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Random/Stochastic Processes
• Consider a random experiment specified by the 

outcomes ζ from some sample space S, by the 
events defined on S, and by the probabilities on 
these events. Suppose that every outcome ζ in 
S, we assign a function of time according to 
some rule:

X(t, ζ) =   t in I

The graph of X(t, ζ) versus t, for ζ fixed, is call a 
REALIZATION or sample path of the random 
process

A stochastic process is said to be discrete-time if the 
index set I is a countable set
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Random/Stochastic Processes –
Example 4
• Let ζ be a number selected at random 

from the interval S =[0,1], and let b1, b2, 
… be the binary expansion of ζ:

Define the discrete-time random process 
X(n, ζ) by

X(n, ζ) = bn for n =1, 2, …
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Random/Stochastic Processes –
Example 4
• Realizations of the random process 

X(n, ζ) = bn for n =1, 2, …

For ζ = 2-2+2-3+2-7

= 0.3828125

n

X(n, ζ)

0

1

1 2 3 4 5 6 7 8
For any ζ, you can produce
a realization of X(n, ζ)
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Random/Stochastic Processes –
Example 5
• Temperature recordings during day 

versus time
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Stationary Random Processes
• Nature of randomness observed in the process 

does not change with time

• A discrete-time or continuous-time random 
process X(t) is stationary if the joint distribution 
of any set of sample does not depend on the 
placement of the time origin:

Joints CDF of X(t1), X(t2), …, X(tk) is the same as 
joint CDF of X(t1+τ), X(t2+τ), …, X(tk+τ) 
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Wide-Sense Stationary Random 
Processes
• In many situations we can not determine 

whether a random process is stationary, but we 
can determine whether the mean is a constant:

mX(t) = m     for all t

And whether the autocoverience (or 
autocorrelation)  is a function of t1-t2 only:

CX(t1,t2) = CX(t1-t2)

Î X(t) is a wide-sense stationary (WSS) process
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Ergodic Processes
• Time averages = ensample average 

(expected value)

• Stats along the time access are the same 
as those resulting from different 
realizations
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Markov Process
• A random process X(t) is a Markov Process if the 

future of the process given the present is 
independent of the past.

• For arbitrary times: t1<t2<…<tk<tk+1

Prob[X(tk+1) = xk+1/X(tk)=xk, …, X(t1)=x1]  
=   Prob[X(tk+1) = xk+1/X(tk)=xk]

Or (for discrete-valued)

Prob[a<X(tk+1)≤b/X(tk)=xk, …, X(t1)=x1] 
=   Prob[a<X(tk+1)≤b/X(tk)=xk]

Markov Property
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Markov Chain
• An integer-valued Markov random process is 

called a Markov Chain

• The joint pmf for k+1 arbitrary time instances is 
given by:

Prob[X(tk+1) = xk+1, X(tk)=xk, …, X(t1)=x1]

= Prob[X(tk+1) = xk+1/X(tk)=xk] X
Prob[X(tk) = xk/X(tk-1)=xk-1] X
…
Prob[X(t2) = x2/X(t1)=x1] X
Prob[X(t1)=x1]  pmf of the initial time

transition probabilities



test

6

10/12/2003 Dr. Ashraf S. Hasan Mahmoud 11

Discrete-Time Markov Chains
• Let Xn be a discrete-time integer values 

Markov Chain that starts at n = 0 with 
pmf

pj(0) = Prob[X0 = j]     j=0,1,2, …

Prob[Xn=in, Xn-1=in-1,…,X0=i0] 
= Prob[Xn=in/ Xn-1=in-1] X

Prob[Xn-1=in-1/ Xn-2=in-2] X
….
Prob[X1=i1/ X0=i0] X
Prob[X0=i0]

Same as the previous slide 
but for discrete-time 
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Discrete-Time Markov Chains –
cont’d (2)
• Assume the one-step state transition 

probabilities are fixed and do not change with 
time:

Prob[Xn+1=j/Xn=i] = pij for all n

Î Xn is said to be homogeneous in time

• The joint pmf for Xn, Xn-1, …, X1,X0 is then given 
by
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Discrete-Time Markov Chains –
cont’d (3)
• Thus Xn is completely specified by the initial pmf

pi(0) and the matrix of one-step transition 
probabilities P:





















=

....
...

