\left[R^{\prime \prime}\right]$ is computed by

$$
E\left[R^{\prime \prime}\right]=\lambda E\left[\tau^{2}\right] / 2 \quad \text { (refer to slide 52) }
$$

But $E\left[\tau^{2}\right]$ for which type of customers?

Mean Waiting Time in M/G/1 with Priority Service Discipline - cont'd

- $E\left[\tau^{2}\right]$ - is the mean service-time squared for ANY type:
$E\left[\tau^{2}\right]=\left(\lambda_{1} / \lambda\right) E\left[\tau_{1}{ }^{2}\right]+\left(\lambda_{2} / \lambda\right) E\left[\tau_{2}{ }^{2}\right]+\ldots+\left(\lambda_{K} / \lambda\right) E\left[\tau_{K}{ }^{2}\right]$
where $\boldsymbol{\lambda}=\boldsymbol{\lambda}_{1}+\boldsymbol{\lambda}_{\mathbf{2}}+\ldots \boldsymbol{\lambda}_{\mathrm{K}}$

Mean Waiting Time in M/G/1 with
 Priority Service Discipline - cont'd

- Therefore, the mean waiting time of type k customers:

$$
E\left[W_{k}\right]=\frac{\sum_{j=1}^{K} \lambda_{j} E\left[\tau_{j}^{2}\right]}{2\left(1-\rho_{1}-\cdots-\rho_{k-1}\right)\left(1-\rho_{1}-\cdots-\rho_{k}\right)}
$$

- The mean delay for type \mathbf{k} customer is then equal to

$$
E\left[T_{k}\right]=E\left[W_{k}\right]+E\left[\tau_{k}\right]
$$

M/G/1 Analysis Using Embedded Markov Chain

- Pollaczek-Khinchin (P-K) Transform Equation

$$
G_{N}(z)=\frac{(1-\rho)(z-1) \hat{\tau}(\lambda(1-z))}{z-\hat{\tau}(\lambda(1-z))}
$$

where:

- $\mathbf{G}_{\mathrm{N}}(\mathbf{z})$: moment generating function of the r.v. $\mathbf{N (t)}$
- $\hat{\tau}(s)$ is the Laplace transform of r.v. τ

Example 4:

- Problem: Use the P-K transform equation to find the steady state pmf of an M/M/1
- Answer:

For an M/M/1 the steady state pmf for $\mathbf{N (t)}$ is given by (refer to slide 13)

$$
\begin{aligned}
\mathbf{p}_{\mathrm{j}} & =\operatorname{Prob}[\mathrm{N}(\mathrm{t})=\mathrm{j}] \\
& =(1-\rho) \rho^{\mathbf{j}}
\end{aligned}
$$

Example 4: cont'd

- Answer: cont'd

The moment generating function, $\mathbf{G}_{\mathrm{N}}(\mathbf{z})$, is then given by

$$
\begin{aligned}
G_{N}(z) & =\sum_{j=0}^{\infty} p_{j} z^{j} \\
& =\sum_{j=0}^{\infty}(1-\rho) \rho^{j} z^{j} \\
& =\frac{(1-\rho)}{(1-\rho z)}
\end{aligned}
$$

Example 4: cont'd

- Answer: cont'd

Now let's use the P-K transform and see if we get the same answer!
For $M / M / 1, \tau$ is $\exp r . v \rightarrow$ the pdf for τ is

$$
f_{\tau}(t)=\mu e^{-\mu t} \quad t>0
$$

The Laplace transform of τ is given by

$$
\begin{aligned}
\hat{\tau}(s) & =\int_{0}^{\infty} f_{\tau}(t) e^{-s t} d t \\
& =\frac{\mu}{s+\mu}
\end{aligned}
$$

Example 4: cont'd

- Answer: cont'd

Therefore, $\hat{\tau}(\lambda(1-z))$ is given by

$$
\hat{\tau}(\lambda(1-z))=\frac{\mu}{\lambda(1-z)+\mu}
$$

We are now in a position to substitute in the P-K transform equation

Example 4: cont'd

- Answer: cont'd

$$
\begin{aligned}
G_{N}(z) & =\frac{(1-\rho)(z-1) \bar{\tau}(\lambda(1-z))}{z-\bar{\tau}(\lambda(1-z))} \\
& =\frac{(1-\rho)(z-1)(\mu / \lambda(1-z)+\mu)}{z-(\mu / \lambda(1-z)+\mu)} \\
& =\frac{(1-\rho)(z-1) \mu}{(\lambda-\lambda z+\mu) z-\mu} \\
& =\frac{(1-\rho)}{(1-\rho z)} \quad \begin{array}{l}
\text { Which the same M.G.F for } \\
\mathrm{N}(\mathrm{t}) \text { derived previously! }
\end{array}
\end{aligned}
$$

Example 5:

- Problem: M/H2/1

What is $\operatorname{Prob}[N(t)=k]=$?

