King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 342 – Data and Computer Communications

Term 021

Dr. Ashraf S. Hasan Mahmoud

Rm 22-144

Ext. 1724

Email: ashraf@ccse.kfupm.edu.sa

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

1

Lecture Contents

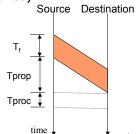
- 1. Flow Control
 - a. Stop-and-Wait flow control
 - b. Sliding-Window flow control
- 2. Error Detection (Parity Check, CRC)
- 3. Error Control
 - a. Stop-and-Wait ARQ
 - b. Go-Back-N ARQ
 - c. Selective-Reject ARQ
- 4. High-Level Data Link (HDLC)
- 5. Other Data Link Control Protocols

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

What is Data Link Control

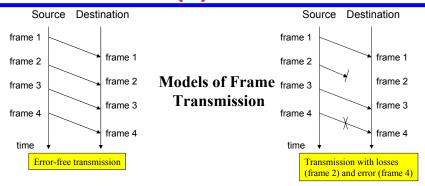
- The logic or procedures used to convert the raw stream of bits provided by the physical layer into a "reliable" connection
- Requirements and Objectives:
 - Frame synchronization
 - Flow control
 - Error control
 - Addressing
 - Multiplexing data and control on connection
 - Link management


1/8/2003

Dr. Ashraf S. Hasan Mahmoud

3

Flow Control


- A scheme to ensure that transmitter does not overwhelm receiver with data
- Transmission of one frame:
 - T_f: time to transmit frame
 - Tprop: time for signal to propagate
 - Tproc: time for destination to process received frame small delay (usually ignored if not specified)
- Tproc may be ignored if not specified

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

Flow Control (2)

- The destination has a limited buffer space. How will the source know that destination is ready to receive the next frame?
- In case of errors or lost frame, the source need to retransmit frames i.e. a copy of transmitted frames must be kept. How will the source know when to discard copies of old frames?
- Etc.

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

5

Stop-and-Wait Protocol

- Protocol:
 - Source transmits a frame
 - After the destination receives frame, it sends ACK
 - Source, upon the receipt of ACK, can now send the next frame
- Destination can stop source by withholding the ACK
- Simple
- Animation for Stop-and-Wait
- NOTE: ONLY one frame can be in transit at any time

1/8/2003

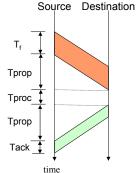
Dr. Ashraf S. Hasan Mahmoud

Stop-and-Wait Protocol: Efficiency

- After every frame, source must wait till acknowledgment → Hence link propagation time is significant
- Total time to for one frame:

 $T_{total} = Tf + 2Tprop + Tproc + Tack$ if we ignore Tproc and Tack (usually very small)

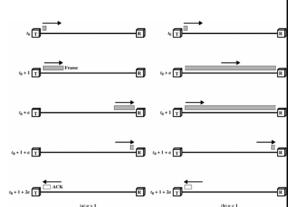
 $T_{total} = Tf + 2Tprop$


Link utilization, U is equal to

$$U = Tf/ (T_total), or$$

= 1 / (1+2(Tprop/Tf)) = 1 / (1 + 2 a)
where a = Tprop/Tf = length of link in bits

- If a < 1 (i.e. Tf > Tprop when 1st transmitted bit reaches destination, source will still be transmitting → U is close 100%
- If a > 1 (i.e. Tf < Tprop frame transmission is completed before 1st bit reaches destination →U is low
- See figure 7.2


1/8/2003

Dr. Ashraf S. Hasan Mahmoud

Stop-and-Wait Protocol: Efficiency (2)

- Remember: a = Tprop/Tf = length of link in bits
- If a < 1 (i.e. Tf > Tprop –
 when 1st transmitted bit
 reaches destination,
 source will still be
 transmitting → U is close
 100%
- If a > 1 (i.e. Tf < Tprop frame transmission is completed before 1st bit reaches destination →U is low
- Stop-and-Wait is efficient for links where a << 1 (long frames compared to propagation time)

