King Fahd University of
 Petroleum \& Minerals
 Computer Engineering Dept

COE 541 - Design and Analysis of Local Area Networks
Term 031
Dr. Ashraf S. Hasan Mahmoud
Rm 22-148-3
Ext. 1724
Email: ashraf@ccse.kfupm.edu.sa

Random/Stochastic Processes

- Consider a random experiment specified by the outcomes ζ from some sample space S, by the events defined on S, and by the probabilities on these events. Suppose that every outcome ζ in S, we assign a function of time according to some rule:

$$
X(t, \zeta)=t \text { in } I
$$

The graph of $X(t, \zeta)$ versus t, for ζ fixed, is call a REALIZATION or sample path of the random process

A stochastic process is said to be discrete-time if the index set I is a countable set

Random/Stochastic Processes -
 Example 4

- Let ζ be a number selected at random from the interval $\mathbf{S}=[\mathbf{0} 1 \mathrm{l}$, and let b1, b2, ... be the binary expansion of ζ :

$$
\zeta=\sum_{i=1}^{\infty} b_{i} 2^{-i}
$$

Define the discrete-time random process X (n, ζ) by

$$
X(n, \zeta)=b_{n} \quad \text { for } n=1,2, \ldots
$$

Random/Stochastic Processes Example 4

- Realizations of the random process

$$
X(n, \zeta)=b_{n} \quad \text { for } n=1,2, \ldots
$$

For $\zeta=\mathbf{2}^{-2+2-3+2^{-7}}$

$$
=0.3828125
$$

For any ζ, you can produce
a realization of $\mathrm{X}(\mathrm{n}, \zeta)$

Random/Stochastic Processes -
 Example 5

- Temperature recordings during day versus time

Stationary Random Processes

- Nature of randomness observed in the process does not change with time
- A discrete-time or continuous-time random process $X(t)$ is stationary if the joint distribution of any set of sample does not depend on the placement of the time origin:

Joints CDF of $X(t 1), X(t 2), \ldots, X(t k)$ is the same as joint CDF of $\mathbf{X}(\mathbf{t} 1+\tau), \mathbf{X}(\mathbf{t} 2+\tau), \ldots, \mathbf{X}(\mathbf{t k}+\tau)$

Wide-Sense Stationary Random
 Processes

- In many situations we can not determine whether a random process is stationary, but we can determine whether the mean is a constant:
$m_{x}(t)=m \quad$ for all t
And whether the autocoverience (or autocorrelation) is a function of t1-t2 only:
$C_{x}(\mathbf{t} 1, t 2)=C_{x}(t 1-t 2)$
$\rightarrow X(t)$ is a wide-sense stationary (WSS) process

Ergodic Processes

- Time averages = ensample average (expected value)
- Stats along the time access are the same as those resulting from different realizations

Markov Process

- A random process $X(t)$ is a Markov Process if the future of the process given the present is independent of the past.
- For arbitrary times: $\mathrm{t}_{1}<\mathrm{t}_{\mathbf{2}}<\ldots<\mathrm{t}_{\mathrm{k}}<\mathrm{t}_{\mathrm{k}+1}$
$\operatorname{Prob}\left[\mathbf{X}\left(\mathrm{t}_{\mathrm{k}+1}\right)=\mathrm{X}_{\mathrm{k}+1} / \mathbf{X}\left(\mathrm{t}_{\mathrm{k}}\right)=\mathrm{x}_{\mathrm{k}^{\prime}} \ldots, \mathbf{X}\left(\mathrm{t}_{1}\right)=\mathrm{x}_{1}\right]$ $=\operatorname{Prob}\left[X\left(t_{k+1}\right)=X_{k+1} / X\left(t_{k}\right)=x_{k}\right]$

Or (for discrete-valued)

$$
\begin{aligned}
& \operatorname{Prob}\left[a<X\left(t_{k+1}\right) \leq b / X\left(t_{k}\right)=x_{k \prime}, \ldots, X\left(t_{1}\right)=x_{1}\right] \\
& =\operatorname{Prob}\left[a<X\left(t_{k+1}\right) \leq b / X\left(t_{k}\right)=x_{k}\right]
\end{aligned}
$$

