

Example 7: cont'd

Answer: The n-step transition matrix can be found by multiplying P (the 1-step transition matrix) by itself n times or alternatively we can use: $p_{22}(n) = Prob[no new light bulbs needed in n days] = q^n$ $p_{21}(n) = Prob[1 light bulb needed in n days] = n p q^{n-1}$ $p_{20}(n) = Prob[2 light bulbs needed in n days]$ $= 1 - p_{22}(n) - p_{21}(n)$ $p_{10}(n) = Prob[the one light bulb is not needed in n days] = 1 - q^n$ $p_{11}(n) = Prob[$ the one light bulb is not needed in n days $] = q^n$ $p_{12}(n) = 0$ $p_{00}(n) = 1$ $p_{01}(n) = 0$ $p_{02}(n) = 0$ 10/12/2003 Dr. Ashraf S. Hasan Mahmoud 19

Example: 8

<u>Problem</u>: A Markov model for packet speech assumes that if the nth packet contains silence then the probability of silence in the next packet is $1-\alpha$ and the probability of speech activity is α . Similarly if the nth packet contains speech activity, then the probability of speech activity in next packet is $1-\beta$ and the probability of silence is β . Find the stationary state pmf.

<section-header><text><equation-block><text><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block><equation-block>

Example: 8 – cont'd 5

<u>Answer</u>: If the initial state pmf is $p_0(0)$ and $p_1(0) = 1 - p_0(0)$

Then the nth state pmf (n $\rightarrow \infty$) is given by:

 $p(n) \text{ as } n \rightarrow \infty = [p_0(0) \ 1 - p_0(0)] P^n$

=
$$[\beta / (\alpha + \beta) \alpha / (\alpha + \beta)]$$

31

Same as the solution obtained using the 1step transition matrix!! Dr. Ashraf S. Hasan Mahmoud

10/12/2003

Continuous-Time Markov Chains Back to the definition: $Prob[X(t_{k+1}) = x_{k+1}, X(t_k) = x_k, ..., X(t_1) = x_1]$ = $Prob[X(t_{k+1}) = x_{k+1}/X(t_k) = x_k] X$ $Prob[X(t_k) = x_k/X(t_{k-1}) = x_{k-1}] X$ $Prob[X(t_2) = x_2/X(t_1) = x_1] X$ $Prob[X(t_1)=x_1]$ For continuous-time, the transition probability from an arbitrary time s to an arbitrary time s+t: Prob[X(s+t) = j / X(s) = i]t ≥ 0 Dr. Ashraf S. Hasan Mahmoud 10/12/2003 32

Example 12: cont'd

• <u>Answer</u>: For j = 1, we have $\lambda p_0 - \mu p_1 = constant$

Therefore the constant is equal to zero.

Hence,

$$\begin{aligned} \lambda p_{j\text{-}1} &= \mu p_j \ \text{or} \\ p_j &= (\lambda/\mu) \ p_{j\text{-}1} \quad \text{for } j\text{=}1,2, \ldots \end{aligned}$$

By simple induction:

 $\mathbf{p}_{i} = \rho^{j} \mathbf{p}_{0}$

where $\rho = \lambda/\mu$

10/12/2003

Dr. Ashraf S. Hasan Mahmoud

55

<section-header><equation-block><equation-block><text><text><equation-block><text><text><text><text>

