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Random/Stochastic Processes

Consider a random experiment specified by the
outcomes ¢ from some sample space S, by the
events defined on S, and by the probabilities on
these events. Suppose that every outcome C in
S, we assign a function of time according to
some rule:

X(t, Q= tinI

The graph of X(t, €) versus t, for { fixed, is call a

REALIZATION or sample path of the random
process

A stochastic process is said to be discrete-time if the

index set I is a countable set
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Random/Stochastic Processes -
Example 4

e Let { be a number selected at random
from the interval S =[0,1], and let b1, b2,
... be the binary expansion of C:

7=352"
i=l

Define the discrete-time random process
X(n, ¢) by

X(n,)=b, forn=1,2..
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Random/Stochastic Processes -
Example 4

* Realizations of the random process
X(n,f)=b, forn=1,2,...

For { = 2-2+2-3+42"7 X, C?
=0.3828125
0

For any (, you can produce
a realization of X(n, {)
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Random/Stochastic Processes -
Example 5

e Temperature recordings during day
versus time
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Stationary Random Processes

¢ Nature of randomness observed in the process
does not change with time

¢ A discrete-time or continuous-time random
process X(t) is stationary if the joint distribution
of any set of sample does not depend on the
placement of the time origin:

Joints CDF of X(t1), X(t2), ..., X(tk) is the same as
joint CDF of X(t1+1), X(t2+1), ..., X(tk+1)
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Wide-Sense Stationary Random
Processes

e In many situations we can not determine
whether a random process is stationary, but we
can determine whether the mean is a constant:

my(t) =m forallt

And whether the autocoverience (or
autocorrelation) is a function of t1-t2 only:

Cy(t1,12) = Cy(t1-t2)

= X(t) is a wide-sense stationary (WSS) process
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Ergodic Processes

 Time averages = ensample average
(expected value)

o Stats along the time access are the same
as those resulting from different
realizations
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Markov Process

e Arandom Rrocess X(t) is a Markov Process if the
future of the process given the present is
independent of the past.

e For arbitrary times: t,<t,<...<t . <t, .,

Prob[X(t,,1) = X1/ X(t) =X, ..., X(t;)=Xx,]
= Prob[X(t,.,) = X../X(t)=x]

Or (for discrete-valued)

Prob[a<X(t,,,)<b/X(t)=X,, ..., X(t,)=X,]
= Prob[a<X(t,,,)<b/X(t)=x,]

Markov Property
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Markov Chain

e An integer-valued Markov random process is
called a Markov Chain

¢ The joint pmf for k+1 arbitrary time instances is
given by:

Prob[X(t,.,) = Xy, X(t)=X,, ..., X(t;)=X,]

= Prob[X(t,1) = X1/ X(t)=x,] X
Prob[X(t,) = x,/X(t.1)=X1] X

’ transition probabilities ‘

;;'Ob[x(tz) = X,/ X(t;)=x,] X
Prob[X(t,)=x,]

’ € pmf of the initial time ‘
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Discrete-Time Markov Chains

e Let X, be a discrete-time integer values
Markov Chain that starts at n = 0 with
pmf

p;(0) = Prob[X, = j1 j=0,1,2, ...
Prob[X, =i , X, ;=i,.1/::rXo=io]

= PrOb[xn=in/ xn-1=in-1] x
I:rObI:xn-l:in-l/ Xn-2=in-2] X

Same as the previous slide

Prob[X; =i,/ X,=i,] X but for discrete-time
Prob[X,=i,]
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Discrete-Time Markov Chains -
cont’d (2)
e Assume the one-step state transition

probabilities are fixed and do not change with
time:

Prob[X,,,=j/X,=i] = p; foralln
= X, is said to be homogeneous in time

e The joint pmf for X, X,,_y, ..., X4, X, is then given
by

PIX =i, X _=i_,...X,=i]
=D i XD i X XD XD 0)
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Discrete-Time Markov Chains -
cont’d (3)
e Thus X, is completely specified by the initial pmf

p;(0) and the matrix of one-step transition
probabilities P:

P Poi P
' P P P
1.e. rows of P pP=
add to UNITY ) ) )
Pio Piun Pin

1= PlX,, =jlX,=i1=)p,
j J
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Example 6: two-state Markov Chain

e Onday 0 a house has two new light bulbs in
reserve. The probability that the house will need
a single new light bulb during day n is p and the
probability that it will not need any is q = 1-p.
Let Yn be the number of new light bulbs left in
house at the end of day n.