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

Sliding Window Protocol

- Stop-and-Wait can be very inefficient when a > 1
- Protocol:
 - Assumes full duplex line
 - Source A and Destination B have buffers each of size W frames
 - For k-bit sequence numbers:
 - Frames are numbered: 0, 1, 2, ..., 2^k-1, 0, 1, ... (modulo 2^k)
 - ACKs (RRs) are numbered: 0, 1, 2, ..., 2^k-1, 0, 1, ... (modulo 2^k)
 - A is allowed to transmit up to W frames without waiting for an ACK
 - B can receive up to W consecutive frames
 - ACK J (or RR J), where 0<=J<= 2^k-1, sent by B means B is have received frames up to frame J-1 and is ready to receive frame J
 - B can also send RNR J: B have received all frames up to J-1 and is not ready to receive any more
- Window size, W can be less or equal to 2^k-1

1/8/2003 Dr. Ashraf S. Hasan Mahmoud

9

Sliding Window Protocol (2)

• Example of Sliding-Window-Protocol: k = 3 bits, W = 7

Observations:

- A may tx W = 7 frames (F0, F1, ..., F6)
- After F0, F1, & F2 are txed, window is shrunk (i.e. can not transmit except F3, F4, ..., F6)
- When B sends RR3, A knows F0, F1 & F2 have been received and B is ready to receive F3
- Window is advanced to cover 7 frames (starting with F3 up to F1)
- A sends F3, F4, F5, & F6
- B responds with RR4 when F3 is received – A advances the window by one position to include F2

Source System A Destination System B 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 $W \longrightarrow$ 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 – w **→** 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 – w **→** 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 — w → 0 1 2 3 4 5 6 7 0 1 2 3 4 5 6 7 W = distance between first unacknowledged Dr. Ashray S. Hasan Mahmoud frame and last frame that can be sent

1/8/2003

Sliding Window Protocol - Piggybacking

- When using sliding window protocol in full duplex connections:
 - Node A maintains its own transmit window
 - Node B maintains its own transmit window
 - A frame contains: data field + ACK field
 - There is a sequence number for the data field, and a sequence number for the ACK field

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

11

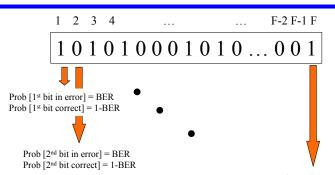
Sliding Window Protocol - Efficiency

- Refer to Appendix A
- When window size is W (for error free), link utilization, U, is given by

$$U = \begin{cases} 1 & W \ge (2a+1) \\ \frac{W}{2a+1} & W < (2a+1) \end{cases}$$

where a = Tprop/Tf or length of link in bits

 Sliding window protocol can achieve 100% utilization if W >= (2a + 1)

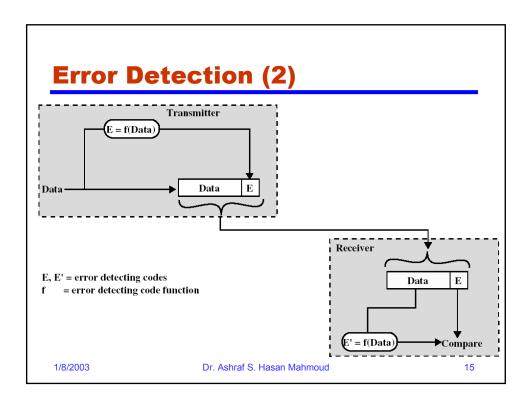

1/8/2003

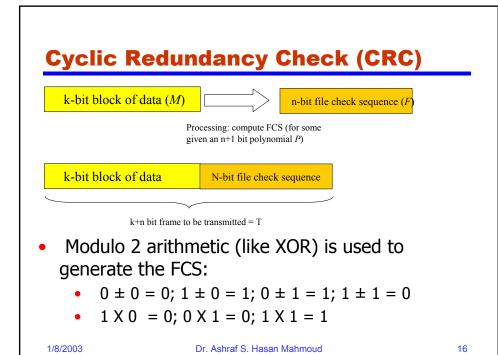
Sliding Window Protocol

- Animation for <u>Sliding Window</u> protocol
- <u>Sliding Window Protocol Simulation</u>
 (http://www.cs.stir.ac.uk/~kjt/software/comms/jasper/SWP3.html)

1/8/2003 Dr. Ashraf S. Hasan Mahmoud

Error Detection


Prob [Fth bit in error] = BER Prob [Fth bit correct] = 1-BER


Hence, for a frame of F bits,
 Prob [frame is correct] = (1-BER)^F
 Prob [frame is erroneous] = 1 - (1-BER)^F

