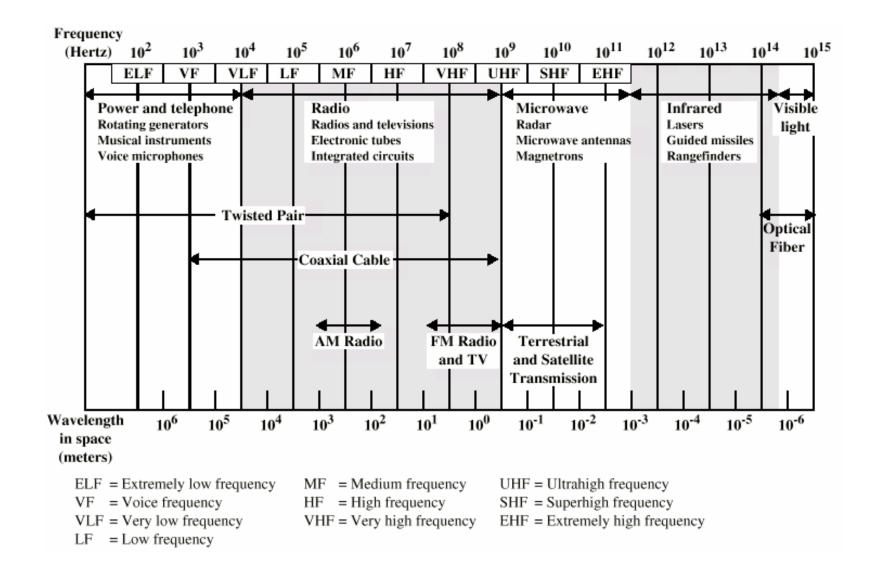
William Stallings Data and Computer Communications

Chapter 4 Transmission Media

Overview


- **#** Guided wire
- **#**Unguided wireless
- ****Characteristics and quality determined by medium and signal**
- #For guided, the medium is more important
- #For unguided, the bandwidth produced by the antenna is more important
- *****Key concerns are data rate and distance

Design Factors

- **#**Bandwidth
- **X**Transmission impairments
 - Attenuation
- **X** Interference
- **X** Number of receivers

 - More receivers (multi-point) introduce more attenuation

Electromagnetic Spectrum

Guided Transmission Media

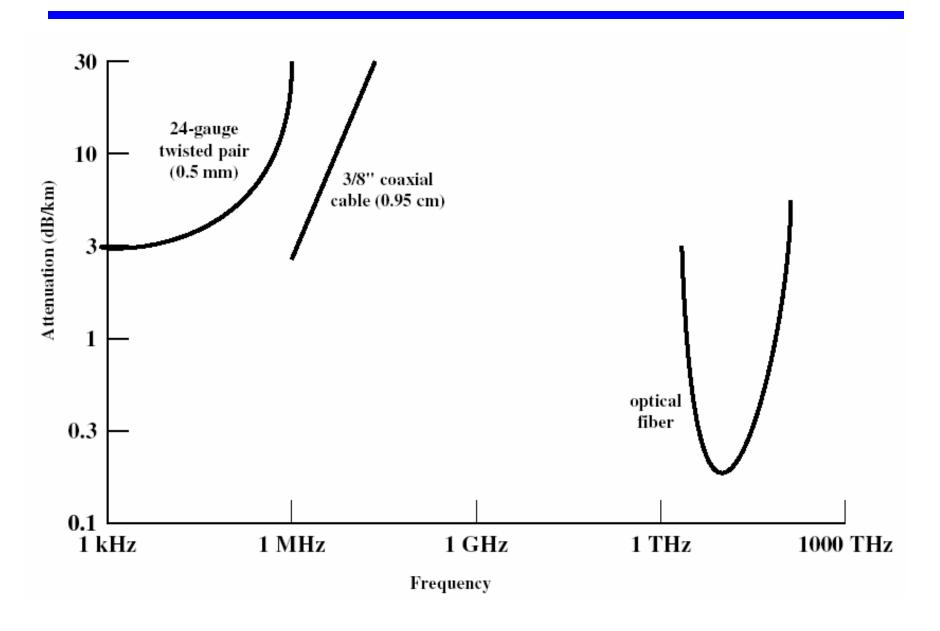

- **#** Twisted Pair
- **#** Coaxial cable
- **♯** Optical fiber

Table 4.1 Point-to-Point Transmission Characteristics of Guided Media [GLOV98]

