King Fahd University of
 Petroleum \& Minerals
 Computer Engineering Dept

COE 541 - Design and Analysis of Local Area Networks
Term 031
Dr. Ashraf S. Hasan Mahmoud
Rm 22-144
Ext. 1724
Email: ashraf@ccse.kfupm.edu.sa

Revision - Fourier Transform

- A "transformation" between the time domain and the frequency domain

$$
\begin{aligned}
& \text { Time (} t \text {) Frequency (f) } \\
& \mathbf{s}(\mathrm{t}) \quad \longleftrightarrow \mathbf{S}(\mathrm{f}) \\
& S(f)=\int_{-\infty}^{\infty} s(t) e^{-j 2 \pi t t} d t \quad \text { Fourier Transform } \\
& s(t)=\int_{-\infty}^{\infty} S(f) e^{+j 2 \pi t} d f \quad \text { Inverse Fourier Transform }
\end{aligned}
$$

Revision - Fourier Transform (2)

- F.T. can be used to find the BANDWIDTH of a signal or system
- Bandwidth - system: range of frequencies passed (perhaps scaled) by system
- Bandwidth - signal: range of (+ve) frequencies contained in the signal

Revision - Fourier Transform (3)

- Remember for periodic signals (i.e. $\mathbf{s}(\mathrm{t})=$ $s(t+T)$ where T is the period) \rightarrow Fourier Series expansion:

$$
\begin{aligned}
& s(t)=\frac{A_{0}}{2}+\sum_{n=1}^{\infty}\left[A_{n} \cos \left(2 \pi n f_{0} t\right)+B_{n} \sin \left(2 \pi n f_{0} t\right)\right] \\
& A_{0}=\frac{2}{T} \int_{0}^{T} s(t) d t \quad B_{n}=\frac{2}{T} \int_{0}^{T} s(t) \sin \left(2 \pi n f_{0} t\right) d t \\
& A_{n}=\frac{2}{T} \int_{0}^{T} s(t) \cos \left(2 \pi n f_{0} t\right) d t \\
& \text { 9/23/2003 } \quad \begin{array}{l}
f_{0} \text { is the fundamental frequency } \\
\text { and is equal to } 1 / T
\end{array}
\end{aligned}
$$

Revision - Fourier Transform (4)

- Famous pairs - rectangular pulse ($\mathbf{A}=\mathbf{T}=\mathbf{1}$)

$$
s(t)=\Pi(t / T)
$$

$S(f)=A T \frac{\sin (\pi f T)}{\pi f T}$

Revision - Fourier Transform (5)

- Famous pairs - Raised Cosine pulse ($\mathrm{A}=\mathrm{T}=1$), as a function of α

$$
s(t)=\frac{(2 A)}{T} \frac{\cos (2 \pi \alpha t)}{1-(4 \alpha t)^{2}} \frac{\sin (2 \pi t / T)}{2 \pi t / T}
$$

$$
S(f)=\left\{\begin{array}{lr}
A & |f|>\frac{1}{T}-\alpha \\
A \cos ^{2}\left(\frac{\pi}{4 \alpha}\left(|f|-\frac{1}{T}+\alpha\right)\right) & \frac{1}{T}-\alpha<|f|<\frac{1}{T}+\alpha \\
0 & |f|>\frac{1}{T_{6}}+\alpha
\end{array}\right.
$$

Revision - Fourier Transform (6)

- Raised Cosine Pulse: $0<\alpha<\mathbf{1 / T}$
- Note that $s(t)=0$ for $t=n T / 2$ where $n=+/-\mathbf{1 , 2}$
- Very good for forming pulses
- ZERO ISI for ideal situation
- $\quad \mathbf{B W}$ for $\mathbf{s}(\mathbf{t})=1 / T+\alpha$
- Maximum $=2$ X1/T (for $\alpha=1 / \mathrm{T}$)
- Minimum $=1 / \mathrm{T}($ for $\alpha=0)$

Revision - Fourier Transform (7)

