
1

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

1

MIPSMIPS PROCESSORPROCESSOR
INSTRUCTION SETINSTRUCTION SET

ICS 233ICS 233
Computer Architecture & Computer Architecture &

Assembly LanguageAssembly Language

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

2

ICS 233ICS 233
Computer Architecture & Computer Architecture &

Assembly LanguageAssembly Language

Lecture 7Lecture 7

2

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

3

Lecture Outline

� MIPS Instruction I-Type Format

� MIPS I-type ALU Instructions

� MIPS I-type Data Transfer Instructions
(Load & Store Instructions)

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

4

I-Type Format
• Constants are used quite frequently in programs

– The R-type shift instructions have a 5-bit shift amount constant

– What about other instructions that need a constant?

• I-Type: Instructions with Immediate Operands

• 16-bit immediate constant is specified immediately in the instruction
– Rs is the source register number
– Rt is now the destination register number (for R-type it was Rd)

• Examples of I-Type ALU Instructions:
– Add immediate: addi $s1, $s2, 5 # $s1 = $s2 + 5
– OR immediate: ori $s1, $s2, 5 # $s1 = $s2 | 5

Op6 Rs5 Rt5 immediate16

3

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

5

I-Type ALU Instructions

imm16 = 10rt = $s1rs = $s2op = 0x9$s1 = $s2 + 10addiu $s1, $s2, 10
imm16 = 10rt = $s1rs = $s2op = 0x8$s1 = $s2 + 10addi $s1, $s2, 10

imm16 = 10rt = $s1rs = $s2op = 0xc$s1 = $s2 & 10andi $s1, $s2, 10
imm16 = 10rt = $s1rs = $s2op = 0xd$s1 = $s2 | 10ori $s1, $s2, 10
imm16 = 10rt = $s1rs = $s2op = 0xe$s1 = $s2 ^ 10xori $s1, $s2, 10
imm16 = 10rt = $s10op = 0xf$s1 = 10 << 16lui $s1, 10

I-Type FormatMeaningInstruction

• addi: overflow causes an arithmetic exception

– In case of overflow, result is not written to destination register

• addiu: same operation as addi but overflow is ignored

• Immediate constant for addi and addiu is signed

– No need for subi or subiu instructions

• Immediate constant for andi, ori, xori is unsigned

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

6

MIPS - Arithmetic Instructions
� addi (add immediate signed)

¾ Instruction Mnemonic :
addi rd, rs, const ;where rs, rd are registers,

; const is a 16-bit constant value
;overflow detected

¾ Meaning :
rd Å rs + const

¾ Example :
addi $s1, $s2, 100 ; $s1Å $s2 + 100

� addiu (add immediate unsigned)

¾ Instruction Mnemonic :
addiu rd, rs, const ;where rs, rd are registers,

; const is a 16-bit constant value
;overflow not detected

¾ Meaning :
rd Å rs + const

¾ Example :
addiu $s1, $s2, 100 ; $s1Å $s2 + 100

4

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

7

MIPS - Logical Instructions

�andi (logical and immediate)

¾ Instruction Mnemonic :
andi rd, rs, const ;where rs, rd are registers,

; const is a 16-bit constant

¾Meaning :
rd Å rs & const

¾Example :
andi $s1, $s2, 100 ; $s1Å $s2 & 100

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

8

MIPS - Logical Instructions

�ori (logical or immediate)

¾ Instruction Mnemonic :
ori rd, rs, const ; where rs, rd are registers,

; const is a 16-bit constant

¾Meaning :
rd Å rs | const

¾Example :
ori $s1, $s2, 100 ; $s1Å $s2 I 100

5

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

9

MIPS - Logical Instructions

�xori (logical Exclusive-or immediate)

¾ Instruction Mnemonic :
xori rd, rs, const ;where rs, rd are registers,

; const is a 16-bit value
¾Meaning :

rd Å rs const

¾Example :
xori $s1, $s2, 100 ; $s1Å $s2 100+

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

10

MIPS – Data Transfer Instructions
� lui (Load upper immediate)

¾ Instruction Mnemonic :
lui rd, const ;where rd is a register,

;const is a 16-bit number

¾ Meaning :
rd Å const*216 ; load constant in upper 16 bits of register

¾ Example :
lui $s1, 100 ; $s1 Å 100 * 216

6

• I-Type instructions can have only 16-bit constants

• What if we want to load a 32-bit constant into a register?

• Can’t have a 32-bit constant in I-Type instructions /

– We have already fixed the sizes of all instructions to 32
bits

• Solution: use two instructions instead of one ☺

– Suppose we want: $s1=0xAC5165D9 (32-bit constant)

– lui: load upper immediate

32-bit Constants

Op6 Rs5 Rt5 immediate16

lui $s1,0xAC51

ori $s1,$s1,0x65D9 0xAC51 0x65D9$s1($17)

0xAC51 0x0000$s1($17)

clear lower
16 bits

load upper
16 bits

• Examples: assume A, B, C are allocated $s0, $s1, $s2

• No need for subi, because addi has signed immediate
• Register 0 ($zero) has always the value 0

Examples: I-Type ALU Instructions

A = B+5; translated as
C = B–1; translated as

addiu $s0,$s1,5

addiu $s2,$s1,-1

A = B&0xf; translated as
C = B|0xf; translated as

andi $s0,$s1,0xf

ori $s2,$s1,0xf

C = 5; translated as
A = B; translated as

ori $s2,$zero,5

ori $s0,$s1,0

rt=$s2=10010op=001001 rs=$s1=10001 imm = -1 = 1111111111111111

7

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

13

Load and Store Instructions
• Instructions that transfer data between memory & registers

• Programs include variables such as arrays and objects

• Such variables are stored in memory

• Load Instruction:

– Transfers data from memory to a register

• Store Instruction:

– Transfers data from a register to memory

• Memory address must be specified by load and store

MemoryRegisters

load

store

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

14

• Load Word Instruction (Word = 4 bytes in MIPS)

lw Rt, imm16(Rs) # Rt = MEMORY[Rs+imm16]

• Store Word Instruction

sw Rt, imm16(Rs) # MEMORY[Rs+imm16] = Rt

• Base or Displacement addressing is used
– Memory Address = Rs (base) + Immediate16 (displacement)

– Immediate16 is sign-extended to have a signed displacement

Load and Store Word

Op6 Rs5 Rt5 immediate16

Base or Displacement Addressing

Memory Word

Base address

+

8

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

15

Example on Load & Store
• Translate A[1] = A[2] + 5 (A is an array of

words)
– Assume that address of array A is stored in register $s0

lw $s1, 8($s0) # $s1 = A[2]

addiu $s2, $s1, 5 # $s2 = A[2] + 5

sw $s2, 4($s0) # A[1] = $s2

• Index of a[2] and a[1] should be multiplied by 4. Why?

sw

Memory

A[1]
A[0]

A[2]
A[3]

. . .

. . .

A+12
A+8
A+4
A

Registers

address of A$s0 = $16
value of A[2]$s1 = $17

A[2] + 5$s2 = $18

. . .

. . .

lw

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

16

0 0
s s s

s s

0 0

s

bu
b

h

hu

sign – extend
zero – extend

sign – extend
zero – extend

32-bit Register

• The MIPS processor supports the following data formats:
– Byte = 8 bits, Halfword = 16 bits, Word = 32 bits

• Load & store instructions for bytes and halfwords
– lb = load byte, lbu = load byte unsigned, sb = store byte
– lh = load half, lhu = load half unsigned, sh = store

halfword
• Load expands a memory data to fit into a 32-bit register
• Store reduces a 32-bit register to fit in memory

Load and Store Byte and Halfword

9

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

17

Load and Store Instructions

imm16rt5rs50x23rt = MEM[rs+imm16]lw rt, imm16(rs)
imm16rt5rs50x24rt = MEM[rs+imm16]lbu rt, imm16(rs)
imm16rt5rs50x25rt = MEM[rs+imm16]lhu rt, imm16(rs)

imm16rt5rs50x29MEM[rs+imm16] = rtsh rt, imm16(rs)
imm16rt5rs50x28MEM[rs+imm16] = rtsb rt, imm16(rs)

imm16rt5rs50x20rt = MEM[rs+imm16]lb rt, imm16(rs)
imm16rt5rs50x21rt = MEM[rs+imm16]lh rt, imm16(rs)

imm16rt5rs50x2bMEM[rs+imm16] = rtsw rt, imm16(rs)

I-Type FormatMeaningInstruction

• Base or Displacement Addressing is used
– Memory Address = Rs (base) + Immediate16 (displacement)

• Two variations on base addressing
– If Rs = $zero = 0 then Address = Immediate16 (absolute)
– If Immediate16 = 0 then Address = Rs (register indirect)

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

18

MIPS – Data Transfer Instructions
� lw (Load word)

¾ Instruction Mnemonic :
lw rd, const(rs) ;where rs, rd are registers,

;const is a 16-bit displacement
lw rd, addr ; where addr is the label of the memory

location to be accessed
¾ Meaning :

rd Å Memory[rs + const] ; load word from memory to register

¾ Example :
lw $s1, 100($s2) ; $s1 Å Memory[$s2+100]

lw $s1, NUM1 ; load register $s1 with a word from
memory location NUM1

10

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

19

MIPS – Data Transfer Instructions
� lh (Load halfword with sign extension)
¾ Instruction Mnemonic :

lh rd, const(rs) ;where rs, rd are registers,
;const is a 16-bit displacement

lh rd, addr ; where addr is the label of the memory
location to be accessed

¾ Meaning :
rd Å Memory[rs + const] ; load halfword from memory to register

¾ Example :
lh $s1, 100($s2) ; $s1 Å Memory[$s2+100]
lh $s1, NUM1 ; load register $s1 with a half-word from

memory location NUM1
__

� lhu (Load halfword unsigned – without sign extension)
¾ Instruction Mnemonic :

lhu rd, const(rs) ;where rs, rd are registers,
;const is a 16-bit displacement

lhu rd, addr ; where addr is the label of the memory
location to be accessed

¾ Meaning :
rd Å Memory[rs + const] ; load halfword from memory to register

¾ Example :
lhu $s1, 100($s2) ; $s1 Å Memory[$s2+100]
lhu $s1, NUM1 ; load register $s1 with a half-word from

memory location NUM1

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

20

MIPS – Data Transfer Instructions
� lb (Load byte with sign extension)
¾ Instruction Mnemonic :

lb rd, const(rs) ;where rs, rd are registers,
;const is a 16-bit displacement

lb rd, addr ; where addr is the label of the memory
location to be accessed

¾ Meaning :
rd Å Memory[rs + const] ; load byte from memory to register

¾ Example :
lb $s1, 100($s2) ; $s1 Å Memory[$s2+100]
lb $s1, NUM1 ; load register $s1 with a byte from

memory location NUM1
__

� lbu (Load byte unsigned – without sign extension)
¾ Instruction Mnemonic :

lbu rd, const(rs) ;where rs, rd are registers,
;const is a 16-bit displacement

lbu rd, addr ; where addr is the label of the memory
location to be accessed

¾ Meaning :
rd Å Memory[rs + const] ; load unsigned byte from memory to register

¾ Example :
lbu $s1, 100($s2) ; $s1 Å Memory[$s2+100]
lbu $s1, NUM1 ; load register $s1 with a byte from

memory location NUM1

