King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 200 – Fundamentals of Computer Engineering

- **Term 021**
- **Dr. Ashraf S. Hasan Mahmoud**
- Rm 22-144
- Ext. 1724

Email: ashraf@ccse.kfupm.edu.sa

11/18/2002

Dr. Ashraf S. Hasan Mahmoud

Background – Binary Addition – Adding Bits

- Adding Binary bits:
 - $0 + 0 \rightarrow 0$ and the carry is 0
 - $0 + 1 \rightarrow 1$ and the carry is 0
 - 1 + 0 \rightarrow 1 and the carry is 0
 - $1 + 1 \rightarrow 0$ and the carry is 1
- Hence one can write the following truth table:

 $A_i + B_i \rightarrow S_i$ and the carry is C_{i+1}

 Note that S_i and C_{i+1} are two functions, each depends on A_i and B_i

A _i	B _i	S _i	C_{i+1}
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Background – Binary Addition – Adding Bits (2)

• The functions S_i and C_{i+1} are given by

$$S_i = A_i B_i + A_i B_i = A_i \oplus B_i$$

$$C_{i+1} = A_i B_i$$

Logic circuit is shown

This known as HALF Adder – It does not take into account incoming carry signal (see FULL Adder description – next)

11/18/2002

Background – Binary Addition

Full Adder Circuit

- But in cases like the previous example, we need to add two bits in addition to the carry signal coming adding the previous two bits
- Hence one can write the following truth table:

$$A_i + B_i + C_i \rightarrow S_i$$
 and the carry is C_{i+1}

Full Adder Circuit (2)

• The logic functions for S_i and the carry is C_{i+1} are

11/18/2002

Dr. Ashraf S. Hasan Mahmoud

Full Adder Circuit (4)

• The logic circuits for S_i and the carry is C_{i+1} are

7

Full Adder Circuit (5)

• Using the standard form, the circuit is

 τ is the logic gate delay (including the inverter) S_i output is available after 3τ delay C_{i+1} output is available after 2τ delay

Ripple Carry Adder

• Using the FA block one can construct an n-bit binary adder as in

- The number $(C_n S_{n-1} S_{n-2} ... S_2 S_1 S_0)_2$ is equal to the summation of $(A_{n-1} A_{n-2} ... A_2 A_1 A_0)_2$ and $(B_{n-1} B_{n-2} ... B_2 B_1 B_0)_2$
- Note that C₀ is set to zero to get the right result
- If C₀ is set to 1, Then the result is equal to A + B + 1 11/18/2002 Dr. Ashraf S. Hasan Mahmoud 9

Ripple Carry Adder Delay

• Time to get the summation:

- Assume: If τ is the gate delay, then for a FA block, the S_i output is available after 3τ while the C_{i+1} output is available after 2τ refer to FA structure
- Apply the inputs at t = 0
- The C₁ signal is generated at $t = 2\tau$
- The C₂ signal is generated at $t = 2X2\tau$
- The C3 signal is generated at $t = 3X2\tau$
- • •
- The C_{n-1} signal is generated at t = (n-1)X2τ
- The S_n signal is generated at t = $(n-1)X2\tau + 3\tau$
- The C_n signal is generated at $t = nX2\tau$
- Hence, total delay is 2nτ

Ripple Carry Adder Delay (2)

- The disadvantage:
 - The outputs (C and S) of one stage carry and summation can not be generated till the outputs of the previous stage are generated (Ripple effect)
- Delay is linearly proportional to n (size of binary number) – this is undesired
 - This means longer delays for longer word sizes

Carry Lookahead Adder

- n is the size of the binary number or the word size for the ALU
- Ripple carry adder results in delay that increases linearly with size of binary number, n
- To design fast CPUs you need fast logic circuits
- It is desirable to get the summation with a fixed delay that does not depend on n
- The carry lookahead adder provides just that

Carry Lookahead Adder Design

- The reason for the long delay is the time to propagate the carry signal till it reaches the final FA stage
- Let's examine the FA logic again (refer to FA section)
- The carry signal at the ith stage is given by $C_{i+1} = A_i B_i + C_i (A_i + B_i)$

which could be written as $C_{i+1} = G_i + P_i C_i$

if we define $G_i = A_i B_i$ and $P_i = A_i + B_i$

 G_i and P_i are referred to as the generate and propagate signals, respectively

Carry Lookahead Adder Design (2)

