King Fahd University of Petroleum & Minerals Computer Engineering Dept

COE 342 – Data and Computer Communications

Term 021

Dr. Ashraf S. Hasan Mahmoud

Rm 22-144

Ext. 1724

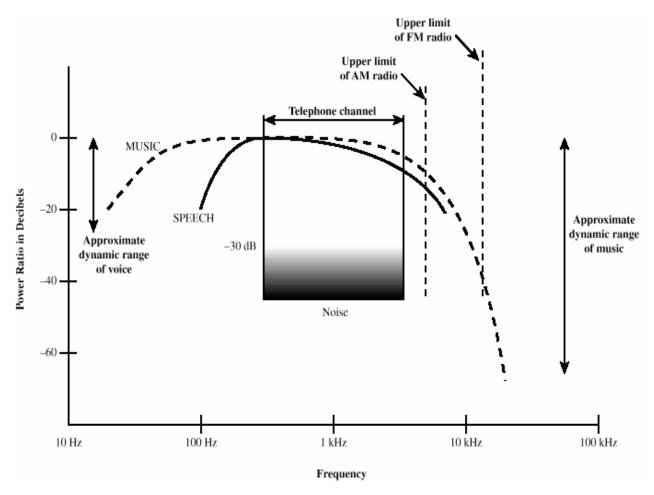
Email: ashraf@ccse.kfupm.edu.sa

Lecture Contents

- 1. Data/Signals
 - a. Audio/Voice
 - b. Video
 - c. Text
- 2. Transmission
 - a. Analog Transmission
 - b. Digital Transmission
- 3. Transmission Impairments
 - a. Attenuation and Attenuation Distortion
 - b. Delay Distortion
 - c. Noise
- 4. Channel Capacity
 - a. Nyquist Formula
 - b. Shannon Capacity Formula
 - c. Eb/No expression

Analog and Digital Data Transmission

- The terms:
 - Analogue ~ continuous
 - Digital ~ discrete
- They apply to:
 - A) Data: the information to be delivered
 - B) Signaling: the electrical or electromagnetic wave that propagates carrying the data
 - C) Transmission: the mechanism of delivering the data by processing and propagation of signal


10/21/2002

Examples of Data/Signaling: (1) AUDIO

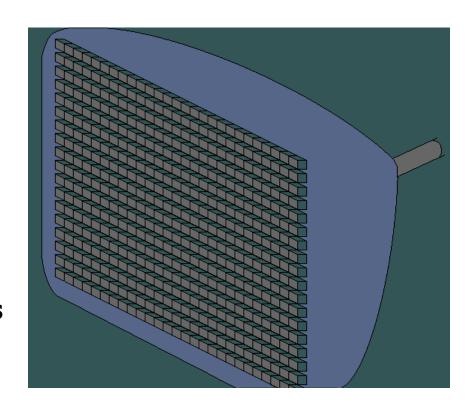
- Most familiar type of analogue data
- Human Ear (Receiver) bandwidth is ~10
 Hz to ~20KHz
 - You can not hear sounds with frequencies much higher than 20KHz or much lower than 10 Hz – Some other animals can do that (bats, whales, etc)
- Human speech (Data) is mostly between 100 Hz and 7K Hz — with most of the energy concentrated in the lower part of this range

Examples of Data/Signaling: (1) AUDIO – cont'd

- Typical Speech has a dynamic range of 25 dB – ratio of strongest speech signal to weakest speech signal is 25 dB or 10^{25/10} = 300 (in linear scale)
- The Telephone Channel has a bandwidth of about 3.1KHz (from 300 Hz to 3400 Hz)
- Note that Music has a much wider bandwidth than speech (~10 Hz to ~20 KHz) Hence a good audio system (CD player, high end speakers, etc) should be able to reproduce these signals
- Music has also a higher dynamic range too – What is the dynamic range of your audio system?