- Matlab code:

```
clear all % clear all variables
T = 1;
alphas = [0 0.5 1];
for k = 1:length(alphas)
    alpha = alphas(k);
    t = -2:0.01:2; % define the time axis
    s_t (k,:) = ((2*A)/T)* (cos (2*pi*alpha*t)./.
        (1-(4*alpha*t).^2)).*(sin (2*pi*t/T)./
                (2*pi*t/T)); % defines(t)
    f = -2.5:0.05:2.5; % define the freq axis
    S_f(k,:) = zeros(size(f));
    i = find(abs(f) <= (1/T-alpha));
    S_f(k,i) = A;
    i = find((abs(f) <= (1/T+alpha)) &
    (abs(f) > (1/T-alpha)));
    S_f(k,i) = A* (cos(pi/(4*alpha)*...
        (abs(f(i))-1/T+alpha))).^2;% define S(f)
end
figure (1) ;
plot(t, s_t); \%plot \(s(t)\)
title('raised cosine pulse - A = \(\mathrm{I}=1^{\prime}\) );
xlabel('time - t');
ylabel('s(t)');
legend('alpha \(=0\) ', 'alpha \(=0.5^{\prime}\) ', 'alpha \(=1.0^{\prime}\) ');
axis([-2 \(24-0.52 .2])\);
grid
figure(2);
plot(f, S_f); \(\quad\) plot \(S(f\)
title('Raised Cosine function - \(\mathrm{A}=\mathrm{T}=1\) ');
xlabel('frequency - f');
ylabel('S(f)'):
ylabel('S(土)');
legend('alpha = 0', 'alpha = 0.5', 'alpha = 1.0');
axis( \(\left[\begin{array}{llll}-2.5 & 2.5 & 0 & 1.2\end{array}\right]\) );
grid

\section*{Signals and Systems}
- For linear Systems:
- \(h(t)\) is the system's impulse response - i.e.
\(s_{0}(t)=h(t)\) when \(s_{i}(t)=\delta(t)\)
- \(\mathbf{S}_{\mathbf{i}}(\mathbf{t})\) is system input signal
- \(\mathbf{S}_{\mathbf{o}}(\mathbf{t})\) is system output signal
\(s_{0}(t)=\int_{-\infty}^{\infty} s_{i}(\tau) h(t-\tau) d \tau\)

\(s_{0}(t)=s_{i}(t) * h(t)\)
\(S_{0}(f)=S_{i}(f) H(f)\)

\section*{Signals and Systems (2)}
- System bandwidth is determined by examining the Fourier transfer of the system function \(h(t)\), H(f)
- Example (transmission) systems:


Low Pass
Filter


High Pass
Filter


\section*{Signals and Systems - Example}
- Ideal Low Pass Filter - find the output signal for rectangular input pulse?
\(s_{\mathrm{i}}(t)=\Pi(t / T)\)



9/23/2003
Input pulse


\section*{Signals and Systems - Example}
- The input signal \(s_{i}(t)\) is given by:
\[
s_{i}(t)=\begin{array}{ll}
A & |t|<=T / 2 \\
0 & \text { otherwise }
\end{array}
\]
- Where as it Fourier transform \(S_{i}(f)\) is given by (note that \(s_{i}(t)\) contains all frequencies from 0 till \(\infty\) - refer to Fourier transform of rectangular pulse ):
\[
S_{i}(f)=A T-\cdots \frac{\sin (\pi f T)}{\pi f T} \quad \text { for all } f
\]
- The Fourier transform of the system impulse response, \(H(f)\) is given by (note this transmission system limits frequencies to at most \(W \mathrm{~Hz}\) ):
\[
H(f)=\begin{array}{ll}
1 & |f|<=W \\
0 & \text { otherwise }
\end{array}
\]

\section*{Signals and Systems - Example}
- Therefore the Fourier transform of the output signal is given by:
- \(\quad\left|S_{0}(f)\right|=\left|S_{i}(f)\right| \times|H(f)|\)
\[
\begin{array}{ll}
=A T-\cdots(\pi f T) & \\
=-\cdots & \text { for }|f|<W \\
=0 & \pi f T
\end{array} \quad \text { otherwise }
\]
(note the output signal has frequencies up to W Hz only)

\section*{Signals and Systems - Example}
- To find the output signal \(s_{0}(t)\), one has to use the inverse Fourier transform on \(S_{0}(f)\)
- As the BW of the system is increased, the output signal approaches a rectangular pulse (copy of input)

Exercise:
Try to apply the inverse F.T integral to obtain an analytical form of the signal \(s_{0}(t)\) as a function of \(W\) and \(T\).




\section*{Baseband vs. Bandband}
- Baseband Signal:
- Spectrum not centered around non zero frequency