• The new design for the FA block is as follows:

Carry Lookahead Adder Design (3)

• A partial Adder block

If we use the standard form, τ is the logic gate delay (including the inverter) S_i output is available after 3τ delay G_i output is available after τ delay P_i output is available after τ delay

Carry Lookahead Adder Delay

- C₀ (the carry signal for first stage) is set to zero
- C_1 is equal to $G_0 + P_0C_0$
 - It takes 2τ to generate this signal
- C_2 is equal to $G_1 + P_1C_1 = G_1 + P_1(G_0 + P_0C_0) = G_1 + P_1G_0 + P_1P_0C_0$
 - It takes 2τ to generate this signal
- C_3 is equal to $G_2 + P_2C_2 = G_2 + P_2(G_1 + P_1G_0 + P_1P_0C_0) = G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0$
 - It takes 2τ to generate this signal

11/18/2002

Carry Lookahead Adder Delay (2)

- C_4 is equal to $G_3 + P_3C_3 = G_3 + P_3(G_2 + P_2G_1 + P_2P_1G_0 + P_2P_1P_0C_0) = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 + P_3P_2P_1P_0C_0$
 - It takes 2τ to generate this signal
- In general, C_{i+1} is given by

 $C_{i+1} = G_i + P_iG_{i-1} + P_iP_{i-1}G_{i-2} + \dots + P_iP_{i-1}\dots P_1G_0 + P_iP_{i-1}\dots P_1P_0C_0$

Carry Lookahead Adder

Block Diagram for 4-bit CLA

Carry Lookahead Adder Delay (3)

- Any carry signal depends only on C₀ and the generate (G) and propagate (P) functions only – It does not depend on the previous carry signal (except C₀ which is readily available)
- The generate (G) and propagate (P) signals can be generated simultaneously with one gate delay τ
 – for all stages
- Hence all carry signals at all stages can be available after 3τ delay

Carry Lookahead Adder Delay (4)

- Total Delay:
 - Assume all inputs (A, B, and C_0) were available at t = 0
 - All G and P functions will be available at $t = \tau$
 - All carry signals (C₁ ... C _{n-1}C_n) will be available at t = τ+2 τ = 3τ
 - The Sn-1 signal will be available at t = 3τ + 3τ = 6τ
- Note delay to get summation is FIXED and does NOT depend on word size n – desirable feature

Carry Lookahead Adder - Refined

• One Last issue to solve:

C4 signal requires gates with 5 inputs

- C_{5} , C_{6} , etc will require gates with > 5 inputs This is undesirable (higher delay)
- Note the structure of function for $C_4 = G_3 + P_3G_2 +$ $P_{3}P_{2}G_{1} + P_{3}P_{2}P_{1}G_{0} + P_{3}P_{2}P_{1}P_{0}C_{0}$
 - Let $G_{0-3} = G_3 + P_3G_2 + P_3P_2G_1 + P_3P_2P_1G_0 \rightarrow group$ generate function
 - Let $P_{0-3} = P_3 P_2 P_1 P_0 \rightarrow$ group propagate function
 - Then C₄ can be written as

 $C_4 = G_{0-3} + P_{0-3}C_0$

 Hence the function for C₄ is very similar to that for C_1 – but it uses group generate/propagate functions as opposed to generate/propagate 11/1**functions**

Carry Lookahead Adder - Refined (2)

• 4-bit CLA block

Accepts two 4-bit numbers A and B with initial carry signal C₀ Generates 4-bit summation in addition to group generate/functions To do 4-bit additions – one needs to add logic to generate C₄ signal using G₀₋₃, P₀₋₃, and C₀

11/18/2002

Carry Lookahead Adder -General

Block Diagram for 16-bit CLA

- C_{16} (and all other carry signals) are available two gate delays after the time needed to generate the group generate/propagate signals.

