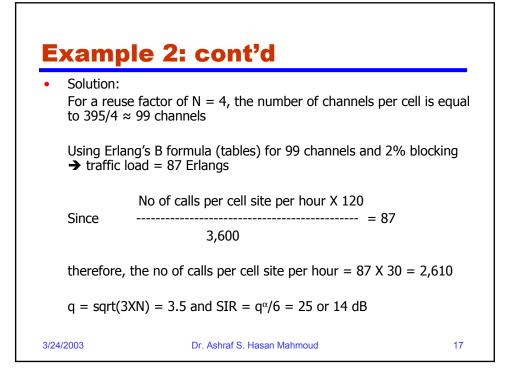
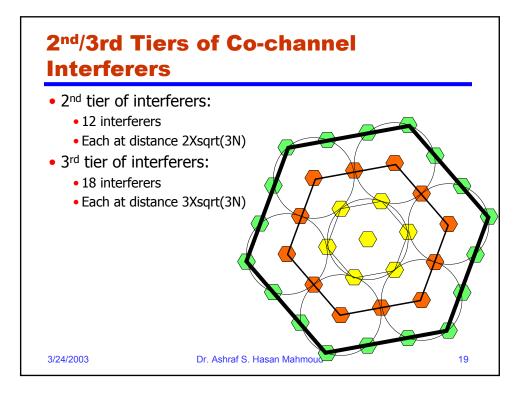
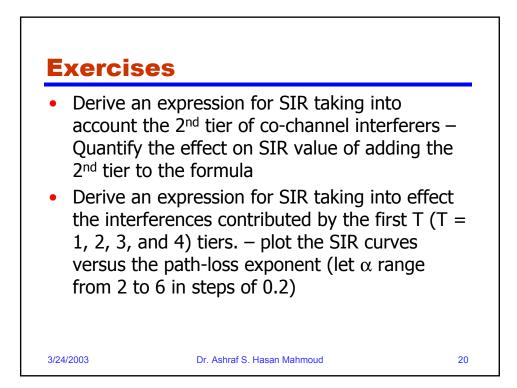
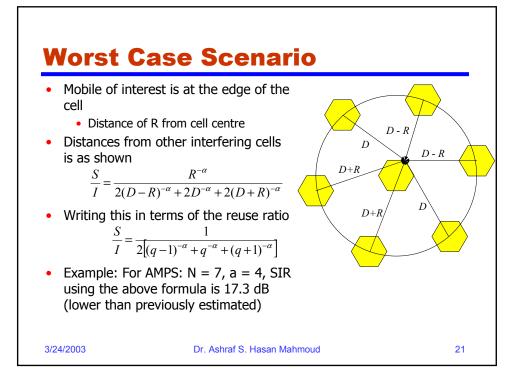

1st Tier of Co-channel Interferers – cont'd

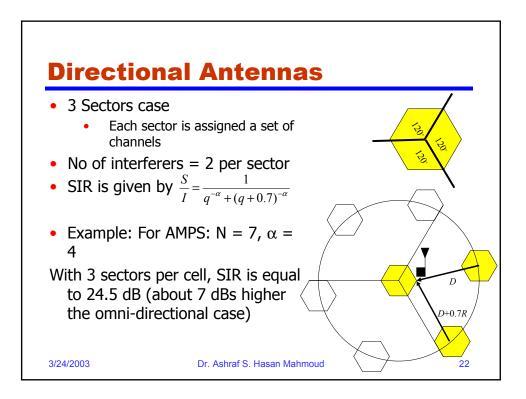

- If we make the assumption that $\mathsf{D}_k \approx \mathsf{D}$ for all k, then SIR can be written as

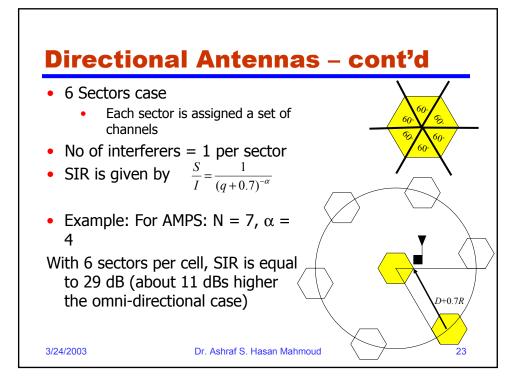
$$\frac{S}{I} = \frac{1}{\sum_{k=1}^{6} (q)^{-\alpha}} = \frac{q^{\alpha}}{6}$$