- May have a DC component
- Bandpass Signal:
- Does not have a DC component
- Finite bandwidth around or at \(f_{c}\)


\section*{Modulation}
- Is used to shift the frequency content of a baseband signal
- Basis for AM modulation
- Basis for Frequency Division Multiplexing (FDM)

\section*{Modulation}
- Consider the signal \(s(t)\),
\[
s_{m}(t)=s(t) \times \cos (2 \pi f t)
\]

The spectrum for \(s_{m}(t)\) is given by
\[
S_{m}(f)=1 / 2 X\left\{S\left(f-f_{c}\right)+S\left(f+f_{c}\right)\right\}
\]


\section*{Modulation - Txer/Rxer}
- At the receiver side:
\(s_{d}(t)=s_{m}(t) X \cos \left(2 \pi f_{c} t\right)\)
\(=s(t) X \cos \left(2 \pi f_{c} t\right) X \cos \left(2 \pi f_{c} t\right)\)
\(=1 / 2 s(t)+1 / 2 s(t) X \cos \left(2 \pi 2 X f_{c} t\right)\)

desired term
undesired term - signal centered around \(2 \mathrm{f}_{\mathrm{c}}\) filtered out using the LPF


\section*{Nyquist Bandwidth}
- For a noiseless channels of bandwidth B, the maximum attainable bit rate (or capacity) is given by
\[
C=2 B \log _{2}(M)
\]

Where \(M\) is the size of the signaling set

\section*{Shannon Capacity}
- Capacity of a channel of bandwidth \(B\), in the presence of noise is given by
\[
C=B \log _{2}(1+S N R)
\]
where SNR is the ratio of signal power to noise power - a measure of the signal quality

\section*{Digital Communications}

\section*{Eb/No Expression}
- An alternative representation of SNR
- Consider the bit stream shown in figure - for bit of rate \(R\), then each bit duration is equal to \(T_{b}=1 / R\) seconds
- Energy of signal for the bit duration is equal to \(A^{2} X T_{b}\), where its power is equal to bit energy / \(T_{b}\) or \(A^{2}\).
- Noise power is equal to \(N_{0} X B\) (refer to thermal noise section)
- Hence, SNR is given by signal power / noise power or SNR \(=\frac{\text { signalpower }}{N_{0} B}=\frac{E_{b}}{N_{0}} \times \frac{R}{B}\)
- One can also write


\section*{Digital Communications}

\section*{Signal Elements or Pulses}
- Unit of transmission - repeated to form the overall signal
- Shape of pulse determines the bandwidth of the transmitted signal
- Digital data is mapped or encoded to the different pulses or units of transmission
- Baud/Modulation or Symbol Rate ( \(\mathbf{R}_{\mathrm{s}}\) )
- The bit rate \(\mathrm{R}_{\mathrm{b}}=\mathbf{R}_{\mathrm{s}} \log _{2}(\mathrm{M})\)
- Please refer to earlier examples of pulses and the corresponding BW

\section*{Signal Elements or Pulses}

\section*{Definitions of Pulses Encoded Signal: 01001110}


\section*{Signal Elements or Pulses}

\section*{Pluses Definitions}

\section*{Encoded Signal: 01001110}

- Symbol rate or baud rate \(R_{s}\) equal to \(1 / T_{s} \rightarrow R=2 R_{s}\)
- In general to encode \(n\) bits per pulse, you need \(2^{n}\) pulses

\section*{Signal Elements or Pulses}


\section*{Digital Signal Encoding Formats}
- Nonreturn to Zero-Level (NRZ-L)
- \(0=\) high level
- 1 = low level
- Nonreturn to Zero Inverted (NRZI)
- \(0=\) no transition at beginning of interval
- \(1=\) transition at beginning of interval
- Bipolar-AMI
- \(0=\) no line signal
- 1 = +ve or -ve level; alternating successive ones
- Pseudoternary
- \(\mathbf{0}=+\mathrm{ve}\) or -ve level; alternating for successive ones
- \(1=\) no line signal
- Doubinary
- \(0=\) no line signal
- \(1=+\) ve or -ve level; depending on number of separating 0 (even - same polarity, odd - opposite polarity)
- Manchester
- \(\mathbf{0}=\) transition from high to low in middle of interval