Examples of Data/Signalling: (2) VIDEO

- Another common example of analog data
- The original scene (source) is scanned and its image recorded by the camera – RASTER image
- In the TV: a moving electron beam scan the screen producing the picture
 - For black and white: the amount of illumination produced (on a scale from black (lowest) to white (highest) at any point is proportional to the beam intensity
- Hence the original brightness in REPRODUCED on the screen
- Video Image ←→ Time varying analog signal


Examples of Data/Signalling: (2) VIDEO – cont'd

- Total of 525 horizontal lines (vertical resolution)
 - 483 visible lines (241.5 even and 241.5 odd)
 - Subjective vertical resolution is 70X483 = 338 lines
 - Hence, horizontal resolution is (4/3)X338 = 450 pixels per line
 - 42 blanked during vertical retrace
- Basic line duration = 63.5 μsec:
 - 52.5 scanning horizontally
 - 11 μsec for horizontal retrace
- High number of scans per second → smooth picture but expensive hardware
- Low number of scans per second → jittery picture (flickering)
- Interlacing: scan odd lines first at 30 scan per second and then scan even lines at 30 scans per second → To the human eye, the screen is 60 refreshed 60 times per second, i.e. no flickering

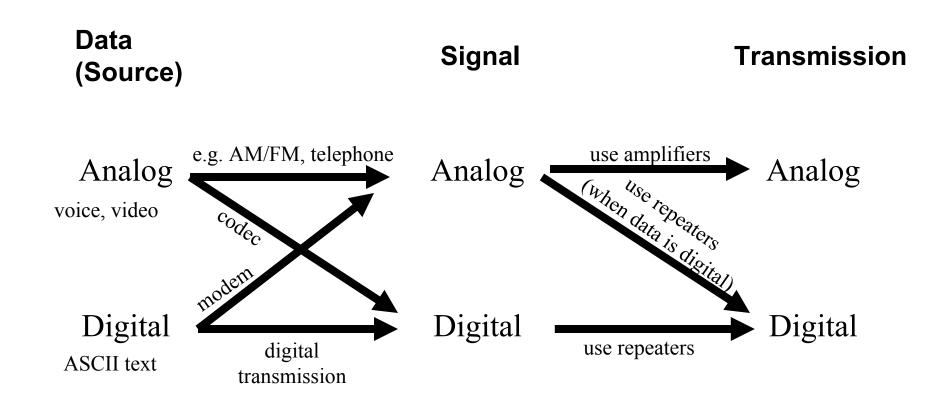
Examples of Data/Signalling: (2) VIDEO – cont'd

Scanning Process:

- Starts at the far left near top
- Scans 241.5 lines
- Ends at middle of screen – lowest part
- Beam is repositioned at the top again
- Scanning starts again for the other 241.5 lines (interlaced with the previous lines)

Examples of Data/Signalling: (2) VIDEO – cont'd – Bandwidth Calculation

- 525 lines per scan at 30 scans per second → 15,750 lines/sec or 63.5 µsec per line
 - 52.5 μsec is the actual time spent in illuminating horizontal pixels
- There are 450 horizontal pixels per line
 - For maximum bandwidth calculation
 - Let illumination alternative from white to black and visa versa for consecutive pixels → 225 cycles / line
 - But line scanning is done in 52.5 μsec/line.
 - Hence, the beam does (225/52.5 μ sec) = 4.2X10⁶ cycles per second
 - For minimum bandwidth
 - Let all pixels has same illumination level (no change in picture) →
 DC component fmin = 0 Hz
- Adding audio and color information does not increase bandwidth
- Hence NTSC video signal bandwidth is about 4 MHz


