King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 200 – Fundamentals of Computer Engineering

Term 022

Dr. Ashraf S. Hasan Mahmoud

Rm 22-144

Ext. 1724

Email: ashraf@ccse.kfupm.edu.sa

3/24/2003

Dr. Ashraf S. Hasan Mahmoud

Binary Logic

- Deals with binary variables that take one of two discrete values
- Values of variables are called by a variety of very different names
 - high or low based on voltage representations in electronic circuits
 - *true* or *false* based on their usage to represent logic states
 - one (1) or zero (0) based on their values in Boolean algebra
 - open or closed based on its operation in gate logic
 - on or off based on its operation in switching logic
 - asserted or de-asserted based on its effect in digital systems

3/24/2003

Dr. Ashraf S. Hasan Mahmoud

Basic Operations - AND

• Another Symbol is ".", e.g.

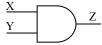
$$Z = X AND Y or$$

$$Z = X.Y$$
 or even

$$Z = XY$$

- X and Y are inputs, Z is an output
- Z is equal to 1 if and only if X = 1 and Y = 1; Z
 = 0 otherwise (similar to the multiplication operation)
- Truth Table:

• Graphical symbol:



3/24/2003

Dr. Ashraf S. Hasan Mahmoud

Χ	Y	Z=XY
0	0	0
0	1	0
1	0	0
1	1	1

3

Basic Operations - OR

Another Symbol is "+", e.g.

$$Z = X OR Y or$$

$$Z = X + Y$$

- X and Y are inputs, Z is an output
- Z is equal to 0 if and only if X = 0 and Y = 0; Z
 = 1 otherwise (similar to the addition operation)
- Truth Table:
- Graphical symbol:

Dr. Ashraf S. Hasan Mahmoud

	,	
Χ	Υ	Z=X+Y
0	0	0
0	1	1
1	0	1
1	1	1

3/24/2003

Basic Operations - NOT

Another Symbol is "", e.g.

$$Z = \overline{X}$$
 or $Z = X'$

- X is the input, Z is an output
- Z is equal to 0 if X = 1; Z = 1 otherwise
- Sometimes referred to as the complement or invert operation
- Truth Table:

Χ	Z=X′
0	1
1	0

• Graphical symbol:

3/24/2003

Dr. Ashraf S. Hasan Mahmoud

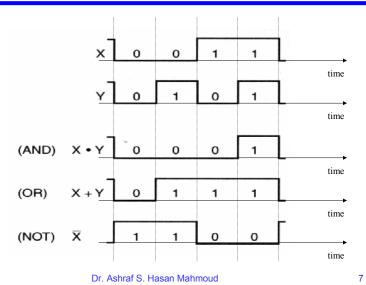
- 5

Exercise 1

• Build a NOT gate using one AND gate?

3/24/2003

Dr. Ashraf S. Hasan Mahmoud



Multiple Input Gates

(a) Three-input AND gate

3/24/2003

3/24/2003

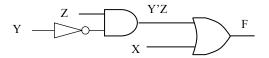
Dr. Ashraf S. Hasan Mahmoud

Boolean Algebra

Consider the following function, F

$$F = X + Y'Z$$

- The function F is referred to as a BOOLEAN FUNCTION
- F has two terms: X and Y'Z
- The circuit diagram for F is as shown below



3/24/2003

Dr. Ashraf S. Hasan Mahmoud

c

Boolean Algebra - cont'd

- The truth table for F is as follows
- Note:
 - In general, a truth table for an n-variable function, has 2ⁿ rows to cover all possible input combinations
 - The table covers all possible combinations of the inputs
 - To arrive at the F's column one could use an Y'Z column as follows

Υ	Z	F
0	0	0
0	1	1
1	0	0
1	1	0
0	0	1
0	1	1
1	0	1
1	1	1
	0 0 1 1 0 0	0 0 0 1 1 1 0 0 0 1 1 1 0

The Y'Z column is computed using the Y and Z columns and then using the columns X and Y'Z, the column F is computed
The column Y'Z is **not** an essential part of truth table