- \(1=\) transition from low to high in middle of interval
- Differential Manchester: Always transition in middle of interval
- \(0=\) transition at beginning of interval
- \(1=\) no transition at beginning of interval


\section*{Spectrum Characteristics of Digital Encoding Schemes}


\section*{Asynchronous Data Transmission}
- Digital Info:
- Bits
- Characters
- Packets
- Messages or files
- Serial vs. Parallel character

\section*{Asynchronous Transmission}
- Exploits: Rx-er can remain for short period in synch with Tx-er
- Used for short stream of bits - data transmitted one character ( \(5 \sim 8\) bits) at a time
- Synchronization is needed to be maintained for the length of short transmission
- Character is delimited (start \& end) by known signal elements: start bit - stop element
- Rx-er re-synchs with the arrival of new character

\section*{Asynchronous Transmission}
- Simple / Cheap
- Efficiency: transmit 1 start bit +8 bit of data +2 stop bits \(\rightarrow\) Efficiency \(=8 / 11=72 \%\) (or overhead \(=3 / 11\) = \(28 \%\) )
- Good for data with large gaps (e.g. keyboard, etc)

(a) Character format


S1: receiver in idle state
S2: receive is receiving character

\section*{Asynchronous Serial Data Tx-er and Rx-er}
- Refer to figure 2.22

\section*{Synchronous Data Transmission}
- Two ends remain in sync for significant period of time
- Use of SYNC or PREAMPLE characters
- Noise + Data = may create another SYNC character \(\rightarrow\) frame split
- Solution - use two SYNC characters
- Rx-er must buffer incoming frames and search for SYNC character(s)

\section*{Synchronous Frame Format}
- Typical Frame Structure

- For large data blocks, synchronous transmission is far more efficient than asynchronous:
- E.g. HDLC frame (to be discussed in Chapter 7): 48 bits are used for control, preamble, and postamble - if 1000 bits are used for data \(\rightarrow\) efficiency \(=99.4 \%\) (or overhead \(=0.6 \%\) )

\section*{Interfacing}
- Data Terminal Equipment (DTE): terminals or computers
- Data Circuit Equipment (DCE): modem
- Two DCEs exchanging data on behalf of DTEs must use exact same protocol


\section*{For more details refer to Chapter 6: The Data Communication Interface Data and Computer Communications, Stallings 6 \({ }^{\text {th }}\) Edition, 2000}

\section*{DTE-DCE Interface Definition}
- Mechanical: physical specification of connection - type, dimensions, location of pins, etc
- Electrical: voltage levels and timing signals used
- Functional: specify functions that are performed for circuits - rx circuit, tx circuit, etc.
- Procedural: specification of sequence of event for transmitting data based on functional specification
- Two examples:
- V.24/EIA-232-F, and
- ISDN physical interface

\section*{V.24/EIA-232-F - Procedural Specification - Examples}
- Example: Two terminals connected back-toback through the V. 24 interface BUT with no DCEs
- This is referred to as the NULL modem connection
- For short distance connections


\section*{Error Control}
- Error Detection
- Parity Checks
- Cyclic Redundancy Check (CRC)
- For a channel of bit error rate (or BER) of \(P\), the probability of \(m\) bits in error in a block of \(n\) bits ( \(m<=\) n ) is given by
\[
\binom{n}{m} p^{m}(1-p)^{n-m}
\]

Or
\[
\frac{n!}{(n-m)!m!} p^{m}(1-p)^{n-m}
\]

\section*{Error Control (2)}
- The probability the frame or block is correct is given by
\[
(1-p)^{n}
\]

Therefore the probability, the frame is in error (one or more bits in error) is given by