Examples of Data/Signalling: (3) TEXT

- Digital Data (pre-defined set of symbols)
 - Same as Morse Code
- IRA (or ASCII in the US) define 128 character using 7-bit words
- When transmitted or stored 1B or 8-bit words are used
 - A parity bit is added as a simple error detection technique
- The signal representing this data:
 - One DC level for binary one
 - Another DC level for binary zero
- Bandwidth representing this signal:
 - Maximum bandwidth is required when bits alternate between 0 and 1 → This results in a periodic square waveform (see Figure 3.15 in text)
 - Theoretical BW is infinite, but most of the energy is located for f < 2*fundamental frequency
 - Minimum frequency is zero (DC) when all bits are equal
 - Hence, in practice required BW is 3f lesser BW may be sufficient to represent the signal

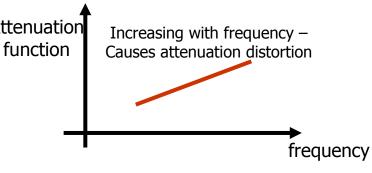
Transmission

- Analog Transmission:
 - Analog signal is propagated through amplifiers to compensate for attenuation and to achieve longer distance
 - Amplifiers:
 - Boost signal and noise equally
 - May distort original signal
 - Can not be used indefinitely
- Digital Transmission:
 - To overcome the higher attenuation, repeaters are used at appropriately spaced points
 - Repeaters:
 - Recover original digital data
 - Transmit new signal
 - Can be used indefinitely

Transmission (2)

Transmission (3)

- Digital Transmission is the prevailing technology:
 - Digital Technology: Capitalize on advances in digital circuitry
 - Data Integrity: With the use of repeaters, the effects of noise and other signal impairments are not cumulative
 - Capacity Utilization: It is easier to multiplex several digital signals (using TDM) on one high capacity link as opposed to multiplexing analog sources using FDM
 - Security and Privacy: Use of encryption
 - Integration: Provides a uniform vehicle to transport both analog and digital data

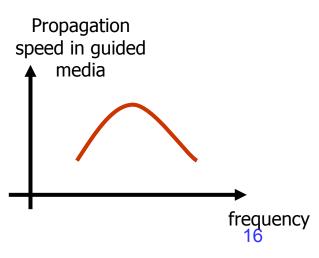

Transmission Impairments

- Impairments can degrade the quality of an analog signal or cause a bit (symbol) error for a digital signal
- Types of Impairments:
 - Attenuation and Attenuation Distortion
 - Delay Distortion
 - Noise

Attenuation and Attenuation Distortion

- A received signal must have sufficient strength for proper detection at receiver
- For error-free communication signal strength relative to noise must be high
- Attenuation is an increasing function of Attenuation function
 - Different components of signal are subject to different attenuation → Distortion in time domain
- Solution: Equalize transmission
 - Results in almost equal attenuation Equalized (gain) for all frequencies of Interest

 Attenuation function
- Attenuation Distortion is less of a problem for digital signals:
 - Frequencies of interest for a digital signal are centered around the fundamental frequency, f
 - Attenuation function has to be flat around f only


Does not cause attenuation distortion

Roughly constant with frequency -

frequency

Delay Distortion

- For guided media different frequency components have different propagation speeds
- For unguided media multipath (signal being received through more than one path) causes delay distortion
- Received signal is distorted due to varying delays experienced at its constituent frequencies
- Critical for digital data: Causes Intersymbol interference a major limitation on maximum bit rate over a transmission channel
- Solution: Equalization

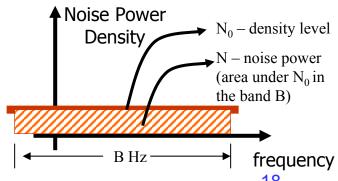
Noise

- Major limiting factor in communication system performance
- Types of Noise:
 - Thermal Noise
 - Intermodulation Noise
 - Crosstalk
 - Impulse Noise

Thermal Noise

- Due to agitation of electrons
- Function of temperature (energy of electrons)
- Can not be eliminated → limits communication system performance
- Noise power density (noise power found in 1 Hz), N₀, is given by

$$No = kT$$
 (Watts/Hz)