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

14

CRC – Mapping Binary Bits into Polynomials

 Consider the following k-bit word or frame and its polynomial equivalent:

 $b_{k-1} b_{k-2} \dots b_2 b_1 b_0 \rightarrow b_{k-1} x^{k-1} + b_{k-2} x^{k-2} + \dots + b_1 x^1 + b_0$ where b_i (k-1 \le i \le 0) is either 1 or 0

- Example1: an 8 bit word M = 11011001 is represented as $M(x) = x^7 + x^6 + x^4 + x^3 + 1$
- Example2: What is $x^4M(x)$ equal to? $x^4M(x) = x^4(x^7+x^6+x^4+x^3+1) = x^{11}+x^{10}+x^8+x^7+x^4$, the equivalent bit pattern is 110110010000 (i.e. four zeros added to the left of the original M pattern)
- Example3: What is $x^4M(x) + (x^3+x+1)$? $x^4M(x) + (x^3+x+1) = x^{11}+x^{10}+x^8+x^7+x^4+x^3+x+1$, the equivalent bit pattern is 110110011011 (i.e. pattern 1011 = x^3+x+1 added to the left of the original M pattern)

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

17

CRC Calculation

- T = (k+n)-bit frame to be tx-ed, n < k
- M = k-bit message, the first k bits of frame T
- F = n-bit FCS, the last n bits of frame T
- P = pattern of n+1 bits (a predetermined divisor)

T = (n+k)-bit frame

M = k-bit message

F = n-bit FCS

Note

P = (n+1) bit divisor

-T(x) is the polynomial (of k+n-1st degree or less) representation of frame T

- -M(x) is the polynomial (of k-1st degree or less) representation of message M
- F(x) is the polynomial (of n-1st degree or less) representation of FCS
- P(x) is the polynomial (of n^{th} degree or less) representation of the divisor P
- $-T(x) = X^n M(x) + F(x) refer to example 3 on previous slide$

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

CRC Calculation (2)

- <u>Design</u>: frame T such that it divides the pattern P with no remainder?
- <u>Solution:</u> Since the first component of T, M, is the data part, it is required to find F (or the FCS) such that T divides P with no remainder

Using the polynomial equivalent:

 $T(x) = X^n M(x) + F(x)$

One can show that $F(x) = \text{remainder of } x^nM(x) / P(x)$ i.e if $x^nM(x) / P(x)$ is equal to Q(x) + R(x)/P(x), then F(X) is set to be equal to R(X).

Note that:

Polynomial of degree k+n

----- = polynomial of degree k + remainder polynomial of degree n

Polynomial of degree n

1/8/2003 Dr. Ashraf S. Hasan Mahmoud

19

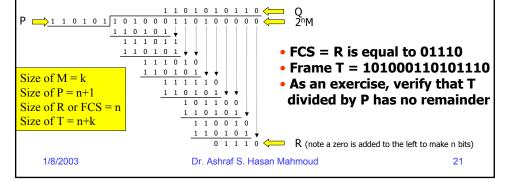
CRC Calculation - Procedure

- 1. Shift pattern M n bits to the lift
- 2. Divide the new pattern 2ⁿM by the pattern P
- 3. The remainder of the division R (n bits) is set to be the FCS
- 4. The desired frame T is 2ⁿM plus the FCS bits

Note:

 2^nM is the pattern resulting from shifting the pattern M n bits to the left. In other words, the polynomial equivalent of the pattern 2^nM is $x^nM(x)$

1/8/2003

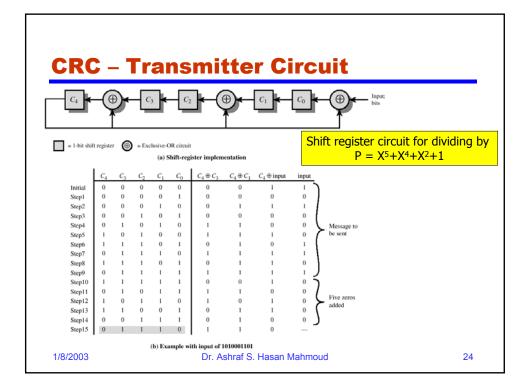

Dr. Ashraf S. Hasan Mahmoud

CRC Calculation – Example

Message M = 1010001101 (10 bits) → k = 10
 Pattern P = 110101 (6 bits - note 0th and nth bits are 1s)
 → n + 1 = 6 → n = 5

Find the frame T to be transmitted?