	Frequency Range	Typical Attenuation	Typical Delay	Repeater Spacing
Twisted pair (with loading)	0 to 3.5 kHz	0.2 dB/km @ 1 kHz	50 μs/km	2 km
Twisted pairs (multi-pair cables)	0 to 1 MHz	3 dB/km @ 1 kHz	5 μs/km	2 km
Coaxial cable	0 to 500 MHz	7 dB/km @ 10 MHz	4 μs/km	1 to 9 km
Optical fiber	180 to 370 THz	0.2 to 0.5 dB/km	5 μs/km	40 km


THz = TeraHerz = 1012 Hz

Attenuation of Typical Guided Media

Twisted Pair

- -Separately insulated
- -Twisted together
- —Often "bundled" into cables
- Usually installed in building during construction

(a) Twisted pair

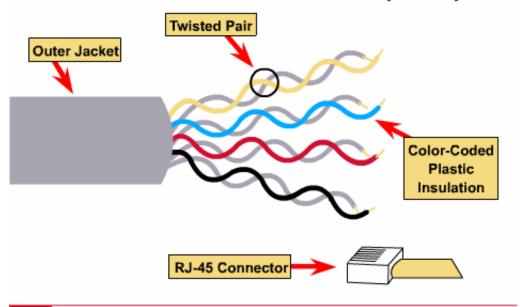
- -Usually more than one pair bundled together
- -Nearby pairs have different twist length to reduce crosstalk
- -Twist length 5 cm to 15cm
- -Wire thickness 0.4 to 0.9 mm

Twisted Pair - Applications

- ****** Most common medium
- **#**Telephone network
 - ☑Between house and local exchange or end-office (subscriber loop)
- ***Within buildings**
- #For local area networks (LAN)
 - △10Mbps or 100Mbps (for high rates limited number of devices and distance)

Twisted Pair - Pros and Cons

- **#** Cheap
- **#** Easy to work with
- **#** Low data rate
- ****** Short range: repeaters required every few hundred meters

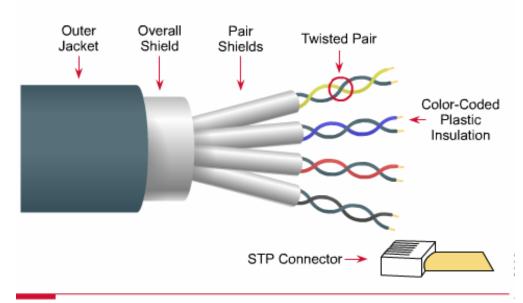

Twisted Pair - Transmission Characteristics

- **#** Analog
 - Amplifiers every 5km to 6km
- **#** Digital
 - □ Use either analog or digital signals
 - repeater every 2km or 3km (<u>This may be wrong, few hundred</u> meters is the answer)
- # Limited distance: highest attenuation relative to other guided media
- # Limited data rate (100MHz)
- **X** Susceptible to interference and noise

Unshielded and Shielded TP

- # Unshielded Twisted Pair (UTP)
 - Ordinary telephone wire
 - Cheapest
 - Easiest to install
 - Suffers from external EM interference

Unshielded Twisted Pair (UTP)



- ◆ Speed and throughput: 10 100 Mbps
- ◆ Average \$ per node: Least Expensive
- ◆ Media and connector size: Small
- ◆ Maximum cable length: 100m (short)

Unshielded and Shielded TP

- ★ Shielded Twisted Pair (STP)
 - Metal braid or sheathing that reduces interference

STP (Shielded Twisted Pair)

- ◆ Speed and throughput: 10 100 Mbps
- Average \$ per node: Moderately Expensive
- ◆ Media and connector size: Medium to Large
- Maximum cable length: 100m (short)

