ICS 233
Computer Architecture &
Assembly Language

MIPS PROCESSOR
INSTRUCTION SET

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

ICS 233
Computer Architecture &
Assembly Language

Lecture 7

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

Lecture Outline
O MIPS Instruction I-Type Format
O MIPS I-type ALU Instructions

O MIPS I-type Data Transfer Instructions
(Load & Store Instructions)

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

I-Type Format

< Constants are used quite frequently in programs
— The R-type shift instructions have a 5-bit shift amount constant

— What about other instructions that need a constant?

e |-Type: Instructions with Immediate Operands

Op® Rs® Rt® immediate!®

« 16-bit immediate constant is specified immediately in the instruction
— Rs is the source register number
— Rtis now the destination register number (for R-type it was Rd)

« Examples of I-Type ALU Instructions:
— Add immediate: addi $s1, $s2, 5 # $si
— OR immediate: ori $s1, $s2, 5 # $si

$s2 + 5
$s2 | 5

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

I-Type ALU Instructions

Instruction | Meaning |

I-Type Format

addi $s1,$s2,10 [$s1=$s2+10 |op=0x8 [rs=$s2| rt=$sl imm26 =10
addiu $s1, $s2, 10 [$s1=$s2+10 |op=0x9 [rs =$s2| rt = $s1 imm26 =10
andi $s1,$s2,10 [$s1=$s2& 10 |op =0xc [rs =$s2| rt = $s1 imm26 =10
ori $s1, $s2, 10 | $s1 =%$s2| 10 op=0xd |[rs =$s2| rt =$s1 imm?26 =10
xori $s1,$s2,10 [$s1=$s2” 10 |op=0xe [rs=$s2| rt=$sl imm?26 =10
lui $s1, 10 $s1=10<<16 |op = Oxf 0 re=%s1 imm?26 =10

» addi: overflow causes an arithmetic exception

— In case of overflow, result is not written to destination register

» addiu: same operation as addi but overflow is ignored

» Immediate constant for addi and addiu is signed

— No need for subi or subiu instructions

» Immediate constant for andi, ori, xori is unsigned

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

MIPS - Arithmetic Instructions
U addi (add immediate signed)

» Instruction Mnemonic :
addi rd, rs, const

» Meaning :
rd € rs + const

» Example:
addi $s1, $s2, 100

;wherers, rd are registers,

; const is a 16-bit constant value

;overflow detected

; $s1€ $s2 + 100

QO addiu (add immediate unsigned)

» Instruction Mnemonic :
addiu rd, rs, const

» Meaning :
rd € rs + const

» Example:
addiu $s1, $s2, 100

;where rs, rd are registers,

; const is a 16-bit constant value
;overflow not detected

; $s1€ $s2 + 100

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

MIPS - Logical Instructions
Uandi (logical and immediate)

» Instruction Mnemonic :

andi rd, rs, const ;wherers, rd are registers,
; const is a 16-bit constant

» Meaning
rd €rs & const

» Example :
andi $s1, $s2,100 ; $s1€ $s2 & 100

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

MIPS - Logical Instructions
Lori (logical or immediate)

» Instruction Mnemonic :

ori rd, rs, const ;wherers, rd are registers,
; const is a 16-bit constant

» Meaning :
rd € rs | const
» Example :
ori $s1, $s2, 100 ; $s1€ $s2 |1 100

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

MIPS - Logical Instructions
Lxori (logical Exclusive-or immediate)

» Instruction Mnemonic :

xori rd, rs, const ;wherers, rd are registers,
; const is a 16-bit value

» Meaning
rd €rs const

» Example :
xori $s1, $s2, 100 - $s1€ $s2 » 100

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

MIPS — Data Transfer Instructions
Q lui (Load upper immediate)

> Instruction Mnemonic :

lui rd, const :where rd is a register,
;const is a 16-bit number

» Meaning :

rd € const*216 ; load constant in upper 16 bits of register
» Example :

lui $s1, 100 ; $s1 € 100 * 216

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

10

32-bit Constants

« |-Type instructions can have only 16-bit constants

Op® Rs®

RtS

immediate16

« What if we want to load a 32-bit constant into a register?

¢ Can't have a 32-bit constant in I-Type instructions ®

— We have already fixed the sizes of all instructions to 32

bits

e Solution: use two instructions instead of one ©
— Suppose we want: $s1=0xAC5165D9 (32-bit constant)

— lui: load upper immediate

lui $s1,0xAC51

ori $s1,%$s1,0x65D9

load upper clear lower
16 bits 16 bits

$s1($17) | OXAC51 | 0x0000 |

$s1($17) | OXAC51 | 0x65D9 |

Examples: I-Type ALU Instructions

« Examples: assume A, B, C are allocated $s0, $s1, $s2

translated as
translated as

addiu $s0,%$s1,5
addiu $s2,%s1,-1

6 |0p=001001rs=$51=10001]rt=$52=10010| imm = -1 = 1111111111111111 |

A = B+5;
C = B-1;
A = B&OxT;
C = B|Oxf;
C =5;

A = B;

translated as
translated as
translated as
translated as

andi $s0,%$s1,0xF
ori $s2,%$s1,0xF
ori $s2,%zero,5
ori $s0,%$s1,0

* No need for subi, because addi has signed immediate
* Register 0 ($zero) has always the value 0

Load and Store Instructions

Instructions that transfer data between memory & registers

Programs include variables such as arrays and objects

Such variables are stored in memory

load

Load Instruction:

Registers
store

Memory

— Transfers data from memory to a register | =

Store Instruction:

— Transfers data from a register to memory

Memory address must be specified by load and store

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

13

Load and Store Word

Load Word Instruction (Word = 4 bytes in MIPS)

Iw Rt, imm®(Rs) # Rt = MEMORY[Rs+imml¢]
Store Word Instruction

sw Rt, immi®(Rs) # MEMORY[Rs+immi®] = Rt
Base or Displacement addressing is used

— Memory Address = Rs (base) + Immediate® (displacement)

— Immediate’® is sign-extended to have a signed displacement

Base or Displacement Addressing
|Op6 Rs5 | Rt®

H

immediate1®

O

Memory Word

|_f

| Base address

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

14

Example on Load & Store

* Translate A[1] =A[2] +5 (A is an array of
words)

— Assume that address of array A is stored in register $s0

Iw $s1, 8($s0) # $s1 = A[2]
addiu $s2, $sl1, 5 # $s2 = A[2] + 5
sw $s2, 4($s0) # A[1] = $s2

* Index of a[2] and a[1] should be multiplied by 4. Why?