Markov Property

Markov Chain

- An integer-valued Markov random process is called a Markov Chain
- The joint pmf for $\mathbf{k + 1}$ arbitrary time instances is given by:

$$
\begin{aligned}
& \operatorname{Prob}\left[X\left(t_{k+1}\right)=x_{k+1}, X\left(t_{k}\right)=x_{k}, \ldots, X\left(t_{1}\right)=x_{1}\right] \\
& =\operatorname{Prob}\left[X\left(t_{k+1}\right)=x_{k+1} / X\left(t_{k}\right)=x_{k}\right] X \\
& \quad \operatorname{Prob}\left[X\left(t_{k}\right)=x_{k} / X\left(t_{k-1}\right)=x_{k-1}\right] X
\end{aligned}
$$

$$
\operatorname{Prob}\left[X\left(t_{2}\right)=x_{2} / X\left(t_{1}\right)=x_{1}\right] X
$$

$$
\operatorname{Prob}\left[X\left(t_{1}\right)=x_{1}\right]
$$

Discrete-Time Markov Chains

- Let X_{n} be a discrete-time integer values Markov Chain that starts at $\mathbf{n}=\mathbf{0}$ with pmf

$$
p_{j}(0)=\operatorname{Prob}\left[X_{0}=j\right] \quad j=0,1,2, \ldots
$$

$$
\operatorname{Prob}\left[X_{n}=i_{n}, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right]
$$

$$
=\operatorname{Prob}\left[X_{n}=i_{n} / X_{n-1}=i_{n-1}\right] X
$$

$$
\operatorname{Prob}\left[X_{n-1}=i_{n-1} / X_{n-2}=i_{n-2}\right] X
$$

$\operatorname{Prob}\left[X_{1}=i_{1} / X_{0}=i_{0}\right] X$

Same as the previous slide but for discrete-time

Discrete-Time Markov Chains cont'd (2)

- Assume the one-step state transition probabilities are fixed and do not change with time:

$$
\operatorname{Prob}\left[X_{n+1}=j / X_{n}=i\right]=p_{i j} \quad \text { for all } n
$$

$\rightarrow X_{n}$ is said to be homogeneous in time

- The joint pmf for $X_{n}, X_{n-1}, \ldots, X_{1}, X_{0}$ is then given by

$$
\begin{aligned}
& P\left[X_{n}=i_{n}, X_{n-1}=i_{n-1}, \ldots, X_{0}=i_{0}\right] \\
= & p_{i_{n-1}, i_{n}} \times p_{i_{n-2}, i_{n-1}} \times \ldots \times p_{i_{0}, i_{1}} \times p_{i_{0}}(0)
\end{aligned}
$$

Discrete-Time Markov Chains cont'd (3)

- Thus X_{n} is completely specified by the initial pmf $p_{i}(0)$ and the matrix of one-step transition probabilities \mathbf{P} :

Example 6: two-state Markov Chain

- On day 0 a house has two new light bulbs in reserve. The probability that the house will need a single new light bulb during day \mathbf{n} is \mathbf{p} and the probability that it will not need any is $q=1-p$. Let Yn be the number of new light bulbs left in house at the end of day n.
- Yn is a Markov chain with state transition probability as shown

Example 6: two-state Markov Chain
 - cont'd

- The state transition matrix P is given by

$$
\begin{aligned}
& \mathrm{Yn}=0 \begin{array}{lll}
\downarrow & 1 & 2 \\
\downarrow & \downarrow & \downarrow \\
P=\left[\begin{array}{lll}
1 & 0 & 0 \\
p & q & 0 \\
0 & p & q
\end{array}\right]
\end{array} .
\end{aligned}
$$

The n-step Transition Probabilities

- Let $P(n)=\left\{p_{i j}(n)\right\}$ be the matrix of n-step transition probabilities, where

$$
p_{i j}(n)=\operatorname{Prob}\left[X_{n+k}=j / X_{k}=i\right] \quad n \geq 0 ; i, j \geq 0
$$

Note:
$\operatorname{Prob}\left[X_{n+k}=j / X_{k}=i\right]=\operatorname{Prob}\left[X_{n}=j / X_{0}=i\right]$ for all $n-w h y ?$
Transition probabilities do not depend on time (homogeneous)

It can be shown that:
$P(n)=\left\{p_{i j}(n)\right\}=P^{n}-$ where P is the 1-step transition probability matrix

The State Probabilities

- It can be shown that the state pmf at time n is obtained by multiplying the initial state pmf, $p(0)$, by the n-step transition matrix, $P(n)$, in other words

$$
\begin{aligned}
p(n) & =p(0) P(n) \\
& =p(0) P n
\end{aligned}
$$

Make a distinction between small p and capital P!