....
...
...

210

121110

020100

iii ppp

ppp
ppp

P

∑∑ ==== +
j

ij
j

nn piXjXP ]/[1 1

i.e. rows of P 
add to UNITY
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Example 6: two-state Markov Chain
• On day 0 a house has two new light bulbs in 

reserve. The probability that the house will need 
a single new light bulb during day n is p and the 
probability that it will not need any is q = 1-p. 
Let Yn be the number of new light bulbs left in 
house at the end of day n.

• Yn is a Markov chain with state transition 
probability as shown

0 1 2
pp

1-p1-p1
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Example 6: two-state Markov Chain 
– cont’d
• The state transition matrix P is given by
















=

qp
qpP

0
0
001

Yn = 0      1       2
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The n-step Transition Probabilities
• Let P(n) = {pij(n)} be the matrix of n-step 

transition probabilities, where

pij(n) = Prob[Xn+k = j / Xk = i]    n ≥ 0; i,j ≥ 0

Note:
Prob[Xn+k = j / Xk = i] = Prob[Xn = j / X0 = i] for all n – why?
Transition probabilities do not depend on time 

(homogeneous)

It can be shown that:
P(n) = {pij(n)}  = Pn – where P is the 1-step 

transition probability matrix
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The State Probabilities
• It can be shown that the state pmf at 

time n is obtained by multiplying the 
initial state pmf, p(0), by the n-step 
transition matrix, P(n), in other words

p(n) = p(0) P(n)
= p(0) Pn

Make a distinction between small p and 
capital P! 
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Example 7:
• Consider the problem given in Example 6 

– find the n-step transition matrix and 
compute the state pmf p(n)
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Example 7: cont’d
Answer: The n-step transition matrix can be found 

by multiplying P (the 1-step transition matrix) 
by itself n times or alternatively we can use:

p22(n) = Prob[no new light bulbs needed in n days] = qn

p21(n) = Prob[1 light bulb needed in n days] = n p qn-1

p20(n) = Prob[2 light bulbs needed in n days] 
= 1 – p22(n) – p21(n)

p10(n) = Prob[the one light bulb is not needed in n days] = 1 - qn

p11(n) = Prob[ the one light bulb is not needed in n days] = qn

p12(n) = 0

p00(n) = 1
p01(n) = 0
p02(n) = 0
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Example 7: cont’d
• Therefore, the n-step transition matrix is 

given by 


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Example 7: cont’d
• Notes:

• For all transition matrices, sum of any row 
SHOULD equal to ONE

• For q = 1-p < 1 Î as nÆ∞, then Pn limit is
















→

∞→
001
001
001

lim n

n
P
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Example 7: cont’d
• Therefore, if we start with 2 light bulbs, 

then the state pmf p(n) approaches 

p(n) = p(0) Pn

[ ] [ ]001
001
001
001

100)( =















→np

Meaning – if n approaches ∞, then it is almost certain we will 
end up in the 0 (no light bulbs) state
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Steady State Probabilities
• Some Markov chains settle into stationary behavior. As n Æ ∞, the n-step 

transition matrix approaches a matrix in which all rows are equal to the 
same pmf, that is

pij(n) Æ πj

Therefore,

pj(n) Æ ∑ πj pi(0) = πj
i

Î πj = ∑ pij πj
i

Or in matrix form

Π = Π P   - where Π = {πj}

In general the above formation has n-1 linearly independent equations – the 
additional equation required is provided by

∑ πi = 1  or 
i
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Steady State Probabilities – cont’d 
2
• In other words:
• At steady state (n is very large) – the nth state 

pmf is the same as the n+1st state pmf

• Meaning the nth (n very large) state pmf is time 
invariant (steady state)