UTP Categories (Recognized by EIA-568)

```
 Cat 3
```

- □up to 16MHz

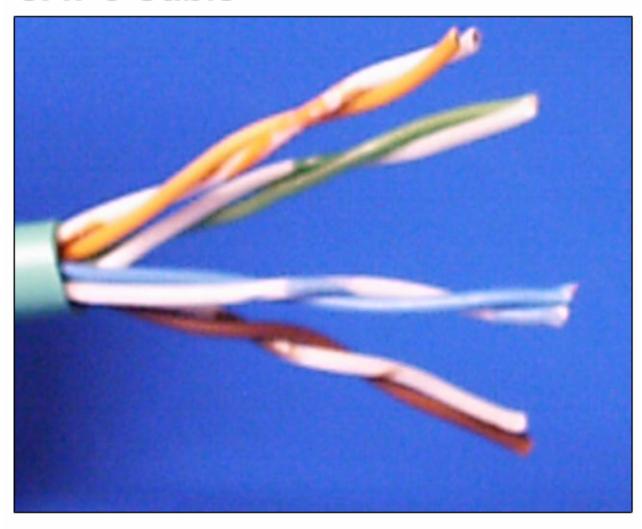
Cat 4

□up to 20 MHz

#Cat 5

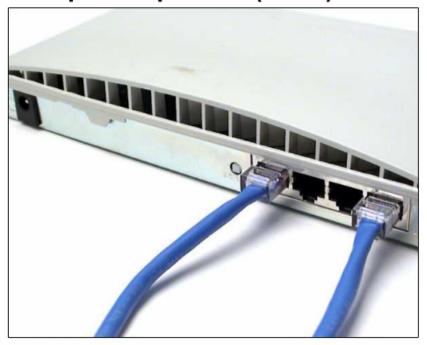
△up to 100MHz

Cat 3 and Cat 5 are ones mostly used for LAN applications:


Differ in number of twists

Commonly pre-installed in new office buildings

EIA = Electronic Industries Association


UTP Categories

CAT 5 Cable

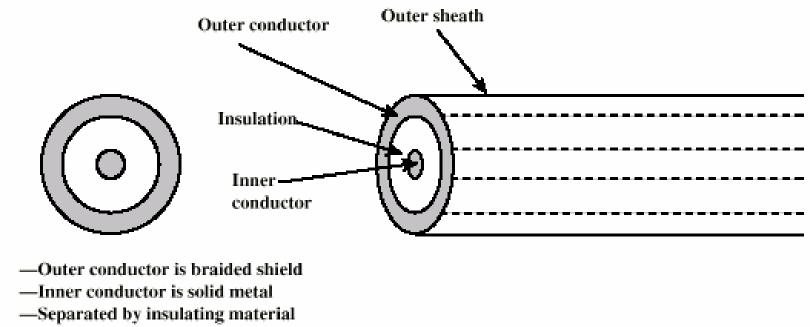


RJ-45 Connector

Multiport Repeaters (Hubs)

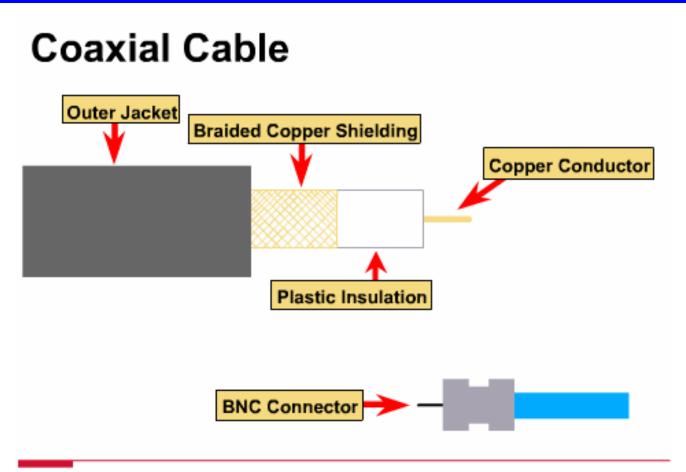
RJ-45 Front

Near End Crosstalk


- **#**Coupling of signal from one pair to another
- #Coupling takes place when transmit signal entering the link couples back to receiving pair
- **#**i.e. near transmitted signal is picked up by near receiving pair

STP vs. UTP

Table 4.2 Comparison of Shielded and Unshielded Twisted Pair


	Attenuation (dB per 100 m)			Near-end Crosstalk (dB)		
Frequency (MHz)	Category 3 UTP	Category 5 UTP	150-ohm STP	Category 3 UTP	Category 5 UTP	150-ohm STP
1	2.6	2.0	1.1	41	62	58
4	5.6	4.1	2.2	32	53	58
16	13.1	8.2	4.4	23	44	50.4
25	_	10.4	6.2	_	41	47.5
100	_	22.0	12.3	_	32	38.5
300	_	_	21.4	_	_	31.3

Coaxial Cable

- —Covered by padding
- -To allow operation over wider range of frequencies
- -Diameter of 1 to 2.5 cm
- -Because of shielding, much less susceptible to interference and crosstalk

Coaxial Cable

- ◆ Speed and throughput: 10 100 Mbps
- ◆ Average \$ per node: Inexpensive
- Media and connector size: Medium
- Maximum cable length: 500m (medium)

