King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 543 – Mobile and Wireless Networks

Term 022

Dr. Ashraf S. Hasan Mahmoud

Rm 22-148-3

Ext. 1724

Email: ashraf@ccse.kfupm.edu.sa

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

Lecture Contents

1.

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

Main References

- K. Pahlavan and P. Krishnamurthy, A Unified Approach: Principles of Wireless Networks, Prentice Hall, 2002 – Section 6.4
- J. Wilkes, "Privacy and Authentication Needs for PCS," IEEE Personal Communications, August 1995, pp. 11-15
- J. Williams, "The IEEE802.11b Security Problem, Part 1," IT Professional, November-December 2001, pp. 91-95 (and the references therein)

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

3

Wireless Media

- RF is a shared media
 - Wireless communication is more susceptible to eaves dropping
- No privacy
- The presence of the communication request does not uniquely identify the originator
- Need for Privacy and Authentication

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

None Cryptographic Means

- Number Assigned Module (NAM) and Electronic Serial Number (ESN)
 - Used for authentication
- Using the > 900 MHz band
 - Outside the range of typical scanners
- Which is more secure FDMA, TDMA, or CDMA?
- None cryptographic methods usually do not provide the proper solution

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

5

http://www.philzimmermann.com/

Levels of Privacy

- Level 0: None with no privacy enabled
 - Anyone with digital scanner can monitor calls
 - A "lack of privacy" indicator should be provided a public trust issue
- Level 1: Equivalent to Wireline
 - Most people assume wireline calls are secure eaves dropping can be detected not as in wireless
 - Used for routine every day calls
 - Would take a year or so to break encryption would require same effort to break every call
- Level 2: Commercially Secure
 - For proprietary info
 - Would take 10~25 yrs to break encryption would require same effort to break every call
- Level 3: Military/Government Secure
 - None breakable?

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

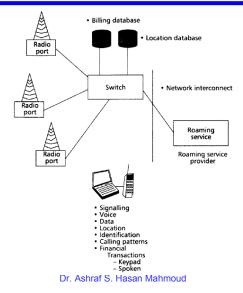
Privacy Requirements

- Privacy of Call Setup Information
 - Calling #, calling card #, type of service, etc.
- Privacy of Speech
 - Must be encoded and none interceptable
- Privacy of Data
 - Must be encoded and none interceptable
- Privacy of User Location
 - Location should not be disclosed encrypting user id
 - Remember HLR and VLR have this info must not be subject to attacks

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

7


Privacy Requirements - cont'd

- Privacy of User ID
 - User ID may be encrypted
 - Prevents analysis of calling patterns for this ID VERY IMPORTANT
- Privacy of Calling Patterns
 - No info sent from mobile should allow traffic analysis
 - This info: calling #, frequency of use, caller identity
- Financial Transactions
 - Visa card # or bank transactions over the air!!
 - Securing the DTMF

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

Privacy Requirements

Theft Resistance Requirements

- Cryptographic design should make the reuse of stolen personal terminal difficult
 - Even if registered to a new legitimate account
- Clone Resistant Design
 - Mobile unique info must not be compromised
 - Over the air eaves dropping
 - From the network secure databases
 - From network interconnect info passed between systems for security checking of roaming mobiles must have enough info to authenticate the mobile and not enough info to clone it!!
 - From users cloning their own mobiles

Theft Resistance Requirements – cont'd

- Installation Fraud
 - Cryptographic system must be designed to that installation cloning is reduced or eliminated
- Repair Fraud
- Unique User ID
 - Identify the correct person using the mobile for billing purposes
- Unique mobile ID
 - Different than user ID
 - Smart card or PCMCIA card containing all security info

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

11

Radio System Requirements

- Multipath Fading
 - Immune to sever burst errors
- Thermal Noise/Interference
 - The modulation scheme and the cryptographic system must be designed so that interference with shared users of the spectrum does not compromise the security of the system
- Jamming
 - Should work in the face of jamming does not break
- Support for Handovers

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

Other Requirements

- Lifetime of ~20 years:
 - An algorithm that is secure today may be breakable in 5 to 10 years
- Physical Requirements:
 - Mass production
 - Exported and Imported
 - Minimal impact on handset size, weight, power consumption, etc.
 - Low-cost Level 1 implementation