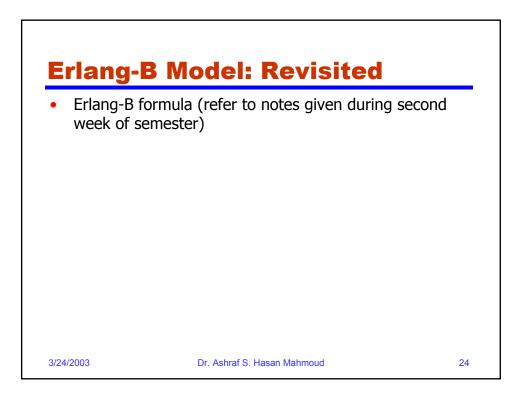

3/24/2003








 Sol Rep 	utior Deati	n: con ng the	2: cont'd t'd e calculations for owing table		= 12, we can	
	Ν	q	Voice Channels per Cell	Calls per Cell per Hour	Mean SIR (dB)	
	4	3.5	99	∫ 2610	14.0	%
	7	4.6	56 red	uction 1376	$18.7 \int increa$	ase
	12	6.0	33	739	23.3	
			that by increasin he call capacity (Dr. Ashraf S. Hasan	of the cell site is		



P(B)= Trunks	0.01	0.015	0.02	0.03	0.05	0.07	0.1	0.2	0.5
1	0.010	0.015	0.020	0.031	0.053	0.075	0.111	0.250	1.000
2	0.153	0.190	0.223	0.282	0.381	0.471	0.595	1.000	2.732
3	0.455	0.536	0.603	0.715	0.899	1.057	1.271	1.930	4.591
4	0.870	0.992	1.092	1.259	1.526	1.748	2.045	2.944	6.501
5	1.361	1.524	1.657	1.877	2.219	2.504	2.881	4.010	8.437
6	1.913	2.114	2.277	2.544	2.961	3.305	3.758	5.108	10.389
7	2.503	2.743	2.936	3.250	3.738	4.139	4.666	6.229	12.351
8	3.129	3.405	3.627	3.987	4.543	4.999	5.597	7.369	14.318
9	3.783	4.095	4.345	4.748	5.370	5.879	6.546	8.521	16.293
10	4.462	4.808	5.084	5.529	6.216	6.776	7.511	9.684	18.271
11	5.160	5.539	5.842	6.328	7.076	7.687	8.487	10.857	20.253
12	5.876	6.287	6.615	7.141	7.950	8.610	9.477	12.036	22.237
13	6.607	7.049	7.402	7.967	8.835	9.543	10.472	13.222	24.223
14	7.352	7.824	8.200	8.803	9.730	10.485	11.475	14.412	26.211
15	8.108	8.610	9.010	9.650	10.633	11.437	12.485	15.608	28.200
16	8.875	9.406	9.828	10.505	11.544	12.393	13.501	16.807	30.190
17	9.652	10.211	10.656	11.368	12.465	13.355	14.523	18.010	32.181
18	10.450	11.024	11.491	12.245	13.389	14.323	15.549	19.215	34.173
19	11.241	11.854	12.341	13.120	14.318	15.296	16.580	20.424	36.166
20	12.041	12.680	13.188	14.002	15.252	16.273	17.614	21.635	38.159

Erlang-B Tables (Sample)

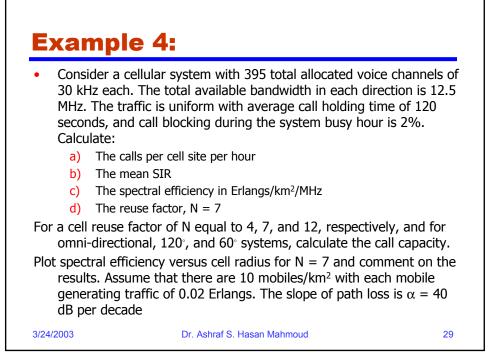
Erlang-B Tables (Sample)