Example 5: cont'd

- Answer:

The pdf of the service time, τ, is

$$
f_{\tau}(t)=\frac{1}{9} \lambda e^{-\lambda t}+\frac{8}{9} 2 \lambda e^{-2 \lambda t} \quad t>0
$$

The mean service time, $\mathbf{E}[\tau]$ is given by

$$
\begin{aligned}
\mathrm{E}[\tau] & =(1 / 9) \mathrm{X} 1 / \lambda+(8 / 9) \mathrm{X} 1 /(2 \lambda) \\
& =5 /(9 \lambda)
\end{aligned}
$$

$\Rightarrow \rho=\lambda E[\tau]=5 / 9$
The Laplace transform is given by

$$
\bar{\tau}(s)=\frac{1}{9} \frac{\lambda}{s+\lambda}+\frac{8}{9} \frac{2 \lambda}{s+2 \lambda}
$$

and

$$
=\frac{18 \lambda^{2}+17 \lambda s}{9(s+\lambda)(s+2 \lambda)}
$$

Example 5: cont'd

- Answer:

Substituting $\lambda(1-z)$ for every s in the

 previous expression, and writing $\mathbf{G}_{\mathbf{N}}(\mathbf{z})$, yields,Partial Fraction

$$
G_{N}(z)=\frac{(1-\rho)(z-1) \hat{\tau}(\lambda(1-z))}{z-\hat{\tau}(\lambda(1-z))}
$$

Expansion - How?

$$
\begin{aligned}
& =\frac{(1-\rho)(35-17 z)(z-1)}{9(2-z)(z-7 / 3)(z-5 / 3)} \\
& =(1-\rho)\left\{\frac{1 / 3}{1-3 z / 7}+\frac{2 / 3}{1-3 z / 5}\right\}
\end{aligned}
$$

Example 5: cont'd

- Answer:

Therefore, $\mathbf{G}_{\mathbf{N}}(\mathbf{z})$ is given by

$$
G_{N}(z)=(1-\rho)\left\{\frac{1}{3} \sum_{k=0}^{\infty}\left(\frac{3}{7}\right)^{k} z^{k}+\frac{2}{3} \sum_{k=0}^{\infty}\left(\frac{3}{5}\right)^{k} z^{k}\right\}
$$

Since the coefficient of z^{k} is $\operatorname{Prob}[N(t)=k]$, then we finally have:

$$
\operatorname{Pr}[N(t)=k]=\frac{4}{27}\left(\frac{3}{7}\right)^{k}+\frac{8}{27}\left(\frac{3}{5}\right)^{k} \quad k=0,1, \cdots
$$

Total Delay Distribution for M/G/1 System

- If, \mathbf{T} is the total delay variable, then the Laplace transform of T is given by (see handout for derivation)

$$
\widehat{T}(s)=\frac{(1-\rho) s \hat{\tau}(s)}{s-\lambda+\lambda \hat{\tau}(s)}
$$

P-K transform equation

- The pdf for $\mathrm{T}_{\mathrm{t}} \mathrm{f}_{\mathrm{T}}(\mathbf{t})$, is obtained by inverting the above expression analytically or numerically

Waiting Time Distribution for M/G/1 System

- Since $\mathbf{T}=\mathbf{W}+\tau \rightarrow$ Therefore,

$$
\widehat{T}(s)=\widehat{W}(s) \widehat{\tau}(s)
$$

- Hence, the Laplace transform of the waiting time is given by

$$
\widehat{W}(s)=\frac{(1-\rho) s}{s-\lambda+\lambda \hat{\tau}(s)}
$$

P-K transform equation

Example 6:

- Problem: Verify the result obtained previously for the total delay time distribution of an $M / M / 1$ queue using P K transform equations for M/G/1 systems
- Answer: for M/M/1 the service time, τ, is \exp r.v. $\Rightarrow f_{\tau}(t)=\mu e^{-\mu t} \quad t>0$
or $\hat{\tau}(s)=\frac{\mu}{s+\mu}$

Example 6: cont'd

- Substituting in the P-K transform equations

$$
\begin{aligned}
\hat{T}(s) & =\frac{(1-\rho) s \mu}{(s+\mu)(s-\lambda)+\lambda \mu} \\
& =\frac{(1-\rho) \mu}{s-(\lambda-\mu)}
\end{aligned}
$$

Inverting the above expression, yields

$$
\begin{aligned}
f_{T}(t) & =\mu(1-\rho) e^{-\mu(1-\rho) t} \quad t>0 \\
& =(\mu-\lambda) e^{-(\mu-\lambda) t} \quad t>0
\end{aligned}
$$

Example 6: cont'd

- This means the total delay is exponentially distributed with mean1/(μ λ) - Same result as obtained before! (refer to slide 23)
- The waiting time is obtained using

$$
\begin{aligned}
\widehat{W}(s) & =\frac{(1-\rho)_{s}}{s-\lambda+\lambda \hat{\tau}(s)} \\
& =(1-\rho) \frac{s+\mu}{s+\mu-\lambda} \\
& =(1-\rho)\left\{1+\frac{\lambda}{\text { Dr. Ashrafs. Hasean Malmotic } \mu-\lambda}\right\}
\end{aligned}
$$

Example 6: cont'd

- Therefore the pdf of W is given by

$$
f_{W}(t)=(1-\rho) \delta(t)+\lambda(1-\rho) e^{-\mu(1-\rho) t} \quad t>0
$$

- The $\delta(\mathrm{t})$ term indicates there is a ZERO waiting time with probability equal to $1-\rho$ - i.e. when server is free