Example 7:

- Consider the problem given in Example 6 - find the n-step transition matrix and compute the state pmf $p(n)$

Example 7: cont'd

Answer: The n-step transition matrix can be found

 by multiplying \mathbf{P} (the 1-step transition matrix) by itself \mathbf{n} times or alternatively we can use:$p_{22}(n)=\operatorname{Prob}\left[\right.$ no new light bulbs needed in n days] $=q^{n}$
$\mathbf{p}_{21}(\mathbf{n})=\operatorname{Prob}\left[1\right.$ light bulb needed in \mathbf{n} days] $=\mathbf{n} \mathbf{p q}^{\mathbf{n - 1}}$
$p_{20}(n)=\operatorname{Prob}[2$ light bulbs needed in n days]
$=1-p_{22}(n)-p_{21}(n)$
$p_{10}(n)=\operatorname{Prob}[$ the one light bulb is not needed in \mathbf{n} days] = $\mathbf{1 - q n}$
$p_{11}(n)=\operatorname{Prob}\left[\right.$ the one light bulb is not needed in n days] $=\mathbf{q n}^{\mathbf{n}}$
$p_{12}(n)=0$
$p_{00}(n)=1$
$p_{01}(n)=0$
$\mathrm{P}_{02}(\mathrm{n})=0$

Example 7: cont'd

- Therefore, the \mathbf{n}-step transition matrix is given by

$$
P^{n}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
1-q^{n} & q^{n} & 0 \\
1-q^{n}-n p q^{n} & n p q^{n} & q^{n}
\end{array}\right]
$$

Example 7: cont'd

- Notes:
- For all transition matrices, sum of any row SHOULD equal to ONE
- For $q=1-p<1 \rightarrow$ as $n \rightarrow \infty$, then P^{n} limit is

$$
\lim _{n \rightarrow \infty} P^{n} \rightarrow\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right]
$$

Example 7: cont'd

- Therefore, if we start with 2 light bulbs, then the state pmf $\mathbf{p (n)}$ approaches

$$
p(n)=p(0) P n
$$

Meaning - if n approaches ∞, then it is almost certain we will end up in the 0 (no light bulbs) state

Steady State Probabilities

- Some Markov chains settle into stationary behavior. As $\mathbf{n} \rightarrow \infty$, the \mathbf{n}-step transition matrix approaches a matrix in which all rows are equal to the same pmf, that is

$$
\mathbf{p}_{\mathrm{ij}}(\mathbf{n}) \rightarrow \pi_{\mathrm{j}}
$$

Therefore,

$$
\begin{aligned}
& \mathbf{p}_{\mathbf{j}}(\mathbf{n}) \rightarrow \sum_{\mathbf{i}} \pi_{\mathrm{j}} \mathbf{p}_{\mathrm{i}}(\mathbf{0})=\pi_{\mathrm{j}} \\
\Rightarrow \quad & \pi_{\mathrm{j}}=\sum_{\mathbf{i}} \mathbf{p}_{\mathrm{ij}} \pi_{\mathrm{j}}
\end{aligned}
$$

Or in matrix form

$$
\Pi=\Pi \mathbf{P} \quad-\text { where } \Pi=\left\{\pi_{j}\right\}
$$

In general the above formation has $\mathbf{n - 1}$ linearly independent equations - the additional equation required is provided by

Steady State Probabilities - cont'd 2

- In other words:
- At steady state (n is very large) - the nth state pmf is the same as the $n+1{ }^{\text {st }}$ state $p m f$
- Meaning the nth (n very large) state pmf is time invariant (steady state)

$$
\Pi=\Pi \mathbf{P}
$$

$\Pi \rightarrow$ is the steady state pmf $P \rightarrow$ is the 1-step transition matrix