P(B)= Trunks	0.005	0.01	0.015	0.02	0.03	0.05	0.07	0.1
20	11.092	12.041	12.680	13.188	14.002	15.252	16.273	17.614
21	11.860	12.848	13.514	14.042	14.890	16.191	17.255	18.652
22	12.635	13.660	14.352	14.902	15.782	17.134	18.240	19.693
23	13.429	14.479	15.196	15.766	16.679	18.082	19.229	20.737
24	14.214	15.303	16.046	16.636	17.581	19.033	20.221	21.784
25	15.007	16.132	16.900	17.509	18.486	19.987	21.216	22.834
26	15.804	16.966	17.758	18.387	19.395	20.945	22.214	23.885
27	16.607	17.804	18.621	19.269	20.308	21.905	23.214	24.939
28	17.414	18.646	19.487	20.154	21.224	22.869	24.217	25.995
29	18.226	19.493	20.357	21.043	22.143	23.835	25.222	27.053
30	19.041	20.343	21.230	21.935	23.065	24.803	26.229	28.113
31	19.861	21.196	22.107	22.830	23.989	25.774	27.239	29.174
32	20.685	22.053	22.987	23.728	24.917	26.747	28.250	30.237
33	21.512	22.913	23.869	24.629	25.846	27.722	29.263	31.302
34	22.342	23.776	24.755	25.532	26.778	28.699	30.277	32.367
35	23.175	24.642	25.643	26.438	27.712	29.678	31.294	33.435
36	24.012	25.511	26.534	27.346	28.649	30.658	32.312	34.503
37	24.852	26.382	27.427	28.256	29.587	31.641	33.331	35.572
38	25.694	27.256	28.322	29.168	30.527	32.624	34.351	36.643
39	26.539	28.132	29.219	30.083	31.469	33.610	35.373	37.715

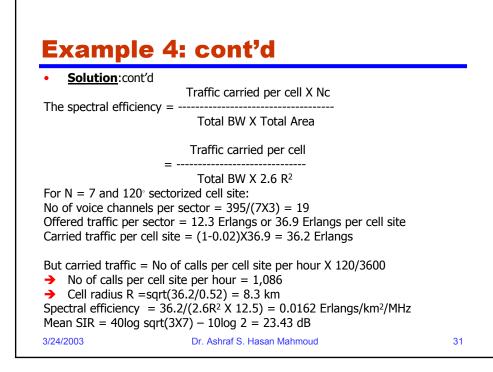
3/24/2003

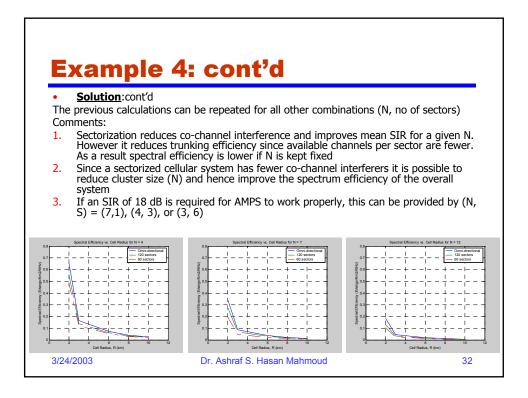
Example 3:

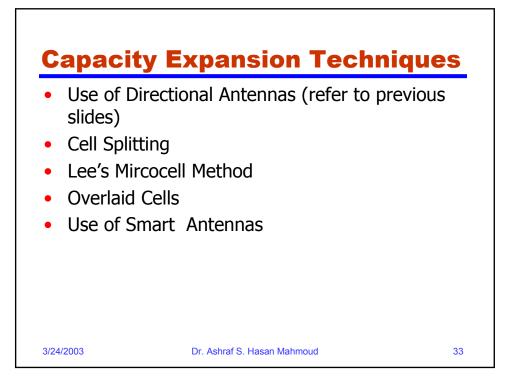
 Compare the spectral efficiency of the digital system (IS-54) with that of the analog system (AMPS) using the following data:

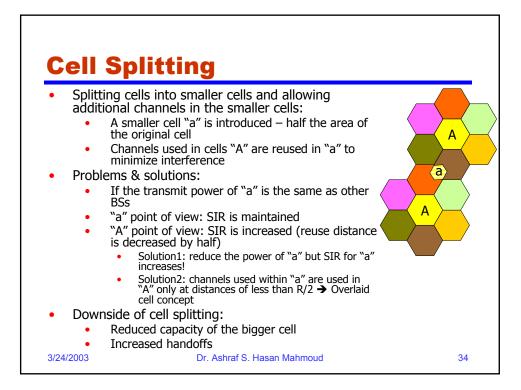

- The total # of channels is 416
- The # of control channels = 21 (i.e. 395 channels for voice)
- The channel bandwidth is 30 kHz
- The reuse factor, N = 7
- The total available bandwidth for each direction = 12.5 MHz
- Coverage area = 10,000 km2
- The required SIR for AMPS = 18 dB (or 63.1)
- The required SIR for IS-54 = 14 dB (or 25.1)
- Call blocking = 2.5%

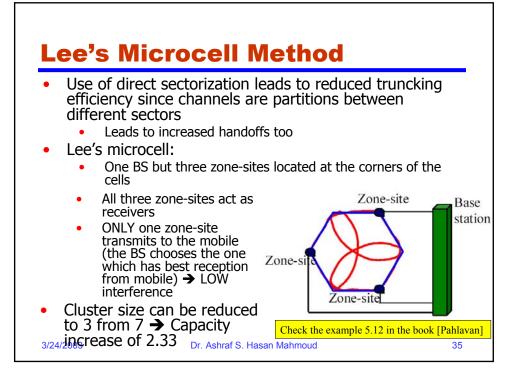
```
3/24/2003
```

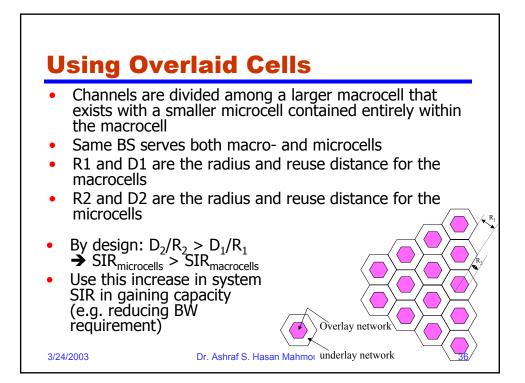

Dr. Ashraf S. Hasan Mahmoud

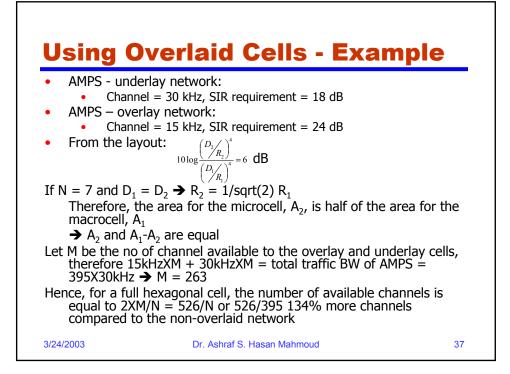

Example 3: cont'd Solution: Analog System: # of voice channels per cell site = 395/7 = 56The offered traffic load (using Erlang-B tables @ 2% blocking) = 45.6 Erlangs per cell site The carried load = (1-2%)X45.6 = 44.98 Erlangs / cell site Carried Load X No of cell sites Spectral Efficiency = -Total BW X Total Area 44.98 X (10,000/(2.6R²)) = ----- = 1.384/R² Erlangs/Km²/MHz 12.5 X 10,000 Digital System. # of channels per 30 kHz = 3 \rightarrow # of voice channels per cell site = 56X3 = 168 Offered traffic load = 154.5 Erlangs per cell site Carried traffic load = (1-2%)X154.5 = 151.4 Erlangs per cell site 151.4 X (10,000 /(2.6R2)) Spectral Efficiency = ------ = 7.386 /R² Erlangs/Km²/MHz 12.5 X 10,000 → Relative (Digital to Analog) Efficiency = 7.386/1.384 = 5.34 Dr. Ashraf S. Hasan Mahmoud 3/24/2003 28