Where k is Boltzman constant = 1.3803×10^{-23} J/degree Kelvin

T is the temperature in degrees Kelvin

Hence, the thermal noise power in a bandwidth B Hz is given by

$$N = N_0 \times B = kT \times B$$
 (Watts)

In decibels:

Intermodulation Noise

Lineal System: H₁(S) = A₁xS + A₀

E.g. Consider the input S_1+S_2 , where $S_1=\cos(2\pi^*f_1^*t)$ and $S_2=\cos(2\pi^*f_2^*t)$. The system output is

$$H_L(S_1+S_2) = A_1 \times \cos(2\pi^*f_1^*t) + A_1 \times \cos(2\pi^*f_2^*t) + A_0$$

Note the output signal has frequencies f_1 and f_2 *ONLY*.

• NonLinear System: $H_{NL}(S) = A_2xS^2 + A_1xS + A_0$

The output (for the same input) is

$$H_{NL}(S_1+S_2) = A_2x \left[\cos(2\pi^*f_1^*t) + \cos(2\pi^*f_2^*t)\right]^2 + A_1x \left[\cos(2\pi^*f_1^*t) + \cos(2\pi^*f_2^*t)\right] + A_0$$

Note that $[\cos(2\pi^*f_i^*t)]^2 = \frac{1}{2} + \frac{1}{2}\cos(2\pi^*2f_i^*t)$, and

$$cos(2\pi^*f_1^*t) cos(2\pi^*f_2^*t) = \frac{1}{2} cos(2\pi^*(f_1+f_2)^*t) + \frac{1}{2} cos(2\pi^*(f_1-f_2)^*t)$$

Output signal contain terms with multiples of (f1+f2) and (f1-f2)

- Intermodulation noise: undesired signals at the frequency that is multiples of sum or difference of the two original input frequencies
- Caused by nonlinearity

Crosstalk/Impulse Noise

Crosstalk:

- Unwanted coupling between signal paths
- E.g. electrical coupling between near by twisted pair wires
- Coax cables are more immune to cross talk compared to twisted pairs

Impulse Noise:

- Unlike previous types of noise, this one is:
 - Noncontinuous irregular pulses or spikes for short duration and high amplitude
- Causes:
 - Lightening
 - Faults or flaws in communication systems
- Major concern for digital data

Effect of Noise on Digital Signal

• Figure 3.13

Channel Capacity

Terminology:

- Data Rate (R): bit rate of channel bits per second
- Bandwidth (B): bandwidth of transmitted signal Hz
- Noise power (N): average noise power level for communication channel – Watt/Hz for density or Watt for noise power
- Error rate (Pe): rate at which an erroneous detection is made (detecting 0 for 1 and 1 for 0)

Nyquist Bandwidth

- For a noise-free channel → data rate is limited by B of channel
- A bandwidth of B Hz is enough to support 2B bits per second
- Example: B = 3100 Hz (telephone channel) → C = 6200 b/s
- What if we use multilevel signaling :

$$C = 2B \log_2 M$$

Where M is the number of discrete levels used

- Example: for M = 8, same telephone channel can support C = 2X3100X log₂8 = 18.6 kb/s
- M = 2 receiver recognizes two signal levels 1s and 0s
- M > 2 receiver recognizes discrete levels other than 1 and 0
- In general, multilevel signaling requires more sophisticated receiver structure and perhaps more power for the same bandwidth

Shannon Capacity Formula

Capacity in the presence of noise

$$C = B \log_2(1 + SNR)$$

where SNR is the ratio of signal power to noise power — a measure of the signal quality

Example: fmin = 3 MHz, fmax = 4 MHz, SNR = 24 dB, C = ?

