ICS 233
Computer Architecture &
Assembly Language

MIPS PROCESSOR
INSTRUCTION SET

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

ICS 233
Computer Architecture &
Assembly Language

Lecture 4

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

Lecture Outline
O MIPS Processor Overview
O MIPS Instruction Formats

O MIPS Addressing Modes

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

The MIPS CPU

» MIPS CPU originated from research project at
Stanford, most successful and flexible CPU design
of the 1990s

» MIPS CPUs were found in SGI graphics
workstations, Windows CE handhelds, CISCO
routers, and Nintendo 64 video game consoles

» MIPS CPUs follow the RISC (Reduced Instruction
Set Computer) design principle:

— limited repertoire of machine instructions
— limited arithmetical complexity supported

— extensive supply of CPU registers
(reduce memory accesses)

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

» MIPS processor consists of

MIPS Processor Architecture

an integer

processing unit (CPU) and a collection of
coprocessors that perform ancillary tasks
or operate on other types of data such as
floating-point numbers.

» Coprocessor _
interrupts, and the virtual memory system

0

handles exceptions,

» Coprocessor 1 is the floating-point unit.

> MIPS is a load-store architecture, which
means that only load and store instructions
access memory.

» Computation instructions (like arithmetic &
logical) operate only on values in registers.

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

32 General

Purpose ---

Registers

Arithmetic & | [

Logic Unit

Overview of the MIPS Processor

4 bytes per word

Up to 232 bytes = 230 words

Memory

EIU $0 Execution & FPU Fo Floating
$1 Integer Unit F1 Point Unit
”””” - $2 (CPU) F2_| (Coproc1) | 32 Floating-
l l | l_ 777777777777 Point
331 - Fal Registers
Integer FP
AL _[mulrdiv Arith-"‘;t ~~~~~ .)
| e 1 1 Floating-Point
A oeEmmiE Arithmetic
AT | [0] v Uni
| Status | Memory Unit
’ Cause | (Coproc 0)
Integer EPC
Multiplier/Divider

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

MIPS CPU Registers

» MIPS CPU contains 32 general-purpose registers
that are numbered $0. .. $31

> Register $0 always contains the hardwired value O.

> Registers also have symbolic names reflecting
their conventional use (Most of these
conventions concern Procedure call and return)

> Register $at ($1) reserved for the assembler,
Registers $k0 ($26) and $k1($27) are reserved for
the operating system. These registers should not
be used by user programs or compilers

> Registers $a0 to $a3 ($4 to $7) are used to pass
the first four arguments to functions (remaining
arguments are passed on the stack).

> Registers $v0 ($2) and $v1($3) are used to return
values from functions

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

MIPS CPU Registers

> Registers $t0 to $t9 ($8 to $15, $24, $25) are
caller-saved registers that are used to hold
temporay quantities that need not be preserved
across calls

» Register $s0 to $s7 ($16 to $23) are callee-saved
registers that hold long-lived values that should be
preserved across calls.

> Register $gp ($28) is a global pointer that points
to the middle of a 64K block of memory in the static
data segment.

> Register $sp ($29) is the stack pointer, which
points to the last location (stack top) on the stack.

> Register $fp ($30) is the frame pointer

> Registers $ra ($31) is the return address register
used to hold the return address from procedure call.

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

MIPS Registers

Register Name Register Usage
Number

$zero $0 Constant 0

$at $1 Reserved for assembler

$v0 $2 Expression evaluation & result of a function
$vl $3 Expression evaluation & result of a function
$a0 $4 Argument 1

$al $5 Argument 2

$a2 $6 Argument 3

$a3 $7 Argument 4

$t0 $8 Temporary (not preserved across call)

$t1 $9 Temporary (not preserved across call)

$t2 $10 Temporary (not preserved across call)

$t3 $11 Temporary (not preserved across call)

$t4 $12 Temporary (not preserved across call)

$t5 $13 Temporary (not preserved across call)

$t6 $14 Temporary (not preserved across call)

$t7 $15 Temporary (not preserved across call) 9

MIPS Registers
Register Name Register Usage
Number

$s0 $16 Saved temporary (preserved across call)
$s1 $17 Saved temporary (preserved across call)
$s2 $18 Saved temporary (preserved across call)
$s3 $19 Saved temporary (preserved across call)
$s4 $20 Saved temporary (preserved across call)
$s5 $21 Saved temporary (preserved across call)
$s6 $22 Saved temporary (preserved across call)
$s7 $23 Saved temporary (preserved across call)
$t8 $24 Temporary (not preserved across call)

$t9 $25 Temporary (not preserved across call)