Solution:


Example: Problem 7-11

CRC – Receiver Procedure

- Tx-er transmits frame T
- Channel introduces error pattern E
- Rx-er receives frame $T_r = T \oplus E$ (note that if E = 000..000, then Tr is equal to T, i.e. error free transmission)
- T_r is divided by P, Remainder of division is R
- if R is ZERO, Rx-er assumes no errors in frame; else Rx-er assumes erroneous frame
- If an error occurs and T_r is still divisible by P → UNDETECTABLE error (this means the E is also divisible by P)

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

CRC – Receiver Circuit

Tx-er transmits frame T

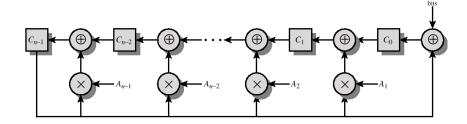


Figure 7.7 General CRC Architecture to Implement Divisor $1 + A_1X + A_2X^2 + \dots + A_{n-1}X^{n-1} + X^n$

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

25

Cyclic Redundancy Check (CRC)

Animation for CRC Calculation

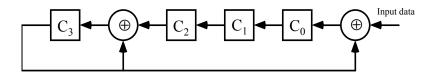
1/8/2003

Dr. Ashraf S. Hasan Mahmoud

Example: Problem 7-12

A CRC is constructed to generate a 4-bit FCS for an 11-bit message. The generator polynomial is X^4+X^3+1

- a) Draw the shift register circuit that would perform this task (see figure 7.6)
- b) Encode the data bit sequence 10011011100 (leftmost bit is the LSB) using the generator polynomial and give the code word
- c) Now assume that bit 7 (counting from the LSB) in the code word is in error and show that the detection algorithm detects the error


1/8/2003

Dr. Ashraf S. Hasan Mahmoud

27

Example: Problem 7-12 - solution

a)

1/8/2003

Example: Problem 7-12 - solution

$$\rightarrow$$
 R = 0 1 0 0 or R(X) = X²

Transmitted Frame T = 001110110010100

$$T(X) = X^4M(X) + R(X) = X^{12} + X^{11} + X^{10} + X^8 + X^7 + X^4 + X^2$$

Notes:

- 1. $X^4M(X)/P(X) = Q(X) + R(X)/P(X)$, where $Q(X) = X^8 + X^6 + X^5 + X^4 + X^2$ (as seen from the long division process)
- 2. One can verify that P(X) Q(X) + R(X) is indeed equal to $X^4M(X)$ {note that for the addition of polynomial terms modulo-2 applies; i.e. $X^9 + X^9 = 0$ }

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

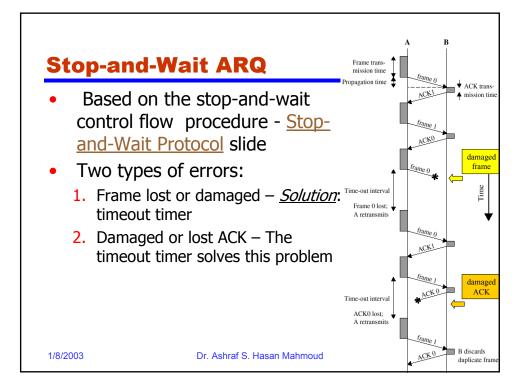
29

Example: Problem 7-12 - solution

c) Received frame (LSB from the left) = 0 0 1 0 1 0 0 0 1 0 1 1 1 0 0 dividing by P yields a nonzero remainder → error is detected

NON ZERO REMAINDER

1/8/2003


Dr. Ashraf S. Hasan Mahmoud

Error Control

- Types of Errors:
 - Lost frame
 - Damaged frame
- Error control Techniques (Automatic Repeat Request -ARQ):
 - Error detection discussed previously
 - +ve ACK
 - Retransmission after timeout
 - -ve ACK and retransmission
- ARQ Procedures: convert an unreliable data link into a reliable one.
 - Stop-and-wait
 - Go-back-N
 - Selective-reject