¢ Ynis a Markov chain with state transition
probability as shown
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Example 6: two-state Markov Chain
- cont’d

¢ The state transition matrix P is given by

Yn=0 1 2
L
I 0 O
P=lp g 0
0 p ¢
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The n-step Transition Probabilities

e Let P(n) = {p;;(n)} be the matrix of n-step
transition pro':abilities, where

pij(n) = Prob[X,,, =j/ X =1i] n=0;ij=0

Note:

Prob[X, .. =3 / X, = i] = Prob[X, = j / X, = i] for all n — why?

Transition probabilities do not depend on time
(homogeneous)

It can be shown that:
P(n) = {p;;(n)} = P"— where P is the 1-step
transition probability matrix
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The State Probabilities

e It can be shown that the state pmf at
time n is obtained by multiplying the
initial state pmf, p(0), by the n-step
transition matrix, P(n), in other words

p(n) = p(0) P(n)
= p(0) P

Make a distinction between small p and
capital P!
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Example 7:

* Consider the problem given in Example 6

— find the n-step transition matrix and
compute the state pmf p(n)
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Example 7: cont’d

Answer: The n-step transition matrix can be found
by multiplying P (the 1-step transition matrix)
by itself n times or alternatively we can use:

P,,(n) = Prob[no new light bulbs needed in n days] = q"

P,1(n) = Prob[1 light bulb needed in n days] = n p q"!

P,o(n) = Prob[2 light bulbs needed in n days]

=1 = py,(n) = pyy(Nn)
P1o(n) = Prob[the one light bulb is not needed in n days] =1 - q"
P;1(n) = Prob[ the one light bulb is not needed in n days] = q

P1x(n) =0

Poo(n) =1
Poi(n) =0
Po2(n) =0
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Example 7: cont’d

* Therefore, the n-step transition matrix is
given by

1 0 0
P" = 1-g" qg" 0
1=q" —npq" npq" q"

10/12/2003 Dr. Ashraf S. Hasan Mahmoud 20




Example 7: cont’d

e Notes:

¢ For all transition matrices, sum of any row
SHOULD equal to ONE

e Forq=1-p<1- asn>ow, then P"limitis

n -0

1
1

oS O O
oS O O
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Example 7: cont’d

e Therefore, if we start with 2 light bulbs,
then the state pmf p(n) approaches

p(n) = p(0) P {00

pm) o o 11 0 o|=[1 0 g
1 0 0

Meaning — if n approaches oo, then it is almost certain we will
end up in the 0 (no light bulbs) state
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Steady State Probabilities

. Some Markov chains settle into stationary behavior. As n > o, the n-step
transition matrix approaches a matrix in which all rows are equal to the
same pmf, that is

p;(n) > 3
Therefore,

pPi(n) > 2 mpi(0) =
1

> 5= 2Py
i
Or in matrix form
N=nP -wherel ={m}

In general the above formation has n-1 Iinearll independent equations — the
additional equation required is provided by

2m|=1 or
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Steady State Probabilities - cont’d
2

e In other words:

e At steady state (n is very large) — the nth state
pmf is the same as the n+1st state pmf

¢ Meaning the nth (n very large) state pmf is time
invariant (steady state)

m=n~°P

M =>» is the steady state pmf
P = is the 1-step transition matrix
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Steady State Probabilities - cont’d
3

e Checking the dimensions:

M => is the steady state pmf of dimensions =
1Xk - assuming k states
=[my m, 15 ... ;] where 1; 1<i<k s the
steady state probability for being in state
i

P = is the 1-step transition matrix of
dimensions k X k

= {p;;} is the Probability of transitioning
from state i toj

Recall that all rows of Psumto 1
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Example: 8

Problem: A Markov model for packet speech
assumes that if the nth packet contains
silence then the probability of silence in
the next packet is 1-a and the probability
of speech activity is a. Similarly if the nth
packet contains speech activity, then the
probability of speech activity in next
packet is 1-p and the probability of
silence is (3. Find the stationary state pmf.
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Example: 8 - cont’d

Answer: The state diagram is as shown:

The 1-step transition probability, P, is given
by:

P{l—a a} ’Q 0
'8 1_’8 1-a 1-B

State 0: silence

State 1: speech
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Example: 8 — cont’d 2

Answer: The steady state pmf N =[m, m,] can be
solved for using

n=n°e

[, m]=[n, HJXF_; lfrﬁ}

Or

Or
T = (1-a) 1y + B m
m=a m+ (1-f)m

In addition to the constraintthat iy, + m;, = 1
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Example: 8 — cont’d 3

Answer: Therefore steady state pmf
N =[mry ] is given by:

o = P/ (a+P)
m = o/ (a+p)

Note that sum of all 1;’s should equal to 1!!
Fora =1/10,3=1/5=21N =[2/3 1/3]
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Example: 8 - cont’d 4