Steady State Probabilities - cont'd 3

- Checking the dimensions:
$\Pi \rightarrow$ is the steady state pmf of dimensions = 1Xk - assuming k states
$=\left[\pi_{1} \pi_{2} \pi_{3} \ldots \pi_{k}\right]$ where $\pi_{i} 1 \leq i \leq k$ is the steady state probability for being in state i
$P \rightarrow$ is the 1-step transition matrix of dimensions $\mathbf{k} \mathbf{X k}$
$=\left\{p_{i j}\right\}$ is the Probability of transitioning from state i to j
Recall that all rows of \mathbf{P} sum to 1

Example: 8

Problem: A Markov model for packet speech assumes that if the nth packet contains silence then the probability of silence in the next packet is 1- α and the probability of speech activity is α. Similarly if the nth packet contains speech activity, then the probability of speech activity in next packet is $1-\beta$ and the probability of silence is β. Find the stationary state pmf.

Example: 8 - cont'd

Answer: The state diagram is as shown:

The 1-step transition probability, P, is given by:

$$
P=\left[\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right]
$$

State 0: silence State 1: speech

Example: 8 - cont'd 2

Answer: The steady state pmf $\Pi=\left[\pi_{0} \pi_{1}\right]$ can be solved for using

$$
\Pi=\Pi \mathbf{P}
$$

Or

Or

$$
\left[\begin{array}{ll}
\pi_{0} & \pi_{1}
\end{array}\right]=\left[\begin{array}{ll}
\pi_{0} & \pi_{1}
\end{array}\right] \times\left[\begin{array}{cc}
1-\alpha & \alpha \\
\beta & 1-\beta
\end{array}\right]
$$

$$
\begin{array}{lll}
\pi_{0}=(1-\alpha) & \pi_{0}+\beta & \pi_{1} \\
\pi_{1}=\alpha & \pi_{0}+(1-\beta) & \pi_{1}
\end{array}
$$

In addition to the constraint that $\pi_{0}+\pi_{1}=1$

Example: 8 - cont'd 3

Answer: Therefore steady state pmf $\Pi=\left[\pi_{0} \pi_{1}\right]$ is given by:

$$
\begin{aligned}
& \pi_{0}=\beta /(\alpha+\beta) \\
& \pi_{1}=\alpha /(\alpha+\beta)
\end{aligned}
$$

Note that sum of all π_{i} 's should equal to 1 !!
For $\alpha=1 / 10, \beta=1 / 5 \rightarrow \Pi=\left[\begin{array}{ll}2 / 3 & 1 / 3\end{array}\right]$

Example: 8 - cont'd 4

Answer: Alternatively, one can find a general form for Pn^{n} and take the limit as $\mathrm{n} \rightarrow \infty$.
P^{n} can be shown to be:

$$
P^{n}=\frac{1}{\alpha+\beta}\left[\begin{array}{ll}
\beta & \alpha \\
\beta & \alpha
\end{array}\right]+\frac{(1-\alpha-\beta)^{n}}{\alpha+\beta}\left[\begin{array}{cc}
\alpha & -\alpha \\
-\beta & \beta
\end{array}\right]
$$

Which clearly approaches:
$\lim _{n \rightarrow \infty} P^{n}=\frac{1}{\alpha+\beta}\left[\begin{array}{cc}\beta & \alpha \\ \beta & \alpha\end{array}\right]$

Example: 8 - cont'd 5

Answer: If the initial state pmf is $p_{0}(0)$ and $p_{1}(\mathbf{0})=1-p_{0}(0)$

Then the nth state pmf $(\mathrm{n} \rightarrow \infty$) is given by:
$\mathrm{p}(\mathrm{n})$ as $\mathrm{n} \rightarrow \infty=\left[\mathrm{p}_{\mathbf{0}}(0) \mathbf{1 - p _ { 0 }}(0)\right] \mathrm{P}^{\mathrm{n}}$

$$
=[\beta /(\alpha+\beta) \quad \alpha /(\alpha+\beta)]
$$

Same as the solution obtained using the 1step transition matrix!!