Group propagate signal requires one gate delay – while group generate requires two gate delays
Hence, C₁₆ is available 5 gate delays after A, B and C₀ are applied as inputs (assuming standard forms)

n-Bit Adder General

- Diagram used in most text books
 - Could be ripple carry adder or carry lookahead adder

24

Binary Numbers - Review

- Computers use fixed n-bit words to represent binary numbers
- It is the user (programmer) who makes the distinction whether the number is signed or unsigned
- Example:

```
main(){
  unsigned int X, Y;
  int W, Z;
  ...
 }
```

 X and Y are defined as unsigned integers while W and Z are defined as signed integers

Addition of Unsigned Numbers -Review

- For n-bit words, the UNSIGNED binary numbers range from (0_{n-1}0_{n-2}...0₁0₀)₂ to (1_{n-1}1_{n-2}...1₁1₀)₂ i.e. they range from 0 to 2ⁿ⁻¹
- When adding A to B as in:

 $\mathbf{C_n} \ \mathbf{S_{n-1}} \ \mathbf{S_{n-2}} \ \dots \ \mathbf{S_2} \ \mathbf{S_1} \ \mathbf{S_0}$

- If C_n is equal to ZERO, then the result DOES fit into n-bit word (S_{n-1} S_{n-2} ... S₂ S₁ S₀)
- If C_n is equal to ONE, then the result DOES NOT fit into n-bit word

Subtraction of Unsigned Numbers - Review

- How to perform A B (both defined as unsigned)?
- **Procedure:**
 - Add the the 2's complement of B to A; this forms A + (2ⁿ - B)
 - If (A >= B), the sum produces end carry signal (C_n); discard this carry
 - If A < B, the sum does not produce end carry signal (C_n); result is equal to 2ⁿ – (B-A), the 2's complement of B-A – Perform correction:
 - Take 2's complement of sum
 - Place –ve sign in front of result
 - Final result is –(A-B)

Subtraction of Unsigned Numbers – Review (2)

- Example: X = 1010100 or (84)₁₀, Y = 1000011 or (67)₁₀ Find X-Y and Y-X
- Solution:
- A) X Y: X = 1010100
 - 2's complement of Y = 0111101

Sum = 10010001

Discard C_n (last bit) = 0010001 or (17)₁₀ \leftarrow X – Y

- B) Y X: X = 1000011
 - 2's complement of X = 0101100

Sum = 1101111

 C_n (last bit) is zero \rightarrow need to perform correction

Y - X = -(2's complement of 1101111) = - 001001

2's Complement Review

- For n-bit words, the 2's complement SIGNED binary numbers range from -(2ⁿ⁻¹) to +(2ⁿ⁻¹-1)
 e.g. for 4-bit words, range = -8 to +7
- Note that MSB is always 1 for –ve numbers, and 0 for +ve numbers

2's Complement Review (2)

• Consider the following Example:

How to represent -9 using 8-bit word?

A) Using signed magnitude:

$$(+9)_{10} = (00001001)_2 \rightarrow (-9)_{10} = (10001001)_2$$

The most significant bit is 1 (-ve number)

- **B)** Using 1's complement:
- $M = 2^{n}-1, -9 \text{ in 1s complement} = M 9 = (11111111)_{2} (00001001)_{2} = (11110110)_{2}$
- C) Using 2's complement:
- $M = 2^{n}, -9 \text{ in } 2s \text{ complement} = M 9 = (10000000)_{2} (00001001)_{2} = (11110111)_{2}$
- Or simply:
- 1's complement: invert bits of number
- 2's complement: invert bits of number and add one to it

Subtraction of Signed Numbers

• Co	nsider		
+6	0000 0110	-6	1111 1010
+ 13	0000 1101	+13	0000 0011
+19	0001 0011	+7	0000 0111
+6	0000 0110	-6	1111 1010
- 13	1111 0011	- 13	1111 0011
- 7	1111 1001	-19	11101101

- Any carry out of sign bit position is DISCARDED
- -ve results are automatically in 2's complement form (no need for an explicit –ve sign)!

Subtraction of Signed Numbers (2)

 Subtraction of two signed binary number when negative numbers are in 2's complement is simple: How to do A – B?

Take the 2's complement of the subtrahend B (including the sign bit) and add it to the minuend A (including the sign bit). A carry out of the sign bit position is discarded

Subtractor - Background

• What is the number B equal to?

B is equal	to A
------------	------

Subtractor – Background (2)

• What is the number B equal to?

B is equal to 1's complement of A $(B_i = A_i')$

11/18/2002

Subtractor – Background (3)

• What is the number B equal to?