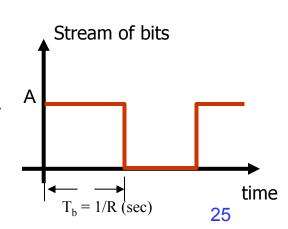
$$B = 4 - 3 = 1 MHz$$

SNR = $10^{24/10}$ = 251 (on the linear scale)

$$C = 1X10^6 \log_2(1 + 251) \sim 8 \times 10^6 \text{ b/s or } 8 \text{ M b/s}$$

One can also calculate the required signaling levels, M, using Nyquist formula: $C = 2B \log_2(M) \rightarrow M = 2^{C/(2B)} = 16$

 Note the C (calculated by Shannon formula) is the theoretical limit of the channel for the given B and SNR


E_b/N₀ Expression

- An alternative representation of SNR
- Consider the bit stream shown in figure for bit of rate R, then each bit duration is equal to T_b = 1/R seconds
- Energy of signal for the bit duration is equal to A²X T_b, where its power is equal to bit energy / T_b or A².
- Noise power is equal to N₀ X B (refer to thermal noise section)
- Hence, SNR is given by signal power / noise power or

$$SNR = \frac{signalpower}{N_0 B} = \frac{E_b}{N_0} \times \frac{R}{B}$$

One can also write

$$\left(\frac{E_b}{N_0}\right)_{dR} = SignalPower(dBW) - 10\log R - 10\log k - 10\log T$$

• Problem 3.10: For a video signal, what increase in a) horizontal b) vertical resolution is possible if a bandwidth of 5 MHz is used?

Solution:

For increase in horizontal resolution - keeping same vertical resolution (483 lines); each horizontal lines occupies 52.5 μsec, therefore new horizontal resolution H is given by

5 MHz = (H/2) / 52.5 μsec
$$\rightarrow$$
 H = 525 lines

For increase in vertical resolution – keeping same horizontal resolution of H = 450 lines, hence the new time for each horizontal line T is

$$5MHz = (450/2) / T \rightarrow T = 45 \mu sec$$

The horizontal retrace still takes 11 μ sec, therefore total time for horizontal line is 56 μ sec.

(1/30 sec/scan) / V lines/scan = 56 μsec/line → V = 595 lines/scan

• <u>Problem 3.12</u>: Given an amplifier with effective noise temperature of 10,000 degrees Kelvin, and a 10-MHz bandwidth, what thermal noise we expect at the output

Solution:

N = kT X B

 $k = 1.38 \times 10^{-23} \text{ J/Kelvin, T} = 10,000 \text{ degrees Kelvin, B} = 10 \times 10^6 \text{ Hz},$

 $N = 1.38X10^{-12} Watts$

 $N_{dBW} = 10 log N = -118.6 dBW$

In dBmW, one can write

NdBmW = 10 log N*1000 = -88.6 dBmW or simply, NdBmW = N_{dBW} + 30

Problem 3.17: Given a channel with the intended capacity of 20 Mb/s, the bandwidth of the channel is 3 MHz. What signal to noise ratio is required to achieve this capacity?

Solution:

Shannon Limit: $C = B \log_2(1 + SNR)$, $C = 20X10^6 b/s$, $B = 3X10^6 Hz$

$$\log_2(1 + SNR) = 6.67 \implies SNR = 101 = 20 \text{ dB}$$

 Problem 3.19: If the received signal level for a particular digital system us -151 dBW and the receiver system effective noise temperature is 1500 degrees Kelvin. What is the Eb/N0 for a link transmitting 2400 b/s

Solution:

```
Eb/No = (signal power / noise power) * (B/R)
Noise power = kT X B
Hence Eb/No = (signal power) / (kT R)
              = 10^{-151/10} / (1.38 \times 10^{-23} \times 1500 \times 2400)
              = 15.99
              = 12 dB
Or (Eb/N0)dB = Signalpower_dBW - 10logk - 10logT - 10logR
               = -151 - 10\log(1.3810^{-23}) - 10\log1500 - 10\log2400
               = 12 dB
```