Continuous-Time Markov Chains

- Back to the definition:

$$
\begin{aligned}
\operatorname{Prob}\left[X\left(t_{k+1}\right)=\right. & \left.x_{k+1}, X\left(t_{k}\right)=x_{k}, \ldots, X\left(t_{1}\right)=x_{1}\right] \\
= & \operatorname{Prob}\left[X\left(t_{k+1}\right)=x_{k+1} / X\left(t_{k}\right)=x_{k}\right] X \\
& \operatorname{Prob}\left[X\left(t_{k}\right)=x_{k} / X\left(t_{k-1}\right)=x_{k-1}\right] X \\
& \operatorname{Prob}\left[X\left(t_{2}\right)=x_{2} / X\left(t_{1}\right)=x_{1}\right] X \\
& \operatorname{Prob}\left[X\left(t_{1}\right)=x_{1}\right]
\end{aligned}
$$

- For continuous-time, the transition probability from an arbitrary time s to an arbitrary time s+t:
$\operatorname{Prob}[X(s+t)=\mathbf{j} / X(s)=\mathbf{i}] \quad \mathbf{t} \geq \mathbf{0}$

Continuous-Time Markov Chains cont'd

- For time-HOMOGENEOUS Markov chains:

$$
\begin{aligned}
& \operatorname{Prob}[X(s+t)=j / X(s)=i] \\
& \quad=\operatorname{Prob}[X(t)=j / X(0)=i] \quad t \geq 0
\end{aligned}
$$

- Let $P(t)=\left\{p_{i j}(t)\right\}$ denote the matrix of transition probabilities in an interval of length t.
- Note: $\mathbf{P}(\mathbf{0})=\mathrm{I}$ (identity matrix)
since $p_{i i}(0)=1$, and $p_{i j}(0)=0$
(in zero time if in state i, you will remain in i; and there is no chance in moving to state \mathbf{j})

Example 9: Poisson Process

- Consider a Poisson Process:

$$
\begin{aligned}
\operatorname{Pij}(t) & =\operatorname{Prob}[j-i \text { events in } t \text { seconds }] \\
& =p_{0, j-i}(t) \\
& =-\cdots)^{j-i} \\
& \left(j----e^{-\alpha t} \quad j \geq i\right.
\end{aligned}
$$

Therefore the transition matrix is given by

$$
\begin{array}{lcccccc}
& \mathbf{e}^{-\alpha \mathbf{t}} & \alpha \mathbf{t e} \mathbf{e}^{-\alpha \mathbf{t}} & (\alpha \mathbf{t})^{2} / 2!\mathbf{e}-\alpha \mathbf{t} & . & . & . \\
\mathbf{P}(\mathbf{t})= & \mathbf{0} & \mathbf{e}^{-\alpha \mathbf{t}} & \alpha \mathbf{t e} \mathbf{e}^{-\alpha \mathbf{t}} & . & . & . \\
& \mathbf{0} & \mathbf{0} & \mathbf{e}^{-\alpha \mathbf{t}} \quad \alpha \mathbf{t e} \mathbf{e}^{-\alpha \mathbf{t}} & . & . \\
& \cdot & \cdot & & & &
\end{array}
$$

Example 9: Poisson Process cont'd

- What is the dimension of the previous matrix?
- For a very small interval $t=\delta, \mathbf{e}^{-\alpha \delta} \approx 1-\alpha \delta$

Therefore for a small interval, the transition matrix is given by

$$
\begin{array}{lllllll}
& 1-\alpha \delta & 1-\alpha \delta & \alpha \delta & 0 & . & . \\
0 & 1-\alpha \delta & \alpha \delta & . & . & . \\
0 & 0 & 1-\alpha \delta & \alpha \delta & . & .
\end{array}
$$

Where terms including δ^{2} or higher have been neglected (i.e. the probability of more than on transition in a very short time interval is negligible)

Example 9: Poisson Process cont'd

- This is referred to as a pure birth process!
- State variable: number of events (arrivals) in δ seconds

State Occupancy Time

- How much time does a process spends in a particular state?
- For all continuous-time Markov Chains, $X(t)$ remains at a given value (state) for an exponentially-distributed random time
- Why?