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

13

Other Requirements - cont'd

- Law Enforcement Requirements
 - With the right court order, the law enforcement should be able to tap into the wireless calls
 - Over the air:
 - No encryption easy
 - Breakable encryption
 - Strong encryption problematic need to obtain key
 - Wiretap at switch:
 - Preferred method easiest

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

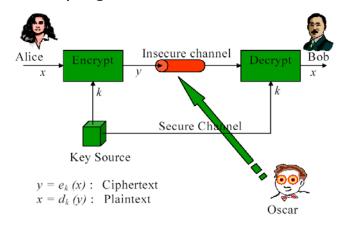
Network Security - Services

- (Def): Specific measures employing security mechanisms that combat security attacks on a network
- Include:
 - Confidentiality or Privacy: resistance to interception
 - Message Authentication: integrity of message and a guarantee that the sender is who he/she claims to be -Attacks: message modification or impersonation of sender
 - Nonrepudiation: service against denial by either party of creating or acknowledging a message – similar to digital signatures based on public key encryption – Attacks: fabrication
 - <u>Access Control</u>: only authorized entities can access Attacks Masquerading
 - Availability: access to resources is not prevented by malicious entities (remember www.aljazeera.net!!) -Attacks: denial of service

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

15


Privacy

- **Encryption**
 - one way of providing most of the previously listed
 - SHOULD be computationally secure non breakable ideally
- Terms:
 - Message plaintext or cleartext
 - Encoded version ciphertext
 - Key k
- Time and Cost to break the scheme should be significant relative to protected value
 - Should assume interceptor has access to plaintext-ciphertext pairs
 Plasan Mahmoud

5/19/2003

Conventional Encryption Model

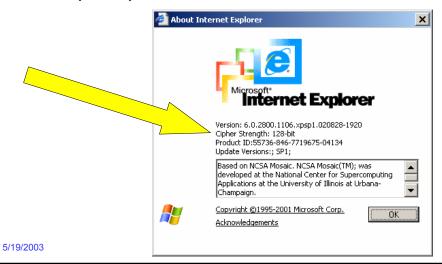
Secret-Key Algorithm

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

17

Date Encryption Standard (DES)

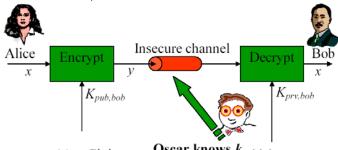

- A symmetric key algorithm
 - Key used for encryption is the same as that used for decryption
- Two Principles:
 - Confusion ←→ scrambling of original data
 - Diffusion ←→ creating randomness can not relate changes to plaintext to those of ciphertext
- Most secret-key algorithms are unbreakable except by brute-force
 - Key length of n bits \rightarrow at least 2^{n-1} steps to break encryption
- Main advantage fast; appropriate for fast data streams
 - Compared to public-key algorithms

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

Date Encryption Standard (DES) – cont'd

Usually a key size of 128 bits is recommended



Public-key Algorithms

- Every pair of users have to have a key
 - A network of N users require the distribution of N(N-1)/2 keys!
 - Large and impractical for large N
- Key distribution schemes:
 - Needham-Schroeder
 - Kerberos
- Concept introduced by Diffie and Hellman in 1977

Public-key Algorithms – cont'd

- It is extremely easy to compute $y = f(k_{\text{pub}}, x)$
- Given k_{pub} , and y, it is computationally not feasible to determine $x = f^1(k_{\text{pub}}, y)$
- With a knowledge of k_{prv} that is related to k_{pub} , it is easy to determine $x = f^1(k_{prv}, y)$

 $y = e_{kpub}(x)$: Ciphertext Oscar knows $k_{pub,bob}$

 $x = d_{kprv}(y)$: Plaintext

5/19/2003 Dr. Ashraf S. Hasan Mahmoud

21

Public-key Algorithms - cont'd

- f ~ belongs to a group of functions referred to as a trapdoor one-way function - e.g. factorization problem and discrete logarithm
- Since k_{pub} is available and the method is based on a mathematical structure → need to be 3 to 15 times larger than the secret-key counter parts
- Elliptic Mathematics (refer to: http://world.std.com/~dpj/elliptic.html) provides a mean to use smaller keys with same level of secuirty

Public-key Algorithms – Examples

- Rivest-Shamir-Adelman (RSA)
 - Employs integer factorization
 - Most popular
- Diffie-Hellman key-exchange
 - Based on discrete logarithm
 - Wireless networks
 - Used for key exchange for web transactions, ecommerce, IP security.
 - See appendix 6A for details
- Digital Signature Standard (DSS)
 - Based on discrete logarithms

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

23

Public-key Algorithms – Characteristics

- Computationally intensive
- Encryption rates quite small
- Rarely used for bulk data transfer
- Usually used to exchange a session key to use a secret-key algorithm for later communications
 - Different session key each time!