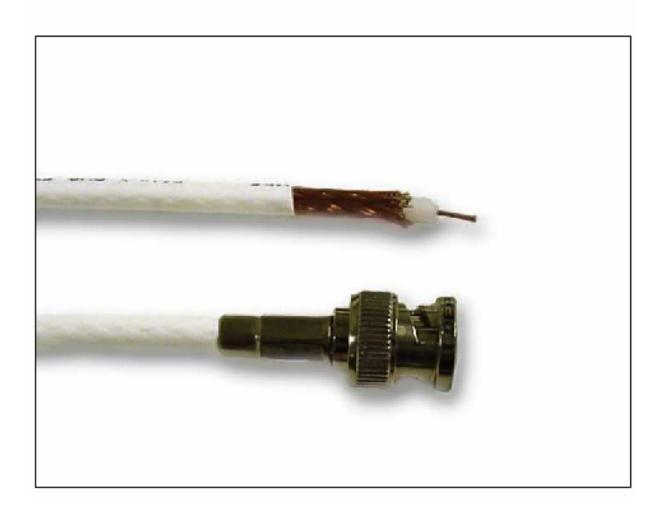
Coaxial Cable Applications

- ****** Most versatile medium
- **X**Television distribution
 - △Ariel to TV
- **#Long distance telephone transmission**
 - □Can carry 10,000 voice calls simultaneously (using FDM)
 - □ Being replaced by fiber optic
- *****Short distance computer systems links
- **#Local** area networks

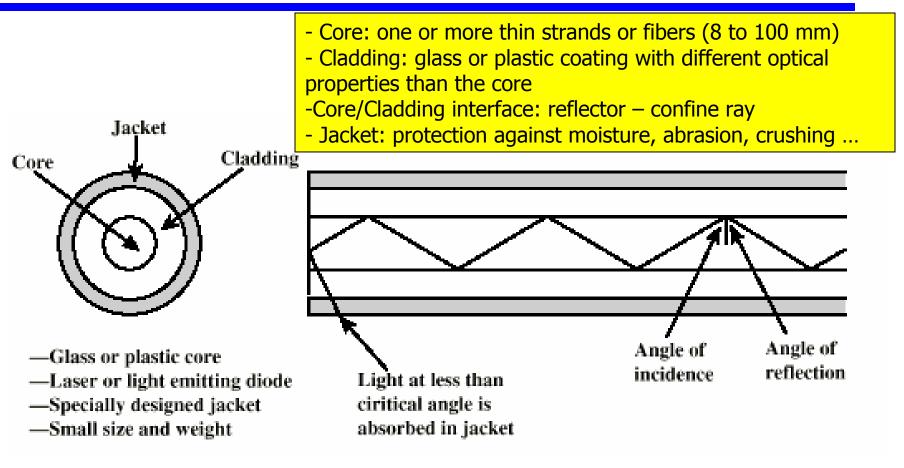
Coaxial Cable - Transmission Characteristics

#Analog

- Amplifiers every few km
- Closer if higher frequency
- □Up to 500MHz

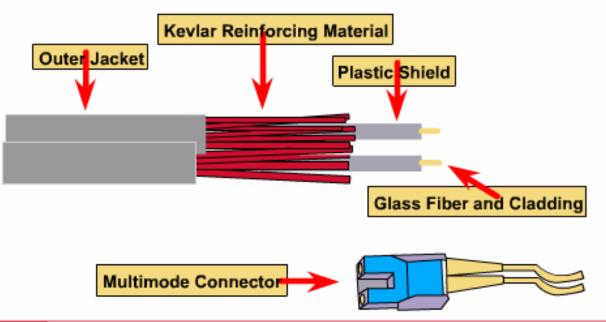

Digital

- □ Repeater every 1km


Performance limited by attenuation, thermal noise, and intermodulation noise

Coaxial Cable - Transmission Characteristics

10BASE2 50 Ohm Coax Cable


Optical Fiber

- -Lowest losses using ultrapure fiber difficult to manufacture
- -Higher loss mutlicomponent glass fibers are more economical
- -Plastic fiber is the cheapest used for short-haul links

Optical Fiber

- ◆ Speed and throughput: 100+ Mbps
- ◆ Average \$ per node: Most Expensive
- Media and connector size: Small
- ◆ Single mode, maximum cable length: Up to 3000m
- Multimode mode, maximum cable length: Up to 2000m
- ◆ Single mode: One stream of laser-generated light
- Multimode: Multiple streams of LED-generated light