Π = Π P

Π Î is the steady state pmf
P Î is the 1-step transition matrix
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Steady State Probabilities – cont’d 
3
• Checking the dimensions:
Π Î is the steady state pmf of dimensions = 

1Xk  - assuming k states
= [π1 π2 π3 … πk] where πi 1≤i≤k is the 
steady state probability for being in state 
i

P Î is the 1-step transition matrix of 
dimensions k X k 

= {pij} is the Probability of transitioning 
from state i to j
Recall that all rows of P sum to 1
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Example: 8
Problem: A Markov model for packet speech 

assumes that if the nth packet contains 
silence then the probability of silence in 
the next packet is 1-α and the probability 
of speech activity is α. Similarly if the nth 
packet contains speech activity, then the 
probability of speech activity in next 
packet is 1-β and the probability of 
silence is β. Find the stationary state pmf.
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Example: 8 – cont’d
Answer: The state diagram is as shown:

The 1-step transition probability, P, is given 
by:

0 1

α

β

1−β1−α
State 0: silence
State 1: speech









−

−
=

ββ
αα

1
1

P
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Example: 8 – cont’d 2
Answer: The steady state pmf Π =[π0 π1] can be 

solved for using

Π = Π P
Or 

Or
π0 = (1-α) π0 + β π1

π1 = α π0 + (1-β) π1

In addition to the constraint that  π0 + π1 = 1

[ ] [ ] 







−

−
×=

ββ
αα

ππππ
1

1
1010



test

15

10/12/2003 Dr. Ashraf S. Hasan Mahmoud 29

Example: 8 – cont’d 3
Answer: Therefore steady state pmf

Π =[π0 π1] is given by:

π0 = β/ (α+ β)
π1 = α / (α+ β)

Note that sum of all πi’s should equal to 1!!
For α = 1/10, β = 1/5 Î Π =[2/3  1/3]
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Example: 8 – cont’d 4
Answer: Alternatively, one can find a general 

form for Pn and take the limit as nÆ ∞.

Pn can be shown to be: 

Which clearly approaches:
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Example: 8 – cont’d 5
Answer: If the initial state pmf is p0(0) and 

p1(0) = 1-p0(0)

Then the nth state pmf (n Æ ∞) is given by:

p(n) as nÆ ∞ = [p0(0)  1- p0(0)] Pn

= [β/ (α+ β) α/ (α+ β)]

Same as the solution obtained using the 1-
step transition matrix!!
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Continuous-Time Markov Chains
• Back to the definition:

Prob[X(tk+1) = xk+1, X(tk)=xk, …, X(t1)=x1]

= Prob[X(tk+1) = xk+1/X(tk)=xk] X
Prob[X(tk) = xk/X(tk-1)=xk-1] X
…
Prob[X(t2) = x2/X(t1)=x1] X
Prob[X(t1)=x1]

• For continuous-time, the transition probability 
from an arbitrary time s to an arbitrary time 
s+t:

Prob[X(s+t) = j / X(s) = i]     t ≥ 0



test

17

10/12/2003 Dr. Ashraf S. Hasan Mahmoud 33

Continuous-Time Markov Chains –
cont’d
• For time-HOMOGENEOUS Markov chains:

Prob[X(s+t) = j / X(s) = i]     
=  Prob[X(t) = j / X(0) = i]     t ≥ 0

• Let P(t) = {pij(t)} denote the matrix of 
transition probabilities in an interval of length t.

• Note: P(0) = I (identity matrix)
since pii(0) = 1, and pij(0) = 0 
(in zero time if in state i, you will remain in i; and there is no 
chance in moving to state j)
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Example 9: Poisson Process
• Consider a Poisson Process:

Pij(t) = Prob[j-i events in t seconds] 
= p0,j-i(t)

(αt)j-i

= --------- e –αt j ≥ i
(j-i)!

Therefore the transition matrix is given by

e-αt αte-αt (αt)2/2!e-αt .          .       .
P(t)   =        0             e-αt αte-αt .          .       .

0             0               e-αt αte-αt .        .
.              . 
.              .
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Example 9: Poisson Process –
cont’d
• What is the dimension of the previous matrix?