State Occupancy Time - cont'd

- The time spent in state $i, \mathbf{T}_{\mathbf{i}}$, is an exponential r.v. with some mean $1 / v_{i}$:

$$
\operatorname{Prob}\left[T_{i}>t\right]=e^{-v_{i} t}
$$

Therefore, the mean state occupancy time is $1 / \mathbf{v}_{\mathbf{i}}$ - usually different for each state

Transition Rates and TimeDependent State Probabilities

- Consider the transition probabilities in a very short time duration δ seconds

The probability the process remains in state i during the interval is:

$$
\begin{aligned}
\operatorname{Prob}\left[T_{i}>\delta\right] & =e^{-v_{i} \delta} \\
& =1-v_{i} \delta / 1!+v_{i} \delta^{2} / 2!-\ldots \\
& =1-v_{i} \delta+0(\delta)
\end{aligned}
$$

Where O(δ) denotes terms that become negligible relative to δ as δ approaches zero

Dependent State Probabilities cont'd

- The exponential distribution of the state occupancy time, T_{i} implies that it is highly unlikely that the process will make more than one transition from the ith state \rightarrow

Possibilities: either remain in state i \quad Zero transitions or leave state i
$\mathbf{p}_{\mathrm{ii}}(\delta)=\operatorname{Prob}\left[\mathrm{T}_{\mathrm{i}}>\delta\right]$
$=\mathbf{1}-\mathrm{v}_{\mathrm{i}} \delta+\mathbf{O}(\delta)$
Or
$1-p_{i i}(\delta)=v_{i} \delta \quad \rightarrow$ The rate at which process leaves state i is equal to $\mathbf{v}_{\mathbf{i}}$

Transition Rates and Time-Dependent State Probabilities - cont'd 2

- Once the process leaves state \mathbf{i}, it enters state \mathbf{j} with probability q_{ij}
- Therefore,

$$
\begin{aligned}
p_{i j}(\delta) & =\left(1-p_{i i}(\delta)\right) q_{i j} \\
& =v_{i} q_{i j} \delta+0(\delta) \\
& =\gamma_{i \mathrm{ij}} \delta+0(\delta)
\end{aligned}
$$

$\gamma_{i j}$ is the rate at which the process $\mathbf{X}(\mathbf{t})$ enters state \mathbf{j} from state \mathbf{i}
Hence, $\gamma_{\mathrm{ii}}=-\mathbf{v}_{\mathrm{i}}$!! Or

$$
\mathbf{1}-\mathbf{p}_{\mathrm{ii}}(\delta)=\gamma_{\mathrm{ii}} \delta
$$

Transition Rates and Time-Dependent State Probabilities - cont'd 3

- To summarize:

Prob[leaves state \mathbf{i} to state \mathbf{j} in δ seconds]

$$
=p_{\mathrm{ij}}(\delta)
$$

$$
=\gamma_{\mathrm{ij}} \delta+\mathbf{O}(\delta)
$$

Leaving state i to state j
And

$$
\mathbf{1}-\mathbf{p}_{\mathrm{ii}}(\boldsymbol{\delta})=\gamma_{\mathrm{ii}} \boldsymbol{\delta}+\mathbf{O}(\boldsymbol{\delta}) \quad \text { Leaving state } \mathrm{i}
$$

Transition Rates and Time-Dependent State Probabilities - cont'd 4

- Let's divide by δ and take the limit as δ goes to zero \rightarrow to find the instantaneous rates of transition
$\mathbf{p}_{\mathrm{ij}}(\delta) / \delta \rightarrow \gamma_{\mathrm{ij}}$
$\left(\mathbf{1}-\mathbf{p}_{\mathrm{ii}}(\delta)\right) / \delta \boldsymbol{\gamma} \gamma_{\mathrm{ii}}$
Note that $\mathbf{O}(\delta) / \delta \rightarrow \mathbf{0}$ as $\delta \rightarrow \mathbf{0}$

Transition Rates and Time-Dependent State Probabilities - cont'd 5

- Let's define $\mathrm{p}_{\mathrm{j}}(\mathrm{t})=\operatorname{Prob}[\mathrm{X}(\mathrm{t})=\mathrm{j}]$