\[
1-(1-p)^{n}
\]

The above quantity is referred to as FER

\section*{Error Control - Example}
- Consider a channel with \(\mathrm{BER}=10^{-3}\), for a block (packet of \(\mathrm{n}=100\) bits), the probability of having one bit in error is equal to
\[
100 \times P \times(1-P)^{99}=9 \times 10^{-2}
\]

While the probability of having 4 bits in error is equal to
\[
\left(100 \text { choose 4) } \times \mathrm{P}^{4} \times(1-\mathrm{P})^{96}=3.6 \times 10^{-6}\right.
\]

The probability that the frame is erroneous is equal to
\[
(1-P)^{100}=0.905 \rightarrow \text { i.e. } \sim 91 \% \text { of the time the frame is in error!! }
\]

\section*{Error Control - Example (2)}
- Relation between block size ( n ) and frame error rate (FER)

\section*{Simple Parity Check}
- Add one extra bit for each character such that:
- Even Parity: no of 1 s even
- Odd Parity: no of 1s odd
- Simple
- Can not detect even no of errors in character
- Adding one extra bit to a group of \(n\) bits \(\rightarrow\) Excess redundancy \(=1 /(n+1)\)

\section*{VRC/LRC Parity Check}
- Extension of simple parity: Vertical Redundancy Check (VRC) and Longitudinal Redundancy Check (LRC)

\section*{Original data to send}

Parity check
\begin{tabular}{|ccccccccc|c|}
\hline Char 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 \\
Char 2 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 \\
Char 3 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 \\
Char 4 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\begin{tabular}{c} 
Char 5
\end{tabular} & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 & 0 \\
\hline \begin{tabular}{c} 
Checking \\
char
\end{tabular} & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\
\hline
\end{tabular}

\section*{VRC/LRC Parity Check (2)}
- Can detect all odd errors - same as the simple parity check
- Can detect any combination of even error in characters that DO NOT result in even number of errors in a column
- Excess Redundancy: \(14 /(40+14)=0.26\)
- There could be undetected errors - How?

\section*{Cyclic Redundancy Check (CRC)}
k-bit block of data ( \(M\) )


Processing: compute FCS (for some given an \(\mathrm{n}+1\) bit polynomial \(P\) )

\section*{k-bit block of data} n -bit file check sequence
\(\mathrm{k}+\mathrm{n}\) bit frame to be transmitted \(=\mathrm{T}\)
- Modulo 2 arithmetic is used to generate the FCS:
- \(0 \pm 0=0 ; 1 \pm 0=1 ; 0 \pm 1=1 ; 1 \pm 1=0\)
- \(1 \times 0=0 ; 0 \times 1=0 ; 1 \times 1=1\)

\section*{CRC - Mapping Binary Bits into Polynomials}
- Consider the following k-bit word or frame and its polynomial equivalent:
\(b_{k-1} b_{k-2} \ldots b_{2} b_{1} b_{0} \rightarrow b_{k-1} x^{k-1}+b_{k-2} x^{k-2}+\ldots+b_{1} x^{1}+b_{0}\)
where \(b_{i}(k-1 \leq i \leq 0)\) is either 1 or 0

\section*{CRC - Mapping Binary Bits into Polynomials - Examples}
- Example1: an 8 bit word \(M=11011001\) is represented as \(M(x)=x^{7}+x^{6}+x^{4}+x^{3}+1\)
- Example2: What is \(x^{4} M(x)\) equal to?
\(x^{4} M(x)=x^{4}\left(x^{7}+x^{6}+x^{4}+x^{3}+1\right)=x^{11}+x^{10}+x^{8}+x^{7}+x^{4}\), the equivalent bit pattern is 110110010000 (i.e. four zeros added to the right of the original \(M\) pattern)
- Example3: What is \(x^{4} M(x)+\left(x^{3}+x+1\right)\) ? \(x^{4} M(x)+\left(x^{3}+x+1\right)=x^{11}+x^{10}+x^{8}+x^{7}+x^{4}+x^{3}+x+1\), the equivalent bit pattern is 110110011011 (i.e. pattern \(1011=x^{3}+x+1\) added to the right of the original \(M\) pattern)

\section*{CRC Calculation}