	Х	Υ	Z	Y'Z	F
1.7	0	0	0	0	0
and Z	0	0	1	1	1
d Y'Z,	0	1	0	0	0
C441. 41.1.	0	1	1	0	0
f truth table	1	0	0	0	1
	1	0	1	1	1
	1	1	0	0	1
Dr. Ashraf	S. 1	1	1	0	1
					-

10

3/24/2003

Basic Identities

For the AND operation

$$X.1 = X$$

$$X.0 = 0$$

$$X.X = X$$

$$X \cdot X' = 0$$

For the OR operation

$$X + 0 = X$$

$$X + 1 = 1$$

$$X + X = X$$

$$X + X' = 1$$

For the NOT operation

$$X'' = X$$

Notice the **duality**: start with one identity

-Replace the AND by OR

-Replace the 1 by 0 and vice versa

You end up with an identity from the other group

3/24/2003

Dr. Ashraf S. Hasan Mahmoud

11

Basic Identities (2)

For the AND operation
 OR Operation

<u>Cumulative</u>: x.y=y.x x+y=y+x

<u>Associative</u>: X(YZ)=(XY)Z X+(Y+Z)=(X+Y)+Z

<u>Distributive</u>: X+YZ=(X+Y)(X+Z) X(Y+Z)=(XY)+(XZ)

 $\underline{\mathsf{DeMorgan's}} : (X.Y)' = X' + Y' \qquad (X+Y)' = X'.Y'$

 All above properties can be generalized to n > 2 variables: e.g:

• $(X_1+X_2+...+X_n)' = X_1'.X_2'.....X_n'$, or

 $(X_1.X_2....X_n)' = X_1' + X_2' + ... + X_n'$ Dr. Ashraf S. Hasan Mahmoud

Verifying Basic Identities

- Any identity (not only the basic ones) can be verified using the truth table
- Example: verify that (X+Y)' = X'Y'

Χ	Υ	X+Y	(X+Y)'	Χ'	Y'	X′.Y′
0	0	0	1	1	1	1
0	1	1	0	1	0	0
1	0	1	0	0	1	0
1	1	1	0	0	0	0
	ر	. \	>	<u> </u>		
ALL po combination	ossible ns of inputs	50	ome columi		The two q	

3/24/2003

Dr. Ashraf S. Hasan Mahmoud

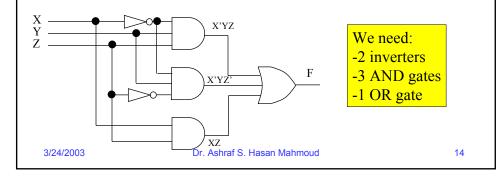
13

Algebraic Manipulation - Example

Consider the following function, F

$$F = X'YZ + X'YZ' + XZ$$

The function can be implemented using above expressions as in



Algebraic Manipulation – Example – cont'd

The function

$$F = X'YZ + X'YZ' + XZ$$

can be simplified "ALGEBRAICALLY" as follows:

F = X'YZ + X'YZ' + XZ

- = $X'Y(Z + Z') + XZ \rightarrow$ by the distributive property
- = XY(1) + XZ \rightarrow by the properties of the OR operation
- = X'Y + XZ \rightarrow by the properties of the AND operation
- Therefore F can be written as

$$F = X'Y + XZ$$

Using this simpler form, one can implement the function as

3/24/2003

Dr. Ashraf S. Hasan Mahmoud

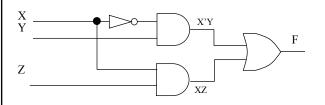
15

Algebraic Manipulation – Example – cont'd

• Therefore F can be written as

$$F = X'Y + XZ$$

Using this simpler form, one can implement the function as



• One can use the truth table method to show that F = X'YZ + X'YZ' + XZ is indeed equal to X'Y + XZ

3/24/2003

Dr. Ashraf S. Hasan Mahmoud

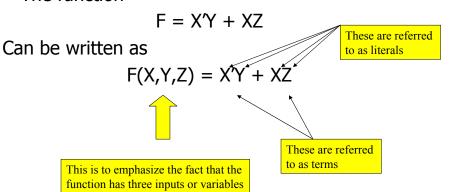
We need:

- -1 inverters
- -2 AND gates
- -1 OR gate

Reduced hardware cost

More Notes on Function

The function



3/24/2003

Dr. Ashraf S. Hasan Mahmoud

17

More Identities

- Page 37 in the text → VERY IMPORTANT make sure you can prove/verify all of these identities
- Listing

$$1. X + XY = X$$

$$2. XY + XY' = X$$

$$3. X + XY = X + Y$$

4.
$$X(X + Y) = X$$

5.
$$(X + Y)(X + Y') = X$$

6.
$$X(X' + Y) = XY$$

7.
$$XY + X'Z + YZ = XY + X'Z$$
 (the consensus theorem)

3/24/2003

Dr. Ashraf S. Hasan Mahmoud

18

The proof/verification of these is

in the textbook

More Identities - continued

- Using the duality principle (refer to slide XX) there are other equivalent 7 identities
- Example: The proof of the consensus theorem is as follows

The RHS =
$$XY + X'Z + YZ$$

= $XY + X'Z + YZ(X + X')$
= $XY + X'Z + XYZ + X'YZ$
= $XY + XYZ + X'Z + X'YZ$
= $XY + XYZ + X'Z + X'YZ$
= $XY + X'Z$
= $XY + X'Z$
= LHS

The dual of the consensus theorem is given by

$$(X+Y)(X'+Z)(Y+Z) = (X+Y)(X'+Z)$$

3/24/2003

Dr. Ashraf S. Hasan Mahmoud

19

Complement of a Function

- Using the truth table complementing F means replacing every 0 with 1 and every 1 with 0 in the F column
- Algebraically, complementing F one can use DeMorgan's rule or the duality principle
- To use the duality principle
 - Replace Each AND with an OR and each OR with an AND
 - Complement each variable and constant

3/24/2003

Dr. Ashraf S. Hasan Mahmoud

Example

- <u>Problem:</u> Find the complement of each of the following two functions F₁ = X'YZ' + X'Y'Z, and F₂ = X(Y'Z' + YZ)
- Solution:

For F₁, applying DeMorgan's rule as many times as necessary

$$F_1' = (X'YZ' + X'Y'Z)'$$

= $(X'YZ')'$. $(X'Y'Z)'$
= $(X + Y' + Z)$. $(X + Y + Z')$

Similarly for F₂:

$$F_{2}' = (X(Y'Z' + YZ))'$$

$$= X' + (Y'Z' + YZ)'$$

$$= X' + (Y'Z')' \cdot (YZ)'$$

$$= X' + (Y + Z) \cdot (Y' + Z')$$
Dr. Ashraf S. Hasan Mannoba

3/24/2003

21

Examples

 <u>Problem 2-2</u>: Prove the identity of each of the following Boolean equations, using algebraic manipulations.

a)
$$X'Y' + X'Y + XY = X' + Y$$

b) $A'B + B'C' + AB + B'C = 1$

Solution:

a) LHS
$$= X'Y' + XY + XY
= XY' + XY + XY + XY
= X'(Y'+Y) + Y(X + X')
= X' + Y
= RHS
b) LHS
$$= A'B + B'C' + AB + B'C
= (A'+A)B + B'(C'+C)
= B + B'
= 1
= RHS
Dr. Ashraf S. Hasan Mahmoud$$$$

Examples

- Problem 2-6: Simplify the following Boolean expressions to a minimum number of literals:
 - a) ABC + ABC' + A'B
 - e) (A+B'+AB')(AB+A'C+BC)
- Solution:
- a) Expression = ABC + ABC' + A'B

$$= AB(C + C') + A'B$$

= (A+A')B

= B

e) Expression = (A+B'+AB')(AB+A'C+BC)

= (A+(1+A)B')(AB + A'C)

= (A+B')(AB+A'C)

= A(AB+A'C) + B'(AB+A'C)

= AB + A'B'C

3/24/2003 Dr. Ashraf S. Hasan Mahmoud

Standard Forms of a Boolean Function

- A Boolean function can be written algebraically in a variety of ways
- Standard form: is an algebraic expression of the function that facilitates simplification procedures and frequently results in more desirable logic circuits (e.g. less number of gates)
- Standard form: contains product terms and sum terms

Product term: X'Y'Z

Sum term: X + Y + Z'