Then for $\delta>\mathbf{0}$, one can write:

$$
\begin{aligned}
& \mathbf{p}_{\mathbf{j}}(\mathbf{t}+\delta)= \operatorname{Prob}[\mathbf{X}(\mathbf{t}+\delta)=\mathbf{j}] \\
&= \sum_{\mathbf{i}} \operatorname{Prob}[\mathbf{X}(\mathbf{t}+\delta)=\mathbf{j} / \mathbf{X}(\mathbf{t})=\mathbf{i}] \operatorname{Prob}[\mathbf{X}(\mathbf{t})=\mathbf{i}] \\
& \text { routes to }
\end{aligned}
$$

Transition Rates and Time-Dependent State Probabilities - cont'd 6

Now subtract $\mathbf{p}_{\mathbf{j}}(\mathbf{t})$ from both sides

$$
p_{j}(t+\delta)-p_{j}(t)=\sum_{i \neq j} p_{i j}(\delta) p_{i}(t)+\left(p_{j j}(\delta)-1\right) p_{j}(t)
$$

divide by δ and take the limit as $\delta \boldsymbol{\rightarrow}$

$$
\mathbf{p}_{\mathrm{j}}^{\prime}(\mathbf{t})=\underset{\mathbf{i}}{\sum_{i \mathrm{j}}} \mathbf{p}_{\mathrm{i}}(\mathbf{t})
$$

Note: if $\Gamma=\left\{\gamma_{i j}\right\}$ is the matrix of transition rates from state i to state j , then the rows of Γ add to zeros

This is a form of the Chapman-Kolmogrov Equations

Example 10:

Problem: Consider a queueing system that

 alternates between two states. In state 0 , the system is idle and waiting from a customer to arrive. This idle time is an exponential r.v. with mean $1 / \alpha$. In state 1 , the system is busy servicing a customer. The time in the busy state is an exponential r.v. with mean $1 / \beta$. Find the state probabilities $p_{0}(t)$ and $p_{1}(t)$ in terms of the initial state probabilities $\mathrm{p}_{\mathbf{0}}(\mathbf{0})$ and $\mathrm{p}_{\mathbf{1}}(\mathbf{0})$
Example 10: cont'd

Answer: The system moves from state 0 to state 1 at rate of α, and from state 1 to state 0 at rate β.

Therefore: $\gamma_{00}=-\alpha$

$$
\gamma_{01}=\alpha
$$

$$
\gamma_{10}=\beta \quad \gamma_{11}=-\beta
$$

Using C-K equations

$$
\begin{aligned}
& \mathbf{p}_{0}^{\prime}(\mathbf{t})=-\alpha \mathbf{p}_{0}(\mathbf{t})+\beta \mathbf{p}_{1}(\mathbf{t}) \\
& \mathbf{p}_{1}^{\prime}(\mathbf{t})=\alpha \mathbf{p}_{0}(\mathbf{t})-\beta \mathbf{p}_{1}(\mathbf{t})
\end{aligned}
$$

In addition to the constraint $\mathbf{p}_{\mathbf{0}}(\mathbf{t})+\mathbf{p}_{\mathbf{1}}(\mathbf{t})=\mathbf{1}$

Example 10: cont'd

Answer: Solving these differential equations, yields,

$$
\begin{aligned}
& \mathbf{p}_{0}(\mathbf{t})=\beta /(\alpha+\beta)+\left(\mathbf{p}_{0}(0)-\beta /(\alpha+\beta)\right) e^{-(\alpha+\beta) t} \\
& \mathbf{p}_{1}(\mathbf{t})=\alpha /(\alpha+\beta)+\left(\mathbf{p}_{1}(0)-\alpha /(\alpha+\beta)\right) e^{-(\alpha+\beta) t}
\end{aligned}
$$

The above specify the probabilities at any instant t!
where $p_{0}(0)$ and $p_{1}(0)$ are the initial conditions needed to determine the constants in the differential equations solutions.

Example 10: cont'd

Answer: The steady state distribution can be obtained if we let $t \rightarrow \infty$

$$
\begin{array}{ll}
\mathbf{p}_{0}(t)=\beta /(\alpha+\beta) & \text { as } t \rightarrow \infty \\
\mathbf{p}_{1}(\mathbf{t})=\alpha /(\alpha+\beta) & \text { as } t \rightarrow \infty
\end{array}
$$

Note this steady state distribution is independent of t and also independent of the initial state probabilities $p_{0}(0)$ and $p_{1}(0)$.