- \(T=(k+n)\)-bit frame to be tx-ed, \(n<k\)
- \(M=k\)-bit message, the first \(k\) bits of frame \(T\)
- \(F=n\)-bit FCS, the last \(n\) bits of frame \(T\)
- \(P=\) pattern of \(n+1\) bits (a predetermined divisor)


Note:
\(-\mathrm{T}(\mathrm{x})\) is the polynomial (of \(\mathrm{k}+\mathrm{n}-1^{\text {st }}\) degree or less) representation of frame T
\(-M(x)\) is the polynomial (of \(k-1^{\text {st }}\) degree or less) representation of message \(M\)
\(-\mathrm{F}(\mathrm{x})\) is the polynomial (of \(\mathrm{n}-1^{\text {st }}\) degree or less) representation of FCS
\(-\mathrm{P}(\mathrm{x})\) is the polynomial (of \(\mathrm{n}^{\text {th }}\) degree or less) representation of the divisor P
\(-\mathrm{T}(\mathrm{x})=\mathrm{X}^{\mathrm{n}} \mathrm{M}(\mathrm{x})+\mathrm{F}(\mathrm{x})-\) refer to example 3 on previous slide

\section*{CRC Calculation (2)}
- Design: frame \(T\) such that it divides the pattern \(P\) with no remainder?
- Solution: Since the first component of T, M, is the data part, it is required to find \(F\) (or the \(F C S\) ) such that \(T\) divides \(P\) with no remainder

Using the polynomial equivalent:
\(T(x)=X^{n} M(x)+F(x)\)
One can show that \(F(x)=\) remainder of \(x^{n} M(x) / P(x)\)
i.e if \(x^{n} M(x) / P(x)\) is equal to \(Q(x)+R(x) / P(x)\), then \(F(X)\) is set to be equal to \(R(X)\).

Note that:
Polynomial of degree \(k+n\)
----------------------------- = polynomial of degree \(\mathrm{k}+\) remainder polynomial of degree n or less

\section*{CRC Calculation - Procedure}
1. Shift pattern M \(n\) bits to the lift
2. Divide the new pattern \(\mathbf{2 n}^{\mathbf{n}}\) by the pattern \(\mathbf{P}\)
3. The remainder of the division \(R\) ( \(n\) bits) is set to be the FCS
4. The desired frame \(T\) is \(\mathbf{2 n}^{\mathbf{n}} \mathbf{M}\) plus the FCS bits

\section*{Note:}
\(2^{\mathrm{n}} \mathrm{M}\) is the pattern resulting from shifting the pattern Mn bits to the left. In other words, the polynomial equivalent of the pattern \(2^{n} \mathrm{M}\) is \(\mathrm{x}^{\mathrm{n}} \mathrm{M}(\mathrm{x})\)

\section*{CRC Calculation - Example}
- Message \(\mathbf{M}=1010001101\) ( 10 bits) \(\boldsymbol{\rightarrow} \mathbf{k}=10\)

Pattern \(P=110101\) ( 6 bits - note \(0^{\text {tr }}\) and \(n^{\text {th }}\) bits are 1 s )
\(\rightarrow n+1=6 \rightarrow n=5\)
Find the frame \(\mathbf{T}\) to be transmitted?
- Solution:

\(\left.\begin{array}{llllllllll} & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 & 0 & 0\end{array}\right)\) \({ }_{2}^{\mathrm{Q}} \mathrm{M}\)
- \(F C S=R\) is equal to 01110
- Frame T = 101000110101110
- As an exercise, verify that T divided by \(\mathbf{P}\) has no remainder

\section*{CRC - Receiver Procedure}
- Tx-er transmits frame T
- Channel introduces error pattern E
- Rx-er receives frame \(\mathbf{T}_{r}=\mathbf{T} \oplus \mathbf{E}\) (note that if \(\mathrm{E}=\) 000..000, then Tr is equal to \(T\), i.e. error free transmission)
- \(T_{r}\) is divided by \(P\), Remainder of division is \(R\)
- if \(\mathbf{R}\) is ZERO, \(\mathbf{R x}\)-er assumes no errors in frame; else Rx-er assumes erroneous frame
- If an error occurs and \(T_{r}\) is still divisible by \(\mathbf{P} \rightarrow\) UNDETECTABLE error (this means the \(E\) is also divisible by \(\mathbf{P}\) )

\section*{CRC - Transmitter Circuit}
- 1 -bit shift register
©
- Exclusive-OR circuit
(a) Shift-register implementation

Shift register circuit for dividing by \(P=X^{5}+X^{4}+X^{2}+1\)