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

Go-Back-N ARQ

- Based on the sliding-window flow control procedure <u>Sliding</u> Window Protocol slide
- Three types of errors:
 - ith frame damaged:
 - a. If A send subsequent frames (i+1, i+2, ...), B responds with REJ i →
 A must retransmit ith frame and <u>all subsequent frames</u>

Check for status of B before resending the frame

- b. If A does not send subsequent frames and B does not respond with RR or REJ (since frame was damaged) → timeout timer at A expires – send a POLL signal to B; B sends an RR i, i.e. it expect the ith frame – A sends the ith frame again
- Damaged RR (B receives ith frame and sends RR i+1 which is lost or damaged):
 - Since ACKs are cumulative A may receive a subsequent RR j (j >i+1) before A times out
 - If A times out, it sends a POLL signal to B if B fails to respond (i.e. down) or its response is damaged subsequent POLLs are sent; procedure repeated certain number of time before link reset
- 3. Damaged REJ same as 1.b

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

33

Selective-Reject ARQ

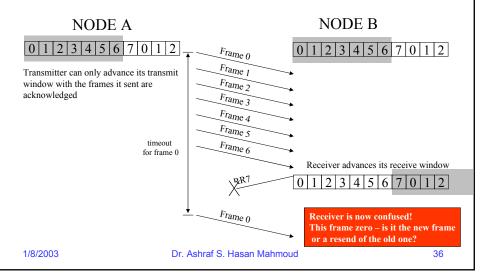
- In contrast to Go-Back-N, the only frames retransmitted are those that receive –ve ACK (called SREJ) or those that time out
- More efficient:
 - Rx-er must have large enough buffer to save post-SREJ frames
 - Buffer manipulation re-insertion of out-of-order frames

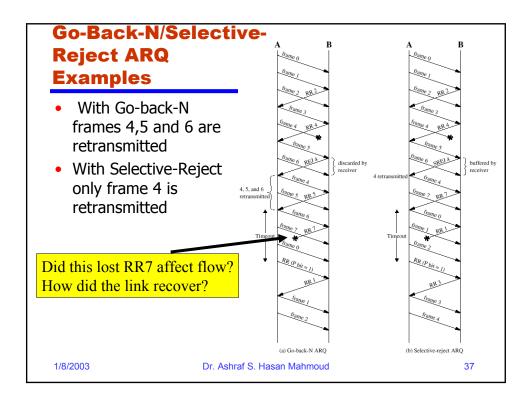
1/8/2003

Dr. Ashraf S. Hasan Mahmoud

Window Size for Selective-Reject ARQ – Why?

- Window size: should less or equal to half range of sequence numbers
 - For n-bit sequence numbers, Window size is ≤2ⁿ⁻¹ (remember sequence numbers range from 0,1, ..., 2ⁿ-1)
- Why? See next example

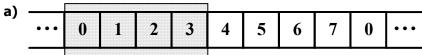

1/8/2003

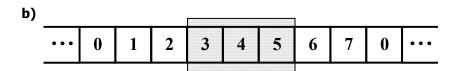

Dr. Ashraf S. Hasan Mahmoud

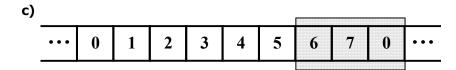
35

Window Size for Selective-Reject ARQ – Why? (2)

• Example: Consider 3-bit sequence number and window size of 7






Example: Problem 7-17

- 7-17: Two neighboring nodes A and B use a sliding-window protocol with a 3-bit sequence numbers. As the ARQ mechanism, go-back-N is used with a window size of 4. Assuming A is transmitting and B is receiving, show the window positions for the following succession of events:
- a) Before A sends any frames
- b) After A sends frame 0, 1, 2 and B acknowledges 0, 1 and the ACKs are received by A
- After A sends frames 3, 4, and 5 and B acknowledges 4 and the ACK is received by A

1/8/2003 Dr. Ashraf S. Hasan Mahmoud

High-Level Data Link Control Protocol (HDLC)