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

Cost Equivelant Key Lengths (in Bits) of Various Encryption Schemes

Secret- key Algorithm	Elliptic Curve	RSA	Time to Break	Memory
56	112	430	Less than 5 mins	Trivial
80	160	760	600 months	4 Gb
96	192	1,020	3 million years	170 Gb
128	256	1,620	10 ¹⁶ years	120 Tb

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

25

Block vs. Stream Ciphers

- Block Ciphers DES and Advanced Encryption Standard (AES)
 - Encrypt blocks of data at a time
 - Requires buffering and padding
- Stream Ciphers no need for buffering
 - More suitable for a jitter-sensitive service
 - Usually a simple XOR operation is used
- Example:
 - IEEE802.11 employs the encryption algorithm RC-4 to generate a pseudorandom key stream using a 40-bit master key and an initial vector (IV)
 - Data is simply XORed with the key to create ciphertext

Message Authentication

- Involved:
 - Sender authentication
 - Message integrity
- This is accomplished using a message digest (MD) and a message authentication code (MAC)

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

27

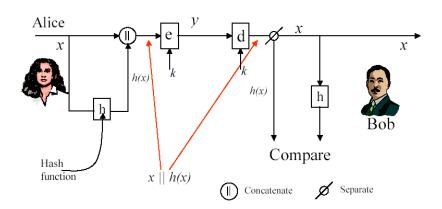
Message Authentication Code (MAC)

- MAC creates a fixed-length sequence of bits that depend on the message and the secret key
 - Not a function of message size
 - It is computationally infeasible to generate the MAC without the original message and key
- Message is then delivered (with the MAC) to destination
- Receiver computes MAC again based on received message
- New MAC is equal to old MAC IFF message was not tampered with (remember secret key is a secret!)

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

Message Digest (MD)


- MD depends only on the message x
- A hash function, h, is used to create the MD, h(x)
- The MD is appended to the message x → x || h(x)
- The newly overall message x || h(x) is encrypted using the secret-key
- h(x) has to be sufficiently long
 - For a b bit $h(x) \rightarrow$ a fake message with same h(x) can be generated in $2^{b/2}$ trails

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

29

Message Authentication with Hash Functions

What is a hash function?

Refer to http://www.rsasecurity.com/rsalabs/faq/2-1-6.html

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

MD and HMAC C++ code

- From http://njet.org/doc/Doc/\$24\$24native/anvil/crypto.html
- Message Digest (MD) provides applications the functionality of a message digest algorithm, such as MD5 or SHA. Message digests are secure one-way hash functions that take arbitrary-sized data and output a fixed-length hash value.
- Message Authentication Code (MAC) Since everyone can generate the message digest, it may not be suitable for some security related applications. Because of this, Anvil⁺ also supports HMAC (rfc2104), which is a mechanism for message authentication using a (secret) key. So you can use a key with a hash algorithm to produce hashes that can only be verified using the same key.

⁺ Anvil is a crypto library that can create message hash codes or checksums from any data. It is posted on the webpage listed above.

5/19/2003

Dr. Ashraf S. Hasan Mahmoud

31

Identification Schemes

- Need:
 - Access to an automatic teller machine
 - Logging on to a computer
 - Identifying a user of a cellular phone
 - Etc.
- Identification = entity authentication
 - A password or a pin compared to a securely stored hash value
 - Susceptible to replay attacks if transmitted over-the-air in an insecure manner
- Challenge-Response identification or Strong identification
 - Used in wireless networks

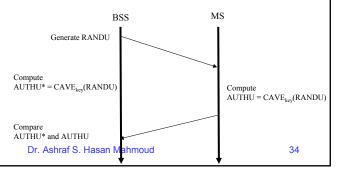
5/19/2003

Dr. Ashraf S. Hasan Mahmoud

Identification Schemes - cont'd

- A nonce: a value employed no more than once for the same purpose
 - Eliminates replay attacks

Example:


- 1. Consider an IS-136 digital TDMA network
- The network (BSS) generates a random # RANDU and sends it over the air to mobile
- 3. Mobile computes a value AUTHU using the encryption algorithm Cellular Authentication and Voice Encryption (CAVE)
- AUTHU is sent to network and compared with a computed version at the network
- If the two AUTHU match → the mobile is authenticated using IS-41 terminology

5/19/2003 Dr. Ashraf S. Hasan Mahmoud

Identification Schemes – cont'd

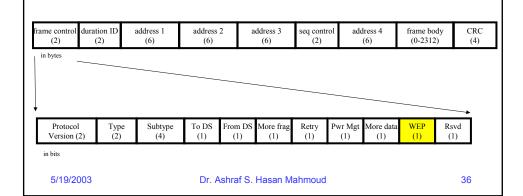
Example: Challenge-Response mechanism in IS-41

- 1. Consider an IS-136 digital TDMA network
- The network (BSS) generates a random # RANDU and sends it over the air to mobile
- Mobile computes a value AUTHU using the encryption algorithm Cellular Authentication and Voice Encryption (CAVE)
- 4. AUTHU is sent to network and compared with a computed version at the network
- 5. If the two AUTHU match → the mobile is authenticated using IS-41 terminology

33

IEEE802.11 Security & Privacy

- Objectives:
 - To provide a wired equivalent privacy (WEP)
 - To protect against
 - Eavesdropping
 - Unauthorized access
 - 1. http://www.cs.umd.edu/~waa/wireless.html and the references therein especially the following paper: "Your 802.11 network has no clothes,"
 - 2. http://www.mobileinfo.com/Security/index.htm

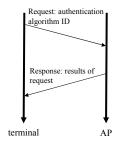

5/19/2003

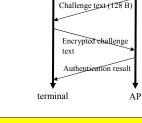
Dr. Ashraf S. Hasan Mahmoud

35

MAC Frame Format

- General MAC frame format & Control Field
- WEP = 1 → data bits are encrypted (refer to chapter 11 of Pahlavan)




Authentication Schemes for IEEE802.11

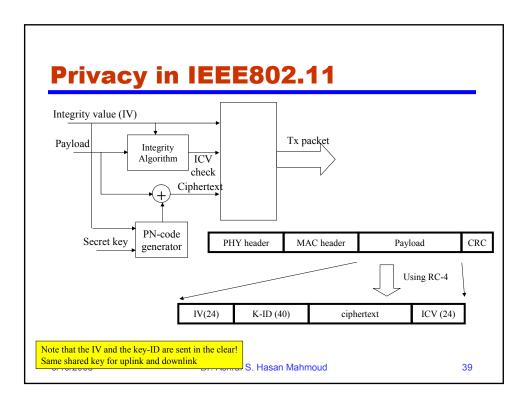
- Three schemes:
 - Open system authentication
 - Default uses SSID as a password to gain acess
 - NULL Authentication function authenticates anyone requesting authentication
 - Shared key authentication (WEP based)
 - 40-bits key
 - Not very secure
 - Standard does not specify key management or where to get this key from!!
 - Optional
 - Access Control List (MAC address filtering)
 - MAC address based
 - Not scalable requires manual setting
- Not available for ad-hoc

5/19/2003 Dr. Ashraf S. Hasan Mahmoud

Authentication Schemes for IEEE802.11

Open System Authentication

Shared-key Authentication


Authentication

Mgt request frame

Challenge text: The challenge text is generated by using the WEP pseudo-random number generator (PRNG) with the "shared secret" and a random initialization vector (IV) Challenge response: encrypted with WEP using the "shared

secret" along with a new IV

5/19/2003 Dr. Ashraf S. Hasan Mahmoud 38

RC4 Encryption (Stream Cipher)

- Reasonable strong:
 - A brute force attack on this algorithm is difficult since every frame is sent with a different IV
 - IV restarts the pseudo random number generator (PRNG) for each frame
- Self-Synchronizing:
 - Even if some intermediate frames are lost, the WEP algorithm resynchronizes at each frame

Encryption Keys

- Window of four keys
 - Can be manually configured up to four keys
 - Each is 40 bits (5 ascii or 10 hex digits)
 - For all network
- Key-mapping table
 - Each unique MAC address has separate keys one per device
 - Need to be configured manually
 - Most secure

5/19/2003

Dr. Ashraf S. Hasan Mahmoud