\(\begin{array}{l|ccccc|cccc} & C_{4} & C_{3} & C_{2} & C_{1} & C_{0} & C_{4} \oplus C_{3} & C_{4} \oplus C_{1} & C_{4} \oplus \text { input } & \text { input } \\\)\cline { 2 - 9 } \text { Initial } & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\ \text { Step1 } & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ \text { Step2 } & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 1 \\ \text { Step3 } & 0 & 0 & 1 & 0 & 1 & 0 & 0 & 0 & 0 \\ \text { Step4 } & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 \\ \text { Step5 } & 1 & 0 & 1 & 0 & 0 & 1 & 1 & 1 & 0 \\ \text { Step6 } & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 \\ \text { Step7 } & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 1 & 1 \\ \text { Step8 } & 1 & 1 & 1 & 0 & 1 & 0 & 1 & 1 & 0 \\ \text { Step9 } & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\ \text { Step10 } & 1 & 1 & 1 & 1 & 1 & 0 & 0 & 1 & 0 \\ \text { Step11 } & 0 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 0 \\ \text { Step12 } & 1 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 \\ \text { Step13 } & 1 & 1 & 0 & 0 & 1 & 0 & 1 & 1 & 0 \\ \text { Step14 } & 0 & 0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 \\ \text { Step15 } & 0 & 1 & 1 & 1 & 0 & 1 & 1 & 0 & -\end{array}\(\}\) Message to

\section*{CRC - Receiver Circuit}
- Tx-er transmits frame T


Figure 7.7 General CRC Architecture to Implement Divisor
\(1+A_{1} X+A_{2} X^{2}+\ldots+A_{n-1} X^{n-1}+X^{n}\)

\section*{Automatic Repeat Request - ARQ}
- Types of Errors:
- Lost frame
- Damaged frame
- Error control Techniques:
- Error detection - discussed previously
- + ve ACK
- Retransmission after timeout
- -ve ACK and retransmission
- ARQ Procedures: convert an unreliable data link into a reliable one.
- Stop-and-wait
- Go-back-N
- Selective-reject

\section*{Stop-and-Wait ARQ}
- Based on the stop-and-wait control flow procedure
- Two types of errors:
1. Frame lost or damaged - Solution: timeout timer
2. Damaged or lost ACK - The timeout timer solves this problem


\section*{Sliding Window Protocol}
- Stop-and-Wait can be very inefficient when a > 1
- Protocol:
- Assumes full duplex line
- Source A and Destination B have buffers each of size W frames
- For \(k\)-bit sequence numbers:
- Frames are numbered: \(0,1,2, \ldots, 2^{\mathrm{k}}-1,0,1, \ldots\) (modulo \(2^{\mathrm{k}}\) )
- ACKs (RRs) are numbered: \(0,1,2, \ldots, 2^{k}-1,0,1, \ldots\) (modulo \(2^{k}\) )
- A is allowed to transmit up to W frames without waiting for an ACK
- \(B\) can receive up to \(W\) consecutive frames
- ACK J (or RR J), where \(0<=\mathrm{J}<=2^{\mathrm{k}}-1\), sent by B means B is have received frames up to frame J-1 and is ready to receive frame J
- B can also send RNR J: B have received all frames up to J-1 and is not ready to receive any more
- Window size, W can be less or equal to \(2^{\mathrm{k}}-1\)

\section*{Go-Back-N ARQ}
- Based on the sliding-window flow control procedure
- If the \(i^{\text {th }}\) frame is lost or deemed lost (i.e. \(i+1^{\text {st }}\) is received before the \(i^{\text {th }}\) frame), the \(i^{\text {th }}\) frame and all subsequent frames are retransmitted

\section*{Selective-Reject ARQ}
- In contrast to Go-Back-N, the only frames retransmitted are those that receive -ve ACK (called SREJ) or those that time out
- More efficient:
- Rx-er must have large enough buffer to save postSREJ frames
- Buffer manipulation - re-insertion of out-of-order frames

\section*{Window Size for Selective-Reject ARQ - Why?}