- One of the most important data link control protocols
- Basic Characteristics:
 - Primary Station: issues *commands*
 - Secondary Station: issues *responses* operates under the control of a primary station
 - Combined Station: issues commands and responses
- Two link configurations are defined:
 - Unbalanced: one primary plus one or more secondary
 - Balanced: two combined (functions as primary and/or secondary) stations

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

40

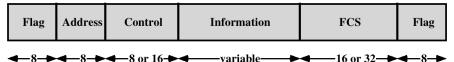
High-Level Data Link Control Protocol (HDLC) (2)

- Three transfer modes are defined:
 - Normal Response Mode (NRM) used in unbalanced conf.; secondary may only tx data in response to a command from primary
 - Asynchronous Balanced Mode (ABM) used in balanced conf.; either combined station may tx data without receiving permission from other station
 - Asynchronous Response Mode (ARM) used in unbalanced conf.; Secondary may initiate data tx without explicit permission; primary still retains line control (initialization, error recovery, ...)
- Animation for <u>HDLC</u>

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

41


HDLC - Applications

- NRM:
 - Point-multi-point (multi-drop line): one computer (primary) polls multiple terminals (secondary stations)
 - · Point-to-point: computer and a peripheral
- ABM: most widely used (no polling involved)
 - Full duplex point-to-point
- ARM: rarely used

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

HDLC – Frame Structure – Flag Field

bits extendable

- Flag Field: unique pattern 011111110
 - · Used for synchronization
 - To prevent this pattern form occurring in data → bit stuffing
 - Tx-er inserts a 0 after each 5 1s
 - Rx-er, after detecting flag, monitors incoming bits when a pattern of 5 1s appears; the 6th/7th bit are checked:

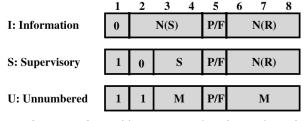
43

44

- If 0, it is deleted
- If 10, this is a flag
- If 11, this is an ABORT
- Pitfalls of bit stuffing: one bit errors can split one frame into two or merge two frames into one

1/8/2003 Dr. Ashraf S. Hasan Mahmoud

HDLC – Frame Structure - Address Field


1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 0 0 1 1 1 12 13 14 15 16

Extended Address Field

- Address field identifies the secondary station that transmitted or is to receive frame
- Not used (but included for uniformity) for point-to-point links
- Extendable by prior arrangement
- Address = 11111111 (single octet) used for broadcasting; i.e. received by all secondary stations

1/8/2003 Dr. Ashraf S. Hasan Mahmoud

HDLC – Frame Structure - Control Field

N(S) = Send sequence number N(R) = Receive sequence number S = Supervisory function bits M = Unnumbered function bits P/F = Poll/final bit

- <u>Information frame (I)</u>: carry user data (upper layers) flow and error control info is piggybacked on these frames as well
- <u>Supervisory frame (S)</u>: carry flow and error control info when there is no user data to tx
- <u>Unnumbered frame (U)</u>: provide supplementary link control
- First 2 bits of field determine the type of frame
- Poll/Final (P/F) bit:
 - In command frames (P): used to solicit response from peer entity
 - In response frames (F): indicate response is the result of soliciting command

1/8/2003 Dr. Ashraf S. Hasan Mahmoud 45

HDLC – Frame Structure - Control Field (2)

- "Set-mode" command → extends control field to 16 bit for S and I frames
- Extension: 7-bit sequence numbers rather than 3-bit ones
- Unnumbered frames always use 3-bit sequence numbers

1/8/2003 Dr. Ashraf S. Hasan Mahmoud

HDLC – Frame Structure – Information/FCS Fields

- Information field:
 - Present ONLY in I-frames and some U-frames
 - Contains integer number of octets
 - Length is variable up to some system defined maximum
- FCS field:
 - Error detecting code
 - Calculated from ALL remaining bits in frame
 - Normally 16 bits (CRC-CCITT polynomial = X¹⁶+X¹²+X⁵+1)
 - 32-bit optional FCS

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

47

HDLC Operation

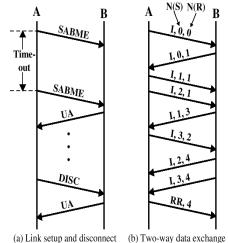
- Initialization
 - One side signals to the other the need for initialization
 - Specifies which of the three modes to use: NRM, ABM, or ARM
 - Specifies 3- or 7-bit sequence numbers
 - The other side can accept by sending unnumbered acknowledgment (UA)
 - The other side can reject by sending A disconnected mode (DM) frame is sent
- Data Transfer
 - Exchange of I-frames: data and can perform flow/error control
 - S-frames can be used as well: RR, RNR, REJ, or SREJ
- Disconnect
 - DISC frame → UA