Standard Forms of a Boolean Function – cont'd

- A minterm: a product term in which all variables (or literals) of the function appear exactly once
- A maxterm: a sum term in which all the variables (or literals) of the function appear exactly once
- Example: for the function F(X,Y,Z),
 - the term X'Y is not a minterm, but XYZ' is a minterm
 - The term X'+Z is not a maxterm, but X+Y'+Z' is maxterm

3/24/2003

Dr. Ashraf S. Hasan Mahmoud

25

More on Minterms and Maxterms

- A function of n variables have 2ⁿ possible minterms and 2ⁿ possible maxterms
- •

3/24/2003

Dr. Ashraf S. Hasan Mahmoud

Naming Convention for Minterms

Consider a function F(X, Y)

X	Y	Product Terms	Symbol	m_0	m_1	m ₂	m ₃
0	0	ΧΎ'	m_0	1	0	0	0
0	1	ΧΎ	$m_{\scriptscriptstyle{1}}$	0	1	0	0
1	0	XY'	m_2	0	0	1	0
1	1	XY	m_3	0	0	0	1

m_i indicated the ith minterm

For each binary combination of X and Y there is a minterm
The index of the minterm is specified by the binary combination

m_i is equal to 1 for ONLY THAT combination

Variable complemented if 0
Variable not complemented if 1

Naming Convention for Maxterms

Consider a function F(X, Y)

X	Y	Sum Terms	Symbol	M_0	M_1	M ₂	M_3
0	0	X+Y	M_0	0	1	1	1
0	1	X+Y'	M_1	1	0	1	1
1	0	X′+Y	M_2	1	1	0	1
1	1	X'+Y'	M_3	1	1	1	0

M_i indicated the ith maxterm

For each binary combination of X and Y there is a maxterm
The index of the maxterm is specified by the binary combination
M, is equal to 0 for ONLY THAT combination

Variable complemented if 1
Variable not complemented if 0

More on Minterms and Maxterms

- In general, a function of n variables has
 - 2ⁿ minterms: m₀, m₁, ..., m₂ⁿ₋₁
 - 2ⁿ maxterms: M₀, M₁, ..., M₂ⁿ₋₁
- $m_i' = M_i$ or $M_i' = m_i$

Example: for F(X,Y):

$$m_2 = XY' \rightarrow m_2' = X'+Y = M_2$$

3/24/2003

Dr. Ashraf S. Hasan Mahmoud

29

More on Minterms and Maxterms – cont'd

- A Boolean function can be expressed algebraically from a give truth table by forming the logical sum of ALL the minterms that produce 1 in the function
- Example:

Consider the function defined by the truth table

 $F(X,Y,Z) \rightarrow 3$ variables $\rightarrow 8$ minterms F can be written as

F =
$$X'Y'Z' + X'YZ' + XY'Z + XYZ$$
, or
= $m_0 + m_2 + m_5 + m_7$
= $\Sigma m(0,2,5,7)$

Χ	Υ	Z	m	F
0	0	0	m_0	1
0	0	1	m_1	0
0	1	0	m_2	1
0	1	1	m_3	0
1	0	0	m_4	0
1	0	1	m ₅	1
1	1	0	m_6	0
1	1	1	m ₇	1

3/24/2003

Dr. Ashraf S. Hasan Mahmoud

More on Minterms and Maxterms – cont'd

 A Boolean function can be expressed algebraically from a give truth table by forming the logical product of ALL the maxterms that produce 0 in the function

Example:

Consider the function defined by the truth table F(X,Y,Z) \rightarrow in a manner similar to the previous example, F' can be written as

$$F' = m_1 + m_3 + m_4 + m_6$$

= $\Sigma m(1,3,4,6)$
Now apply DeMorgan's rule
 $F = F'' = [m_1 + m_3 + m_4 + m_6]'$
= $m_1'.m_3'.m_4'.m_6'$

= $M_1.M_3.M_4.M_6$ = $\Pi M(1,3,4,6)$

Note the indices in this list are those that are

0

0

1

1

1

missing from the previous list in Σ m(0,2,5,7)