$kO $26 Reserved for OS Kernel

$k1 $27 Reserved for OS Kernel

$agp $28 Pointer to global area

$sp $29 Stack pointer

$fp $30 Frame pointer

$ra $31 Return address (used by function call) 10

NI

MIPS Register Conventions

* Assembler can refer to registers by name or by number
— Itis easier for you to remember registers by name
— Assembler converts register name to its corresponding number

Name \ Register \ Usage

$zero $0 Always 0 (forced by hardware)

$at $1 Reserved for assembler use

$vO0 — $vi1 $2 — $3 Result values of a function

$a0 — $a3 $4 — $7 Arguments of a function

$10 — $t7 $8 — $15 | Temporary Values

$s0 — $s7 $16 — $23 | Saved registers (preserved across call)

$t8 — $t9 $24 — $25 | More temporaries

$kO — $k1 $26 — $27 | Reserved for OS kernel

$gp $28 Global pointer (points to global data)

$sp $29 Stack pointer (points to top of stack)

$fp $30 Frame pointer (points to stack frame)

$ra $31 Return address (used by jal for function call)
Lecture Slides on Computer 11

Architecture ICS 233 @ DrAR

MIPS Instruction Formats

QAIl instructions are of fixed length, 32
bits long

U Three types of instruction formats :

» R-type or R-format
(for Registers)
> |-type or I-format
(for data transfer)
» J-type or J-format
(for jump instructions)

Lecture Slides on Computer 12
Architecture ICS 233 @ DrAR

Instruction Formats

All instructions are 32-bit wide, Three instruction formats:
Register (R-Type)

— Register-to-register instructions

— Op: operation code specifies the format of the instruction

Op® Rs® Rt° Rd® shamt® functé

Immediate (I-Type)
— 16-bit immediate constant/ offset is part of the instruction

Op® Rs® Rt® immediate!®

Jump (J-Type)
— Used by jump instructions

Op® immediate?®
Lecture Slides on Computer 13
Architecture ICS 233 @ DrAR
MIPS Instruction Formats
» R-type or R-format
op rs rt rd sa funct
6 bits 5bits 5 bits 5 bits 5 bits 6 bits
op : Basic operation of the instruction, called opcode
rs : The first register source operand
rt : The second register source operand
rd : The register destination operand
sa : Shift amount (used for shift instructions, otherwise 0)
funct : Function — this field selects the specific variant of the
operation in the op field, sometimes called function code
Lecture Slides on Computer 14

Architecture ICS 233 @ DrAR

MIPS Instruction Formats
» |-type or I-format

op rs rt address
6 bits 5 bits 5 bits 16 bits
op : Basic operation of the instruction, called opcode
rs . source register
rt : destination register which receives the result

Address : 16-bit address or immediate constant

Lecture Slides on Computer 15
Architecture ICS 233 @ DrAR
MIPS Instruction Formats
» J-type or J-format
op address
6 bits 26 bits
op : Basic operation of the instruction, called opcode
Address : 26-bit address
Lecture Slides on Computer 16

Architecture ICS 233 @ DrAR

MIPS Addressing Modes
U There are five addressing modes :

» Register addressing
where the operand is a register

» Base or displacement addressing

where the operand is at the memory location whose address
is the sum of a register and a constant in the instruction

» Immediate Addressing
where the operand is a constant within the instruction itself

» PC-relative addressing

where the address is the sum of the PC and a constant in the
instruction

» Pseudodirect addressing

where the jump address is the 26 bhits of the instruction
concatenated with the upper bits of the PC.

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

17

Addressing Modes

* Where are the operands?
* How memory addresses are computed?

Immediate Addressing

| Op¢ | Rs® | Rt® immediate'® |——> Operand is a constant
Register Addressing
| opt | Rss | Res | Ras | sas | functs Operand is in a register

I Register

Base or Displacement Addressing Operand is in memory (load/store)

Rs® | Rt®

Op® immediate?6 H

@—» Byte |Ha|fword| Word

Register = Base address l—f

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

18

Branch / Jump Addressing Modes

Used for branching (beq, bne, ...

)

PC-Relative Addressing

| Op¢ immediate?6 H

Rs® | Rt®

@-» Word = Target Instruction

| pCeo |oo| I \
T

Target Instruction Address |
PC = PC + 4 x (1 + immediate?6)

PC3 + immediatel® + 1 |00|

Used by jump instruction

Pseudo-direct Addressing
| Op¢ immediate?® H
Word = Target Instruction
[c: P b \
I
Target Instruction Address |PC4| immediate2s |oo|

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

19

10