- Window size: should less or equal to half range of sequence numbers
- For \(n\)-bit sequence numbers, Window size is \(\leq 2^{n-1}\) (remember sequence numbers range from \(0,1, \ldots\), \(2^{\mathrm{n}}-1\) )
- Why? See next example

\section*{Go-Back-N/Selective-}

\section*{Reject ARQ \\ Examples}
- With Go-back-N frames 4,5 and 6 are retransmitted
- With Selective-Reject only frame 4 is retransmitted


(b) Selective-reject ARQ

\section*{Switching}
- Circuit Switching
- Call Setup
- Data Exchange
- Call Termination
- Store-and-forward (Packet Switching)
- Virtual Circuit
- Datagram

\section*{What is MULTIPLEXING?}
- A generic term used where more than one application or connection share the capacity of one link
- Why?
- To achieve better utilization of resources


\section*{Frequency-Division Multiplexing - Transmitter}
- \(\mathrm{m}_{\mathrm{i}}(\mathrm{t})\) : analog or digital information
- Modulated with subcarrier \(f_{i}\) \(\mathrm{s}_{\mathrm{i}}(\mathrm{t})\)
- \(\mathrm{m}_{\mathrm{b}}(\mathrm{t})\) composite baseband modulating signal
- \(\mathrm{m}_{\mathrm{b}}(\mathrm{t})\) modulated by \(f_{c} \rightarrow\) The overall FDM signal \(\mathrm{s}(\mathrm{t})\)

\section*{Frequency-Division Multiplexing - Receiver}
- \(\mathrm{m}_{\mathrm{b}}(\mathrm{t})\) is retrieved by demodulating the FDM signal \(\mathrm{s}(\mathrm{t})\) using carrier \(f_{c}\)
- \(m_{b}(t)\) is passed through a parallel bank of bandpass filters - centered around \(\mathrm{f}_{\mathrm{i}}\)
- The output of the \(i^{\text {th }}\) filter is the \(i^{\text {th }}\) signal \(s_{i}(t)\)
- \(m_{i}(t)\) is retrieved by demodulating \(s_{i}(t)\) using subcarrier \(f_{i}\)


\section*{Synchronous Time-Division Multiplexing - Transmitter}
- Digital sources \(\mathrm{m}_{\mathrm{i}}(\mathrm{t})\) usually buffered
- A scanner samples sources in a cyclic manner to form a frame
- \(\mathrm{m}_{\mathrm{c}}(\mathrm{t})\) is the TDM stream or frame \(\rightarrow\) frame structure is fixed
- Frame \(m_{c}(t)\) is then transmitted using a modem \(\rightarrow\) resulting analog signal is \(s(t)\)

(a) Transmitter

(b) TDM Frames

\section*{Synchronous Time-Division Multiplexing - Receiver}
- TDM signal \(s(t)\) is demodulated \(\rightarrow\) result is TDM digital frame \(m_{c}(t)\)
- \(m_{c}(t)\) is then scanned into \(n\) parallel buffers;
- The \(\mathrm{i}^{\text {th }}\) buffer correspond to the original \(\mathrm{m}_{\mathrm{i}}(\mathrm{t})\) digital information


\section*{Statistical Time-Division Multiplexing}
- Dynamic and on-demand allocation of time slots


\section*{Statistical Time-Division Multiplexing Frame Format}
- Clearly, the aim of statistical TDM is increase efficiency by not sending empty slots
- But it requires overhead info to work:
- Address field
- Length field

(a) Overall frame

(b) Subframe with one source per frame


\section*{Statistical Time-Division Multiplexing - Modeling}
- Data items (bits, bytes, etc) are generated at any time - source may be intermittent (bursty) not constant
- \(\mathbf{R} \mathbf{b} / \mathrm{s}\) is the peak rate for single source - \(\alpha R \mathrm{~b} / \mathrm{s}\) is the average rate for single source ( \(0 \leq \mathrm{a} \leq 1\) )
- The effective multiplexing line rate is \(\mathbf{M ~ b / s}\)
- Each data item requires \(\mathbf{T}_{\mathbf{s}}\) sec to be served or tx-ed
- Data items may accumulate in buffer before server is able to transmit them \(\rightarrow\) Queueing delay
```