• For a very small interval t = δ, e-αδ ≈ 1-αδ
Therefore for a small interval, the transition matrix is given by

1-αδ αδ 0         .          .       .
P(δ)   =        0             1-αδ αδ .          .       .

0             0               1-αδ αδ .        .
.              . 
.              .

Where terms including δ2 or higher have been neglected (i.e. 
the probability of more than on transition in a very short 
time interval is negligible)
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Example 9: Poisson Process –
cont’d
• This is referred to as a pure birth process!

• State variable: number of events 
(arrivals) in δ seconds

0 1

αδ
1−αδ

2

αδ
1−αδ

3

αδ
1−αδ
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State Occupancy Time
• How much time does a process spends in 

a particular state?

• For all continuous-time Markov Chains, 
X(t) remains at a given value (state) for 
an exponentially-distributed random 
time

• Why? 
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State Occupancy Time – cont’d
• The time spent in state i, Ti, is an 

exponential r.v. with some mean 1/vi :

Prob [ Ti > t] = e-v
i
t

Therefore, the mean state occupancy time is 
1/vi – usually different for each state
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Transition Rates and Time-
Dependent State Probabilities
• Consider the transition probabilities in a very 

short time duration δ seconds

The probability the process remains in state i during 
the interval is:

Prob[Ti > δ] = e-v
i
δ

= 1 – viδ/1! + vi δ2/2! - …
= 1 – viδ + O(δ)

Where O(δ) denotes terms that become negligible 
relative to δ as δ approaches zero
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Transition Rates and Time-
Dependent State Probabilities –
cont’d
• The exponential distribution of the state occupancy time, 

Ti, implies that it is highly unlikely that the process will 
make more than one transition from the ith state Î

Possibilities:        either remain in state i
or

leave state i 

pii(δ)  = Prob[Ti > δ]
= 1 – viδ + O(δ)

Or 

1 - pii(δ) = viδ Î The rate at which process leaves
state i is equal to vi

Zero transitions

One transition
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Transition Rates and Time-Dependent 
State Probabilities – cont’d 2
• Once the process leaves state i, it enters state j with 

probability qij

• Therefore,

pij(δ) =  (1-pii(δ)) qij

= vi qij δ + O(δ)
= γij δ + O(δ)

γij is the rate at which the process X(t) enters state j from state i

Hence, γii = -vi !! Or 

1 - pii(δ) = γii δ
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Transition Rates and Time-Dependent 
State Probabilities – cont’d 3

• To summarize:

Prob[leaves state i to state j in δ seconds] 
=  pij(δ) 
=  γij δ + O(δ)

And 

1 – pii(δ) = γii δ + O(δ)

Leaving state i to state j

Leaving state i
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Transition Rates and Time-Dependent 
State Probabilities – cont’d 4

• Let’s divide by δ and take the limit as δ
goes to zero Î to find the instantaneous 
rates of transition

pij(δ) / δÎ γij

(1 – pii(δ)) / δÎ γii

Note that O(δ)/ δÆ 0 as δÆ 0
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Transition Rates and Time-Dependent 
State Probabilities – cont’d 5

• Let’s define pj(t) = Prob[X(t)=j]

Then for δ > 0, one can write:

pj(t+δ) = Prob[X(t+δ) = j]

= ∑ Prob[X(t+δ)=j/X(t) = i] Prob[X(t) = i] 
i 

=∑ pij(δ) pi(t) 
i 

Adding over all possible
routes to state j
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Transition Rates and Time-Dependent 
State Probabilities – cont’d 6

Now subtract pj(t) from both sides

pj(t+δ) - pj(t)  =  ∑ pij(δ) pi(t) + (pjj(δ) -1)pj(t)
i≠j

divide by δ and take the limit as δÆ 0

p’j(t)  = ∑ γij pi(t) 
i 

This is a form of the Chapman-Kolmogrov Equations

Note: if Γ = {γij} is the matrix of 
transition rates from state i to state 
j, then the rows of Γ add to zeros
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Example 10:

Problem: Consider a queueing system that 
alternates between two states. In state 0, the 
system is idle and waiting from a customer to 
arrive. This idle time is an exponential r.v. with 
mean 1/α. In state 1, the system is busy 
servicing a customer. The time in the busy state 
is an exponential r.v. with mean 1/β. Find the 
state probabilities p0(t) and p1(t) in terms of the 
initial state probabilities p0(0) and p1(0)
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Example 10: cont’d

Answer: The system moves from state 0 to state 1 
at rate of α, and from state 1 to state 0 at rate β.