. Memor
Registers y
$s0 = $16 | address of A w A[3] A+12
$s1=$17 |value of A[2] Al2] A+8
$s2=$18| A[2]+5 S Al1] A+4
W A[0] A
Lecture Slides on Computer 15

Architecture ICS 233 @ DrAR

Load and Store Byte and Halfword

» The MIPS processor supports the following data formats:
— Byte = 8 bits, Halfword = 16 bits, Word = 32 bits
» Load & store instructions for bytes and halfwords
— Ib = load byte, Ibu = load byte unsigned, sb = store byte

— |h =load half, lhu = load half unsigned, sh = store
halfword

» Load expands a memory data to fit into a 32-bit register
» Store reduces a 32-bit register to fit in memory

32-bit Register

s sign —extend s|s b
0 zero — extend 0 bu
s sign —extend s|s h
0 zero — extend 0 hu
Lecture Slides on Computer 16

Architecture ICS 233 @ DrAR

Load and Store Instructions

Instruction Meaning I-Type Format

Ib rt, imm(rs) rt = MEM[rs+imm?€] 0x20 rss rt>

imm?16

lh rt, imm(rs) rt = MEM[rs+immZ6] 0x21 rss rts

imm?16

Iw rt, imm?(rs) rt = MEM[rs+imm?f] 0x23 rss rt>

imm?16

lbu rt, imm8(rs) rt = MEM[rs+immZ6] 0x24 rss rts

imm?16

lhu rt, imm?(rs) rt = MEM[rs+imm?f] 0x25 rss rt>

imm?16

sb rt, imm28(rs) MEM[rs+imm?16] = rt 0x28 rss rts

imm?16

sh rt, imm?2(rs) MEM[rs+imm?16] = rt 0x29 rss rt>

imm?16

sw_rt, imm?*(rs) MEM[rs+imm?6] = rt 0x2b rss rts

imm?16

» Base or Displacement Addressing is used
— Memory Address = Rs (base) + Immediate!® (displacement)
» Two variations on base addressing
— If Rs=$zero =0then Address = Immediate!® (absolute)
— If Immediate® = 0 then Address = Rs (register indirect)

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

17

MIPS — Data Transfer Instructions
a Iw (Load word)

» Instruction Mnemonic :
Iw rd, const(rs) :where s, rd are registers,
;const is a 16-bit displacement

Iw rd, addr : where addr is the label of the memory
location to be accessed

» Meaning :
rd € Memory[rs + const] ;load word from memory to register

» Example:
Iw $s1, 100($s2) ; $51 € Memory[$52+100]

lw $s1, NUM1 ; load register $s1 with aword from
memory location NUM1

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

18

MIPS — Data Transfer Instructions

O Ih (Load halfword with sign extension)
» Instruction Mnemonic :
Ih rd, const(rs) :where rs, rd are registers,
;const is a 16-bit displacement
Ih rd, addr : where addr is the label of the memory
location to be accessed
» Meaning
rd € Memory[rs + const] ; load halfword from memory to register
» Example:
Ih $s1, 100($s2) ; $s1 € Memory[$s2+100]
lh $s1, NUM1 ; load register $s1 with a half-word from
memory location NUM1
O lhu (Load halfword unsigned —without sign extension)
» Instruction Mnemonic :
lhu rd, const(rs) ;where rs, rd are registers,
;const is a 16-bit displacement
lhu rd, addr ; where addr is the label of the memory
location to be accessed
» Meaning
rd € Memory[rs + const] ; load halfword from memory to register
» Example:
lhu $s1, 100($s2) ; $s1 € Memory[$s2+100]
lhu $s1, NUM1 ; load register $s1 with a half-word from
memqry location NUM1
Lectire Slideson omputer 19
Architecture ICS 233 @ DrAR
AL
MIPS — Data Transfer Instructions
O Ib (Load byte with sign extension)
» Instruction Mnemonic :
Ib rd, const(rs) :where rs, rd are registers,
;const is a 16-bit displacement
Ib rd, addr : where addr is the label of the memory
location to be accessed
» Meaning
rd € Memory[rs + const] ; load byte from memory to register
» Example:
Ib $s1, 100($s2) ; $s1 € Memory[$s2+100]
Ib $s1, NUM1 ; load register $s1 with a byte from
memory location NUM1
O Ibu (Load byte unsigned — without sign extension)
» Instruction Mnemonic :
Ibu rd, const(rs) iwherers, rd are registers,
;const is a 16-bit displacement
Ibu rd, addr : where addr is the label of the memory
location to be accessed
» Meaning
rd € Memory[rs + const] ; load unsigned byte from memory to register
» Example:
Ibu $s1, 100($s2) ; $s1 € Memory[$s2+100]
lbu $s1, NUM1 ; load register $s1 with a byte from
memory location NUM1
Lecture Slides on Computer 20

Architecture ICS 233 @ DrAR

NI

10