Subtractor

• What is the number S equal to?

Adder-Subtractor

• What is the number S equal to?

Overflow Conditions

- Computers use fixed word sizes to represent numbers
- Overflow flag: result addition or subtraction does NOT fit the fixed word size
- Examples: consider 8-bit words and using signed numbers

carries:	<mark>0 1</mark> 000 0000	carries	10 110 0000
+70	0100 0110	-70	1011 1010
+80	0101 0000	-80	1011 0000
+150	1001 0110	-150	0110 1010

 Note both operation produced the wrong answer –because +150 or –150 are OUTSIDE the range of allowed number (only from –128 to +127)!

Note that when C_{n-1} and C_n are different the results is outside the allowed range of numbers

11/18/2002

Overflow Conditions (2)

- When n-bit word is used to represent UNSINGED binary numbers:
 - Carry signal (C_n) resulting from adding the last two bits (A_{n-1} and B_{n-1}) detects an overflow

```
If (C<sub>n</sub> == 0) then {
    // no carry and no overflow, but correction step is
    required for //subtraction
    correction_step: final result = -1 X 2's complement of
    result;
}
else {
    // overflow for addition, but no correction step is
    //required for subtraction
    process_overflow;
}
```

Overflow Conditions (3)

- When n-bit word is used to represent SINGED binary numbers:
 - Carry signal into n-1 position (C_{n-1}) and the one resulting from adding the last two bits (A_{n-1} and B_{n-1}) determine an overflow → Let overflow bit V = C_{n-1} XOR C_n

```
If (V == 0) then {
    // no overflow, and addition/subtraction result is correct
    ;
}
else {
    // overflow has occurred for addition/subtraction, result
    // requires n+1 bits
    process_overflow;
}
```

Overflow Conditions - Summary

2-Bit Binary Multiplier

 Consider the B_0 B_1 A_0 multiplication of B₁B₀ by A_1A_0 A_1 B_1 B_0 B₀ B₁ A₀ A_1 A_0B_1 A_0B_0 A_1B_1 A_1B_0 HA HA $C_3 C_2$ C₀ C_1 C_1 $C_3 C_2$ C_0 2-bit binary multiplier 42 Dr. Ashraf S. Hasan Mahn 11/18/2002

4-Bit by 3-Bit Binary Multiplier

- For J multiplier bit and K multiplicand bit:
 - JXK AND gates
 - (J-1) K-bit adders to produce a product of J+K bits
- In the shown circuit:
 - J = 3 (multiplier = $A_2A_1A_0$)
 - K = 4 (multiplicand = B₃B₂B₁B₀)
 - Hence we need 3X4 = 12 AND gates and (3-1) Adders
 - Multiplication result in 3+4 bits

Exercise: Does this circuit work for signed numbers? Try to multiply 2 signed numbers

Decimal Arithmetic – Adding 2 BCD digits

•	Vä	ali	d BC	D digits:0, 1, 2	,, 9	Desig	n a circuit that
•	• Example:			adds two BCD digits			
	1	1	0	BCD carry	1	1	$0 \rightarrow$ carry in
	4	4	8		0100	0100	1000 →1 st digit
+	4	8	9		0100	1000	1001 →2 st digit
-							
	9	3	7	Binary sum	1001	1101 1	0001 →add 6 if > 9
				Add 6		0110	0110
				BCD sum	1	0011 1	0111 → carry out
				BCD result	1001	0011	0111 → BCD sum digit

When the BCD Sum is Greater Than 9?

1. When the sum of two digits generates a carry (see previous example)

OR

- 2. Sum of the two digits is 1010, 1011, 1100, 1101, 1110, 1111 (See problem 3-11 page 170)
 - If the sum is denoted by Z₃Z₂Z₁Z₀ then F = Z₁Z₃ + Z₂Z₃ is equal to 1 only if the number Z₃Z₂Z₁Z₀ is an invalid BCD digit
- Hence, to detect an invalid summation result where a correction (adding 6 is required) we need:

$$\mathbf{F} = \mathbf{carry} + \mathbf{Z}_1 \mathbf{Z}_3 + \mathbf{Z}_2 \mathbf{Z}_3$$

Block Diagram of BCD Adder