Therefore: γ00 = -α γ01 = α
γ10 = β γ11 = -β

Using C-K equations

p’0(t) = -α p0(t) + β p1(t)
p’1(t) =  α p0(t)  - β p1(t)

In addition to the constraint p0(t) + p1(t) = 1

0 1
α

β
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Example 10: cont’d

Answer: Solving these differential equations, 
yields,

p0(t)  = β/(α+β) + (p0(0) - β/(α+β) ) e-(α+β)t

p1(t) =  α/(α+β) + (p1(0) - α/(α+β) ) e-(α+β)t

The above specify the probabilities at any instant t!

where p0(0) and p1(0) are the initial conditions 
needed to determine the constants in the 
differential equations solutions.
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Example 10: cont’d

Answer: The steady state distribution can be 
obtained if we let t Æ ∞

p0(t)  = β/(α+β)           as t Æ ∞

p1(t) =  α/(α+β)           as t Æ ∞

Note this steady state distribution is independent of 
t and also independent of the initial state 
probabilities p0(0) and p1(0).
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Steady State Probabilities and 
Global Balance Equations
• Remember C-K equations:

p’j(t)  = ∑ γij pi(t)   for all j
i 

If equilibrium exists, then p’j(t) = 0 (i.e. no change in the state 
probabilities with time)

Therefore, at steady state (if it exists), the following holds:

0   =    ∑ γij pi(t)   for all j
i 

These are referred to as the GLOBAL BALANCE EQUATIONS!!
All flows (rate X probability) algebraically added for any state j 

equal to ZERO
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Example 11:
• Problem: Consider the queueing system in 

Example 10 – find the steady state probabilities.

• Answer:
γ00 = -α γ01 = α
γ10 = β γ11 = -β

Applying the global balance equations, yields

απ0 = βπ1 and     βπ1 = απ0

In addition to the constraints that: π0 + π1 = 1

0 1
α

β
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Example 11: cont’d
• Answer: Solving the previous simple 

equations leads to:

π0 = β/(α+β) 

π1 = α/(α+β) 
0 1

α

β
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Example 12: 
• Problem: The M/M/1 single-server 

queueing system

0 1

λ

µ

λ

µ

2 3

λ

µ

j j+1

λ

µµ

λ λ

µ
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Example 12: cont’d 
• Answer: The state transition rates:
• Customers arrive with rate λÎ γi,i+1 = λ for i = 0, 1, 2, 

…
• When system is not empty, customers depart at rate µÎ

γi,i-1 = µ for i = 1, 2, 3, …

• The global balance equations:
λ p0 = µp1 for j = 0

(λ + µ)pj = λpj-1 + µpj+1 for j=1, 2, …

Î λpj - µpj+1 = λpj-1 – µpj for j=1,2, …
= constant
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Example 12: cont’d 
• Answer: 
For j = 1, we have 

λp0 – µp1 = constant

Therefore the constant is equal to zero.

Hence, 

λpj-1 = µpj or 
pj = (λ/µ) pj-1     for j=1,2, …

By simple induction:

pj = ρj p0

where ρ = λ/µ
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Example 12: cont’d 
• Answer: 
To obtain p0, we use the fact that

1 = ∑ pj = (1+ρ+ρ2+…)p0

j

note the above series converges only for ρ < 1 or equivalently λ
< µ

Therefore, p0 = 1-ρ

In general, the steady state pmf for the M/M/1 queue is given 
by

pj = (1-ρ)ρj
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