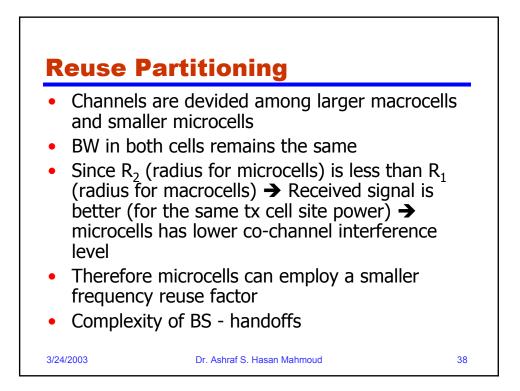

27

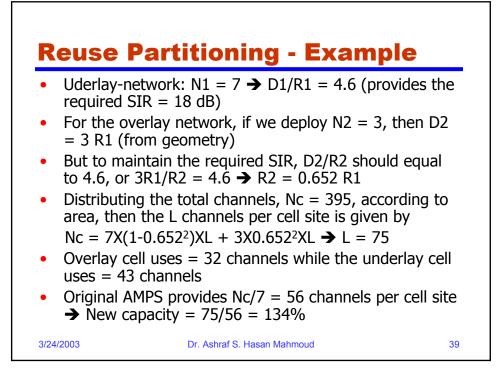


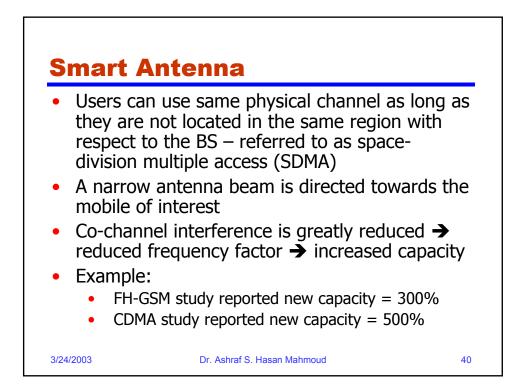

Eva	mple 4: cont'd	
LAG		
• <u>Sol</u>	lution:	
Conside	ering the first tier of interferers – SIR is given by	
	Mean SIR = $1/\Sigma (q_i^{-\alpha})$ for all interfering ith co-channel, or	
Μ	lean SIR = $q^{-\alpha}/m$, assuming m co-channels all at distance [D
In decit	pels,	
	Mean SIR = $\alpha 10 \log (\text{sqrt}(3N)) - 10 \log m$	
where a	lpha is the path loss component, and	
	m is the number of interferers ($m = 6$, for omni-directional	al, m =
2 fc	or 120° , and m = 1 for 60°)	
The tra	ffic per cell site = V X t X Ac	
where	$V = no of mobile per km^2$	
	t = traffic in Erlangs per mobile	
	Ac = area of cell = $2.6R^2$	
→ Ther	refore traffic per cell site = $10X0.02X2.6R^2 = 0.52 R^2$	
3/24/2003	Dr. Ashraf S. Hasan Mahmoud	30











Cellular Concept

References:

- MacDonald, V.H., "The Cellular Concept," Bell System Technical Journal 58, no. 1, January 1979, pp. 15-41
- Chen, G. K., "Effects of Sectorization on the Spectrum Efficiency of Cellular Radio Systems," IEEE transactions on vehicular technology 41, no. 3, August 1992, pp. 217-25
- French, R. C., "The Effects of Fading and Shadowing on Channel Reuse in Mobile Radio," IEEE transactions on vehicular technology 28, August 1979, pp. ? -?
- Lee, Y. C. Y., "Spectrum Efficiency and Digital Cellular," 38th IEEE vehicular technology conference, Philadelphia, June 1988

3/24/2003

Dr. Ashraf S. Hasan Mahmoud

41