
1

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

1

MIPSMIPS PROCESSORPROCESSOR
INSTRUCTION SETINSTRUCTION SET

ICS 233ICS 233
Computer Architecture & Computer Architecture &

Assembly LanguageAssembly Language

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

2

ICS 233ICS 233
Computer Architecture & Computer Architecture &

Assembly LanguageAssembly Language

Lecture 9Lecture 9

2

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

3

Lecture Outline

Translating IF Statement

Translating WHILE loop

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

4

Translating an IF Statement
• Consider the following IF statement:
if (a == b) c = d + e; else c = d – e;

Assume that a, b, c, d, e are in $s0, $s1, $s2, $s3,
$s4 respectively

• How to translate the above IF statement?

bne $s0, $s1, else
addu $s2, $s3, $s4
j exit

else: subu $s2, $s3, $s4
exit: . . .

3

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

5

Compound Expression with AND
• Programming languages use short-circuit evaluation

• If first expression is false, second expression is
skipped

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

One Possible Implementation ...
bgtz $s1, L1 # first expression
j next # skip if false

L1: bltz $s2, L2 # second expression
j next # skip if false

L2: addiu $s3,$s3,1 # both are true
next:

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

6

Better Implementation for AND

The following implementation uses less code

Reverse the relational operator

Allow the program to fall through to the second expression

Number of instructions is reduced from 5 to 3

if (($s1 > 0) && ($s2 < 0)) {$s3++;}

Better Implementation ...
blez $s1, next # skip if false
bgez $s2, next # skip if false
addiu $s3,$s3,1 # both are true

next:

4

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

7

Compound Expression with OR
• Short-circuit evaluation for logical OR

• If first expression is true, second expression is skipped

• Use fall-through to keep the code as short as possible

• bgt, ble are pseudo-instructions

– Translated by the assembler to real instructions

if (($sl > $s2) || ($s2 > $s3)) {$s4 = 1;}

bgt $s1, $s2, L1 # yes, execute if part
ble $s2, $s3, next # no: skip if part

L1: ori $s4, $0, 1 # set $s4 to 1
next:

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

8

TRY THIS …..
• Translate the IF statement to assembly language

• $s1 and $s2 values are unsigned

• $s3, $s4, and $s5 values are signed

bgtu $s1, $s2, next
or $s3, $s4, $0

next:

if($s1 <= $s2) {
$s3 = $s4

}

if (($s3 <= $s4) &&
($s4 > $s5)) {

$s3 = $s4 + $s5
}

bgt $s3, $s4, next
ble $s4, $s5, next
addu $s3, $s4, $s5

next:

5

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

9

Translating a WHILE Loop
• Consider the following WHILE statement:

i = 0; while (A[i] != k) i = i+1;

Where A is an array of integers (4 bytes per element)
Assume address A, i, k in $s0, $s1, $s2, respectively

• How to translate above WHILE statement?
xor $s1, $s1, $s1 # i = 0
or $t0, $s0, $0 # $t0 = address A

loop: lw $t1, 0($t0) # $t1 = A[i]
beq $t1, $s2, exit # exit if (A[i]== k)
addiu $s1, $s1, 1 # i = i+1
sll $t0, $s1, 2 # $t0 = 4*i
addu $t0, $s0, $t0 # $t0 = address A[i]
j loop

exit: . . .

Memory

A[2]

A[i]

A[1]
A[0]

. . .

. . .

A
A+4
A+8

A+4×i

. . .

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

10

Using Pointers to Traverse Arrays
• Consider the same WHILE loop:

i = 0; while (A[i] != k) i = i+1;

Where address of A, i, k are in $s0, $s1, $s2, respectively

• We can use a pointer to traverse array A
Pointer is incremented by 4 (faster than indexing)

or $t0, $s0, $0 # $t0 = $s0 = addr A
j cond # test condition

loop: addiu $s1, $s1, 1 # i = i+1
addiu $t0, $t0, 4 # point to next

cond: lw $t1, 0($t0) # $t1 = A[i]
bne $t1, $s2, loop # loop if A[i]!= k

• Only 4 instructions (rather than 6) in loop body

6

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

11

Copying a String

or $t0, $s0, $0 # $t0 = pointer to source
or $t1, $s1, $0 # $t1 = pointer to target

L1: lb $t2, 0($t0) # load byte into $t2
sb $t2, 0($t1) # store byte into target
addiu $t0, $t0, 1 # increment source pointer
addiu $t1, $t1, 1 # increment target pointer
bne $t2, $zero, L1 # loop until NULL char

The following code copies source string to target string

Address of source in $s0 and address of target in $s1

Strings are terminated with a null character (C strings)

i = 0;
do {target[i]=source[i]; i++;} while (source[i]!=0);

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

12

Summing an Integer Array

or $t0, $s0, $0 # $t0 = address A[i]
xor $t1, $t1, $t1 # $t1 = i = 0
xor $s2, $s2, $s2 # $s2 = sum = 0

L1: lw $t2, 0($t0) # $t2 = A[i]
addu $s2, $s2, $t2 # sum = sum + A[i]
addiu $t0, $t0, 4 # point to next A[i]
addiu $t1, $t1, 1 # i++
bne $t1, $s1, L1 # loop if (i != n)

Assume $s0 = array address, $s1 = array length = n

sum = 0;
for (i=0; i<n; i++) sum = sum + A[i];