Answer: Alternatively, one can find a general
form for P" and take the limit as n> o,

P" can be shown to be:

pro | p al (d-a-p'|a -a
a+pB| B «a a+p |-B P

Which clearly approaches:

. 1 |8 «a
lim P" =
n o a+B B a
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Example: 8 — cont’d 5

Answer: If the initial state pmf is p,(0) and
p;1(0) = 1-py(0)

Then the nth state pmf (n 2> «) is given by:
p(n) as n> «© = [py(0) 1- py(0)] P"
= [B/ (a+B) of (a+p)]

Same as the solution obtained using the 1-
step transition matrix!!
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Continuous-Time Markov Chains

e Back to the definition:

Prob[X(t,.,) = X1, X(t,) =X, .., X(t;)=X,]

= Prob[X(t,.1) = X,.1/X(t)=x,] X
Prob[X(t,) = x,/X(t,.1)=X1] X

Prob[X(t;) = X,/X(t,)=x,] X
Prob[X(t,)=x,]

¢ For continuous-time, the transition probability
from an arbitrary time s to an arbitrary time
s+t:
Prob[X(s+t) =j/ X(s)=i] t=0

10/12/2003 Dr. Ashraf S. Hasan Mahmoud

32




Continuous-Time Markov Chains -
cont’d
¢ For time-HOMOGENEOUS Markov chains:

Prob[X(s+t) = j / X(s) = i]
= Prob[X(t) =j/X(0)=i] t=0

e Let P(t) = {p;(t)} denote the matrix of
transition probabilities in an interval of length t.
* Note: P(0) = I (identity matrix)
since p;(0) = 1, and p;(0) = 0
(in zero time if in state i, you will remain in i; and there is no
chance in moving to state j)
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Example 9: Poisson Process

o Consider a Poisson Process:
Pij(t) = Prob[j-i events in t seconds]

= Po,;-i(t)

Therefore the transition matrix is given by

et qtewct (at)?/2le-at

P(t) = 0 eat ate-ot
0 0 et ate-at
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Example 9: Poisson Process —
cont’d

e  What is the dimension of the previous matrix?

e For avery small interval t = 5, e® = 1-ad
Therefore for a small interval, the transition matrix is given by

1-ad ad 1}
P(®) = 0 1-ad ad .
0 0 1-00 ad

Where terms including 32 or higher have been neglected (i.e.
the probability of more than on transition in a very short
time interval is negligible)

10/12/2003 Dr. Ashraf S. Hasan Mahmoud 35

Example 9: Poisson Process -
cont’d

e This is referred to as a pure birth process!

e State variable: number of events
(arrivals) in 6 seconds

1-ad 1-ad 1-ad
W@E\
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State Occupancy Time

e How much time does a process spends in
a particular state?

38 For all continuous-time Markov Chains,
X(t) remains at a given value (state) for

an exponentially-distributed random
time

e Why?
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State Occupancy Time - cont’d

e The time spent in state i, T;, is an
exponential r.v. with some mean 1/v; :

Prob[T;,>t] = eVt

Therefore, the mean state occupancy time is
1/v; — usually different for each state
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Transition Rates and Time-
Dependent State Probabilities

e Consider the transition probabilities in a very
short time duration 5 seconds

The probability the process remains in state i during
the interval is:

Prob[T, > 5] = e
=1-v3/1 + v, 5/2! - ...
=1-v3 + O(5)

Where O(5) denotes terms that become negligible
relative to 5 as o approaches zero
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[ T TAITSTUIUIT IRAtl€S diTu T ITITe=
Dependent State Probabilities -
cont’d

e The exponential distribution of the state occupancy time,
T, implies that it is highly unlikely that the process will
make more than one transition from the ith state &

Possibilities: either remain in state i Zero transitions
or
leave state i One transition

pi(3) = Prob[T; > 3]
=1-v;d0+ 0(J)

Or

1-p;(3) =vd = The rate at which process leaves
state i is equal to v;
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Transition Rates and Time-Dependent
State Probabilities — cont’d 2

e Once the process leaves state i, it enters state j with
probability q;

e  Therefore,

p;(3) = (1-p;i(3)) aj;
=V; q; 5 + 0(3)
= Y 3 + 0(d)
Y;j is the rate at which the process X(t) enters state j from state i
Hence, y; = -v; 1! Or
1-p;i(d) =y;d
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Transition Rates and Time-Dependent
State Probabilities — cont’d 3

e To summarize:

Prob[leaves state i to state j in 0 seconds]

= p;(9)