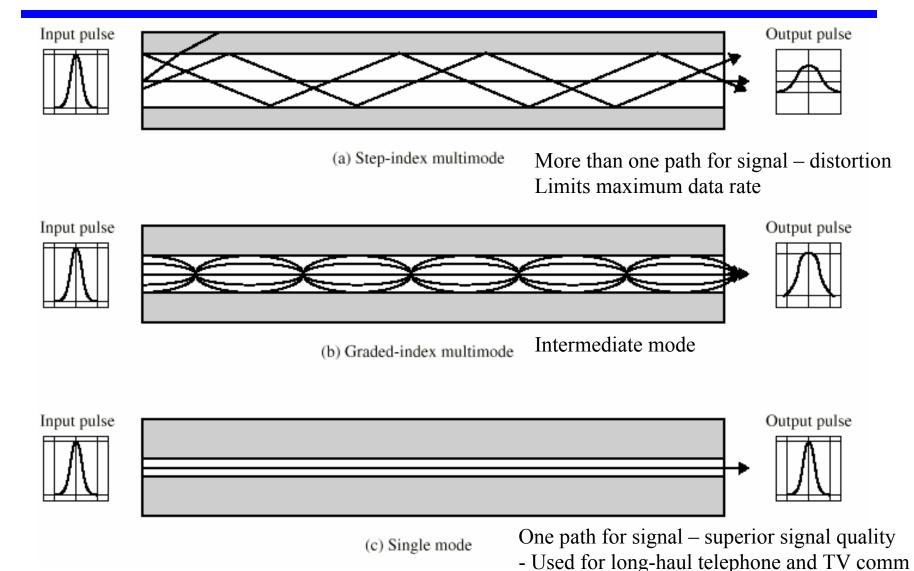
Optical Fiber - Benefits

- **#**Greater capacity
 - □ Data rates of hundreds of Gbps
- **#**Smaller size & weight
- **#**Lower attenuation
- **#** Electromagnetic isolation
- **#**Greater repeater spacing
 - △10s of km at least

Optical Fiber - Applications

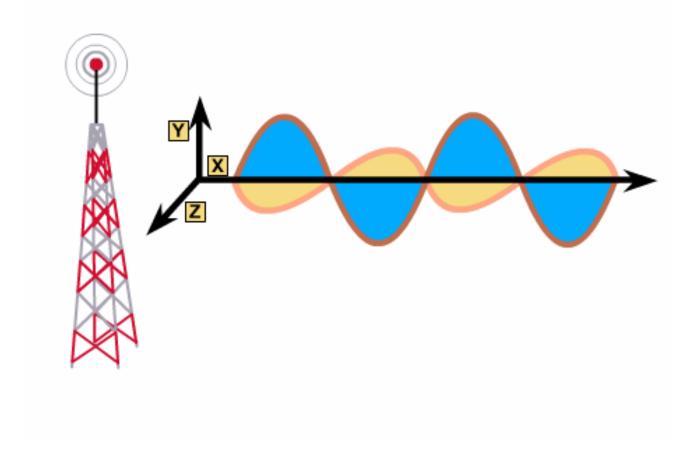
- **X**Long-haul trunks
- ****** Metropolitan trunks
- ****** Rural exchange trunks
- **#**Subscriber loops
- **#LANs**

Optical Fiber - Transmission Characteristics


- ******Act as wave guide for 10¹⁴ to 10¹⁵ Hz
- **#Light Emitting Diode (LED)**
 - Cheaper

 - Last longer
- #Injection Laser Diode (ILD)

 - □ Greater data rate
- ****Wavelength Division Multiplexing**


LED – ILD: semiconductor devices that emit a beam when voltage is applied

Optical Fiber Transmission Modes

Wireless Transmission

Encoding Signals as Electromagnetic Waves

Wireless Transmission

- **X**Unguided media
- **X**Transmission and reception via antenna
- **#** Directional

 - Careful alignment required
- **#** Omnidirectional

Frequencies

- #2GHz to 40GHz
 - Microwave

 - □ Point to point
 - **△**Satellite
- **30MHz** to 1GHz
 - Omnidirectional
 - □ Broadcast radio
- 3×10^{11} to 2 x 10^{14}
 - ☑ Infrared
 - Local

Terrestrial Microwave

- # Parabolic dish
- #Focused beam
- **X**Line of sight
- **X**Long haul telecommunications
- #Higher frequencies give higher data rates

Satellite Microwave

- *****Satellite is relay station
- ******Satellite receives on one frequency, amplifies or repeats signal and transmits on another frequency
- **#**Television
- **X**Long distance telephone
- **#**Private business networks

Broadcast Radio

- **#**Omnidirectional
- **♯** FM radio
- **#UHF** and VHF television
- **X**Line of sight
- **#**Suffers from multipath interference
 - □ Reflections

Infrared

- ****** Modulate noncoherent infrared light
- **X**Line of sight (or reflection)
- Blocked by walls

Required Reading

Stallings Chapter 4