0

0

1

1

3/24/2003

31

F′

0

1

0

1

1

0

1

0

Ζ

0

1

1

0

 M_0

 M_1

 M_2

 M_3

M4

 M_5

 M_6

 M_{7}

1

0

1

0

1

0

Summary

- A Boolean function can be expressed algebraically as:
 - The logical sum of minterms
 - · The logical product of maxterms
- Given the truth table, writing F as
 - Σm_i for all minterms that produce 1 in the table, or
 - ΠM_i for all maxterms that produce 0 in the table
- Another way to obtain the Σm_i or ΠM_i is to use ALGEBRA see next example

Example:

- Write E = Y' + X'Z' in the form of Σm_i and ΠM_i ?
- Solution: <u>Method1</u>
 First construct the Truth Table as shown
 Second:

E =	Σ m(0,1,2,4,5),	and
-----	------------------------	-----

 $E = \Pi M(3,6,7)$

Χ	Υ	Z	m	М	Е
0	0	0	m_0	M_0	1
0	0	1	m_1	M_1	1
0	1	0	m_2	M_2	1
0	1	1	m_3	M_3	0
1	0	0	m_4	M4	1
1	0	1	m ₅	M_5	1
1	1	0	m_6	M_6	0
1	1	1	m ₇	M_7	0

3/24/2003

Dr. Ashraf S. Hasan Mahmoud

33

Example: cont'd

Solution: Method2 a

$$E = Y' + X'Z'$$

$$= Y'(X+X')(Z+Z') + X'Z'(Y+Y')$$

$$= (XY'+X'Y')(Z+Z') + X'YZ'+X'Z'Y'$$

$$= XY'Z+XY'Z+XY'Z'+XY'Z'+$$

X'YZ'+X'Z'Y'

$$= m_5 + m_1 + m_4 + m_0 + m_2 + m_0$$
 E

$$= m_0 + m_1 + m_2 + m_4 + m_5$$

 $= \Sigma m(0,1,2,4,5)$

To find the form ΠMi , consider the remaining indices

$$E = Y' + X'Z'$$

$$E' = Y(X+Z)$$

$$= YX + YZ$$

$$= YX(Z+Z') + YZ(X+X')$$

$$= XYZ+XYZ'+X'YZ$$

$$= (X'+Y'+Z')(X'+Y'+Z)(X+Y'+Z')$$

$$= M_7 . M_6 . M_3$$

$$= \Pi M(3,6,7)$$

To find the form Σm_i , consider the remaining indices

$$E = \Sigma m(0,1,2,4,5)$$

 $E = \Pi M(3,6,7)$

3/24/2003

Dr. Ashraf S. Hasan Mahmoud

Exercise

• What is $G(X,Y) = \Sigma m(0,1,2,3)$ equal to?

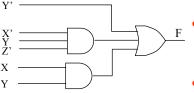
3/24/2003

Dr. Ashraf S. Hasan Mahmoud

35

Implementation – Sum of Products

- Consider F = Y' + X'YZ' + XY
 - Three products: Y' (one literal), X'YZ' (three literals), and XY (two literals)
- The logic diagram



- Two-level implementation:
 - AND-OR
- Each product term requires an AND gate (except one literal terms)
- Logic diagram requires ONE OR gate

3/24/2003

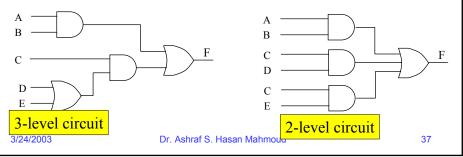
Dr. Ashraf S. Hasan Mahmoud

Implementation – Sum of Products – cont'd

- Consider F = AB + C(D+E)
- This expression is NOT in the sum-of-products form
- Use the identities/algebraic manipulation to convert to a standard form (sum of products), as in

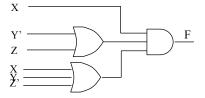
$$F = AB + CD + CE$$

Logic Diagrams:



Implementation – Product of Sums

- Consider F = X(Y'+Z)(X+Y+Z')
- This expression is in the product-of-sums form:
 - Thee summation terms: X (one literal), Y'+Z (two literals), and X+Y+Z' (three literals)
- Logic Diagrams:
- Two-level implementation:
 - OR-AND
- Each sum term requires an OR gate (except one literal terms)
- Logic diagram requires ONE AND gate



3/24/2003 Dr. Ashraf S. Hasan Mahmoud