= Vi o + 0(9) Leaving state i to state j
And
1 —p;(3) =v; 0 + 0(d) Leaving state i
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Transition Rates and Time-Dependent
State Probabilities — cont’d 4

e Let's divide by 4 and take the limit as
goes to zero = to find the instantaneous
rates of transition

pii(3) / 0>
(1-pid) /0> vy

Note that O(6)/ 6> 0asd~> 0
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Transition Rates and Time-Dependent
State Probabilities — cont’d 5

* Let's define p;(t) = Prob[X(t)=j]

Then for 5 > 0, one can write:

p;(t+3) = Prob[X(t+3) = j] Adding over all possible
routes to state j

= 3 Prob[X(t+3)=j/X(t) = i] Prob[X(t) = i]
i

=2 p;(3) pi(t)
i
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Transition Rates and Time-Dependent
State Probabilities — cont’d 6

Now subtract p;(t) from both sides

pi(t+3) - pi(t) = Z p;(3) pi(t) + (py(3) -1)p;(t)
i)

divide by 3 and take the limitas 3> 0

(1) =S v. p(t Note: if " = {Y.} is the matrix of
P J( ) f ¥ P(t) transition rates Jfrom state i to state

! j, then the rows of I" add to zeros

This is a form of the Chapman-Kolmogrov Equations
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Example 10:

Problem: Consider a queueing system that
alternates between two states. In state 0, the
system is idle and waiting from a customer to
arrive. This idle time is an exponential r.v. with
mean 1/a. In state 1, the system is busy
servicing a customer. The time in the busy state
is an exponential r.v. with mean 1/p. Find the
state probabilities p,(t) and p,(t) in terms of the
initial state probabilities p,(0) and p,(0)
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Example 10: cont’d

Answer: The system moves from state 0 to state 1
at rate of a, and from state 1 to state 0 at rate f.

Therefore: y,, = -a Yo1 = Q
Vo=B V=B <>

Using C-K equations

P'o(t) = -a po(t) + B py(t)
P'1(t) = ape(t) - B py(t)

In addition to the constraint py(t) + p,(t) = 1
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Example 10: cont’d

Answer: Solving these differential equations,
yields,

Po(t) = B/(a+P) + (Po(0) - B/(a+p) ) e(a+p)t
p.(t) = a/(a+B) + (p,(0) - a/(a+p) ) e+Mr
The above specify the probabilities at any instant t!

where p,(0) and p,(0) are the initial conditions
needed to determine the constants in the
differential equations solutions.
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Example 10: cont’d

Answer: The steady state distribution can be
obtained if we lett > «

Po(t) = B/(a+B) ast-> o
p1(t) = a/(a+B) ast-> o

Note this steady state distribution is independent of
t and also independent of the initial state
probabilities p,(0) and p,(0).
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Steady State Probabilities and
Global Balance Equations

¢ Remember C-K equations:

P(t) = Zy;p(t) forallj
1

If equilibrium exists, then p’;(t) = 0 (i.e. no change in the state
probabilities with time)

Therefore, at steady state (if it exists), the following holds:

0 = Zy;p(t) forallj
i

These are referred to as the GLOBAL BALANCE EQUATIONS!

All flows (rate X probability) algebraically added for any state j
equal to ZERO
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Example 11:

e Problem: Consider the queueing system in
Example 10 - find the steady state probabilities.

e Answer:

Yoo = - Yo1 = @
Yo = B Vi = -B 00“
Applying the global balance equations, yields

am, = By and B = am,

In addition to the constraints that: iy + m;, = 1
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Example 11: cont’d

e Answer: Solving the previous simple
equations leads to:

o = B/(a+p)

m = of (a+pB) 00“
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Example 12:

e Problem: The M/M/1 single-server
queueing system

A A A A A A
o@odBo@BoRB @B

W u H H H H
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Example 12: cont’d

e Answer: The state transition rates:
e Customers arrive withrateA> y,;,, =A fori=0,1, 2,

«  When system is not empty, customers depart at rate p >
Viia=H fori=1,23,..

* The global balance equations:
A Po=Hpy forj=0
(A + p)p; = Apj.y + ppjyy forj=1, 2, ..

> Apj - UPj+1 = Apj,—pp; forj=1,2, ...
= constant
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Example 12: cont’d

e  Answer:
Forj = 1, we have
Ap, — pp, = constant

Therefore the constant is equal to zero.

Hence,

Ap;.; = pp; or )
p; = (A/u) p;., forj=1,2, ..

By simple induction:
P; =P Py

wherep = A/l
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Example 12: cont’d

° Answer:
To obtain p,, we use the fact that

1=3p; = (1+p+p?+...)P,
j

note the above series converges only for p < 1 or equivalently A

<p

Therefore, p, = 1-p

In general, the steady state pmf for the M/M/1 queue is given

by

P; = (1-p)p
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