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

HDLC – Operation

a) Link Setup & Disconnect:


- SABM command starts timer
- B responds with UA (or DM if not interested)
- A receives UA and initializes its variables
- To disconnect: issue DISC command

b) Two-Way Data Exchange:

 Full-duplex exchange of I-frames

c) Busy Condition:

 Note the use of the P and F bits

RR, 0, PRNR, 4, F RR, 0, PRR, 4, F (c) Busy condition

1,3,0

RNR, 4

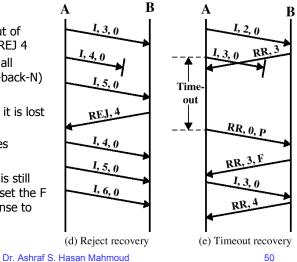
A

В

1/8/2003

Dr. Ashraf S. Hasan Mahmoud

49


HDLC – Operation (2)

a) Reject Recovery:

- I-frame 4 was lost
- B receives I-frame 5 (out of order) - responds with REJ 4
- · A resend I-frame 4 and all subsequent frames (Go-back-N)

b) Timeout Recovery:

- A sends I-frame 3 but it is lost
- Timer expires before acknowledgement arrives
- A polls Node B
- · B responds indicating it is still waiting for frame 3 – B set the F bit because this a response to A's solicitation

50

1/8/2003

Other Data Link Control Protocols

- Link Access Procedure Balanced (LAPB):
 - Part of X.25 packet-switching interface standard
 - Subset of HDLC only ABM is provided
 - Designed for point-to-point
 - Frame format is same as HDLC
- Link Access Procedure D-Channel (LAPD):
 - Part of ISDN functions on the D-channel
 - 7-bit sequence numbers only
 - FCS field is always 16-bit
 - 16-bit address fields (two sub-addresses)

1/8/2003

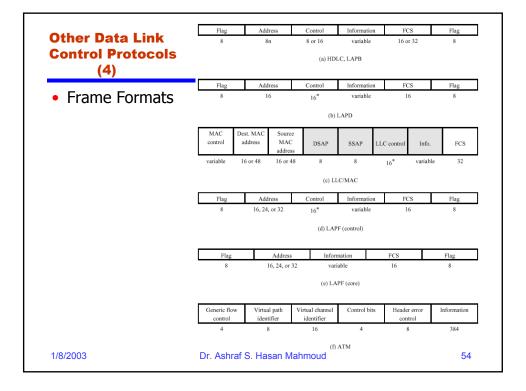
Dr. Ashraf S. Hasan Mahmoud

51

Other Data Link Control Protocols (2)

- Logical Link Control (LLC):
 - Part of IEEE802 family for LANs
 - Different frame format than HDLC
- Link Access Control Protocol for Frame-Mode Bearer Service (LAPF):
 - Designed for Frame Relay Protocol
 - Provides only ABM mode
 - Only 7-bit sequence numbers
 - Only 16-bit CRC field
 - Address field is 16, 24, or 32 bits long containing a 10-bit, 16-bit, or 23-bit data link connection identifier (DLCI)
 - No control field I.e. CANNOT do flow or error control (remember that frame relay was designed for fast and reliable connections!)

1/8/2003


Other Data Link Control Protocols (3)

- Asynchronous Transfer Mode (ATM):
 - · Like frame relay designed for fast and reliable links
 - NOT based on HDLC
 - New frame format called CELL (53 bytes: 48 Bytes for payload or user data and 5 Bytes for overhead)

53

- Cell has minimal overhead
- NO error control for payload

1/8/2003 Dr. Ashraf S. Hasan Mahmoud

Textbook Problems of INTEREST

- Textbook: 7-2, 7-3, 7-4, 7-5, 7-9, 7-11, 7-12, 7-17, 7-20, 7-26
- There is no homework for this chapter – but the above list is a good example of potential final exam problems!

1/8/2003

Dr. Ashraf S. Hasan Mahmoud