Steady State Probabilities and Global Balance Equations

- Remember C-K equations:

$$
\mathbf{p}_{\mathrm{j}}^{\prime}(\mathbf{t})=\sum_{\mathbf{i}} \gamma_{\mathrm{ij}} \mathbf{p}_{\mathrm{i}}(\mathbf{t}) \text { for all } \mathbf{j}
$$

If equilibrium exists, then $p_{j}^{\prime}(t)=0$ (i.e. no change in the state probabilities with time) ${ }^{\text {j }}$
Therefore, at steady state (if it exists), the following holds:

$$
\mathbf{0}=\sum_{\mathbf{i}} \gamma_{i \mathrm{j}} \mathbf{p}_{\mathbf{i}}(\mathbf{t}) \text { for all } \mathbf{j}
$$

These are referred to as the GLOBAL BALANCE EQUATIONS!! All flows (rate X probability) algebraically added for any state \mathbf{j} equal to ZERO

Example 11:

- Problem: Consider the queueing system in Example 10 - find the steady state probabilities.
- Answer:

$$
\begin{array}{ll}
\gamma_{00}=-\alpha & \gamma_{01}=\alpha \\
\gamma_{10}=\beta & \gamma_{11}=-\beta
\end{array}
$$

Applying the global balance equations, yields

$$
\alpha \pi_{0}=\beta \pi_{1} \text { and } \quad \beta \pi_{1}=\alpha \pi_{0}
$$

In addition to the constraints that: $\pi_{0}+\pi_{1}=1$

Example 11: cont'd

- Answer: Solving the previous simple equations leads to:

$$
\begin{aligned}
& \pi_{0}=\beta /(\alpha+\beta) \\
& \pi_{1}=\alpha /(\alpha+\beta)
\end{aligned}
$$

Example 12:

- Problem: The M/M/1 single-server queueing system

Example 12: cont'd

- Answer: The state transition rates:
- Customers arrive with rate $\boldsymbol{\lambda} \rightarrow \gamma_{i, i+1}=\boldsymbol{\lambda}$ for $i=0,1,2$, ...
- When system is not empty, customers depart at rate $\mu \rightarrow$ $\gamma_{i, i-1}=\mu$ for $i=1,2,3, \ldots$
- The global balance equations:
$\boldsymbol{\lambda} \quad \mathbf{p}_{\mathbf{0}}=\mu \mathbf{p}_{1}$
for $\mathbf{j}=\mathbf{0}$
$(\boldsymbol{\lambda}+\mu) \mathbf{p}_{\mathrm{j}}=\boldsymbol{\lambda} \mathbf{p}_{\mathrm{j}-1}+\mu \mathbf{p}_{\mathrm{j}+1} \quad$ for $\mathrm{j}=1,2, \ldots$
$\rightarrow \lambda p_{j}-\mu p_{j+1}=\lambda p_{j-1}-\mu p_{j} \quad$ for $j=1,2, \ldots$ = constant

Example 12: cont'd

- Answer:

For $\mathbf{j}=1$, we have

$$
\lambda \mathbf{p}_{0}-\mu \mathbf{p}_{1}=\text { constant }
$$

Therefore the constant is equal to zero.
Hence,

$$
\begin{aligned}
\lambda p_{j-1} & =\mu p_{j} \text { or } \\
p_{j} & =(\lambda / \mu) p_{j-1} \quad \text { for } j=1,2, \ldots
\end{aligned}
$$

By simple induction:

$$
\mathbf{p}_{j}=\rho^{\mathbf{j}} \mathbf{p}_{\mathbf{0}}
$$

where $\rho=\lambda / \mu$

Example 12: cont'd

- Answer:

To obtain p_{0}, we use the fact that

$$
1=\sum_{j} p_{j}=\left(1+\rho+\rho^{2}+\ldots\right) p_{0}
$$

note the above series converges only for $\rho<1$ or equivalently λ $<\mu$

Therefore, $p_{0}=1-\rho$
In general, the steady state pmf for the M/M/1 queue is given by

$$
p_{j}=(1-\rho) \rho^{j}
$$

References

- Alberto Leon-Garcia, Probability and Random Processes for Electrical Engineering, Addison Wesley, 1989
- L. Kleinrock. Queueing Theory. Wiley, New York, 1975

