









|                          |                         |                                                 | ious Gen                    | erations of                             | of IA-32                                 | Processe                          | ors                               |
|--------------------------|-------------------------|-------------------------------------------------|-----------------------------|-----------------------------------------|------------------------------------------|-----------------------------------|-----------------------------------|
| Intel Processor          | Date<br>Intro-<br>duced | Max. Clock<br>Frequency<br>at Intro-<br>duction | Transis<br>-tors<br>per Die | Register<br>Sizes <sup>1</sup>          | Ext.<br>Data<br>Bus<br>Size <sup>2</sup> | Max.<br>Extern.<br>Addr.<br>Space | Caches                            |
| 8086                     | 1978                    | 8 MHz                                           | 29 K                        | 16 GP                                   | 16                                       | 1 MB                              | None                              |
| Intel 286                | 1982                    | 12.5 MHz                                        | 134 K                       | 16 GP                                   | 16                                       | 16 MB                             | Note 3                            |
| Intel386 DX Processor    | 1985                    | 20 MHz                                          | 275 K                       | 32 GP                                   | 32                                       | 4 GB                              | Note 3                            |
| Intel486 DX Processor    | 1989                    | 25 MHz                                          | 1.2 M                       | 32 GP<br>80 FPU                         | 32                                       | 4 GB                              | L1: 8KB                           |
| Pentium Processor        | 1993                    | 60 MHz                                          | 3.1 M                       | 32 GP<br>80 FPU                         | 64                                       | 4 GB                              | L1:16KB                           |
| Pentium Pro Processor    | 1995                    | 200 MHz                                         | 5.5 M                       | 32 GP<br>80 FPU                         | 64                                       | 64 GB                             | L1: 16KB<br>L2: 256KB<br>or 512KB |
| Pentium II Processor     | 1997                    | 266 MHz                                         | 7 M                         | 32 GP<br>80 FPU<br>64 MMX               | 64                                       | 64 GB                             | L1: 32KB<br>L2: 256KB<br>or 512KB |
| Pentium III Processor    | 1999                    | 500 MHz                                         | 8.2 M                       | 32 GP<br>80 FPU<br>64 MMX<br>128<br>XMM | 64                                       | 64 GB                             | L1: 32KB<br>L2: 512KB             |
| NOTES:                   |                         |                                                 |                             |                                         |                                          |                                   |                                   |
| 1. The register size and |                         | ita bus size are<br>as an 8- or a '             |                             |                                         |                                          |                                   |                                   |

| Intel<br>Processo                                           | r Intro-<br>duced                          | Micro-<br>Architecture                                                                           | Clock<br>Frequency<br>at Intro-<br>duction       | Transis-<br>tors Per<br>Die              | Register<br>Sizes <sup>1</sup>           | System<br>Bus<br>Band-<br>width | Max.<br>Extern.<br>Addr.<br>Space | On-Die<br>Caches <sup>2</sup>                                   |
|-------------------------------------------------------------|--------------------------------------------|--------------------------------------------------------------------------------------------------|--------------------------------------------------|------------------------------------------|------------------------------------------|---------------------------------|-----------------------------------|-----------------------------------------------------------------|
| Pentium II<br>and<br>Pentium II<br>Xeon<br>Processor        |                                            | P6                                                                                               | 700 MHz                                          | 28 M                                     | GP: 32<br>FPU: 80<br>MMX: 64<br>XMM: 128 | Up to<br>1.06<br>GB/s           | 64 GB                             | 32-KB L1;<br>256-KB L2                                          |
| Pentium 4<br>Processor                                      | 2000                                       | Intel NetBurst<br>Micro-<br>architecture                                                         | 1.50 GHz                                         | 42 M                                     | GP: 32<br>FPU: 80<br>MMX: 64<br>XMM: 128 | 3.2<br>GB/s                     | 64 GB                             | 12K µop<br>Execution<br>Trace<br>Cache:<br>8KB L1;<br>256-KB L2 |
| Intel Xeon<br>Processor                                     | 2001                                       | Intel NetBurst<br>Micro-<br>architecture                                                         | 1.70 GHz                                         | 42 M                                     | GP: 32<br>FPU: 80<br>MMX: 64<br>XMM: 128 | 3.2<br>GB/s                     | 64 GB                             | 12K µop<br>Trace<br>Cache;<br>8-KB L1;<br>256-KB L2             |
| Intel Xeon<br>Processor                                     | 2002                                       | Intel NetBurst<br>Micro-<br>architecture;<br>Hyper-<br>Threading<br>Technology                   | 2.20 GHz                                         | 55 M                                     | GP: 32<br>FPU: 80<br>MMX: 64<br>XMM: 128 | 3.2<br>GB/s                     | 64 GB                             | 12K µop<br>Trace<br>Cache;<br>8-KB L1;<br>512-KB L2             |
| Intel <sup>®</sup><br>Xeon™<br>Processor<br>MP <sup>4</sup> | 2002                                       | Intel NetBurst<br>Micro-<br>architecture;<br>Hyper-<br>Threading<br>Technology                   | 1.60 GHz                                         | 108 M                                    | GP: 32<br>FPU: 80<br>MMX: 64<br>XMM: 128 | 3.2<br>GB/s                     | 64 GB                             | 12K µop<br>Trace<br>Cache;<br>8-KB L1;<br>256-KB L2;<br>1-MB L3 |
| 2. First lev<br>3. Intel Pe<br>process                      | I cache is o<br>tium III and<br>technology | d external data i<br>denoted using th<br>d Pentium III Xer<br>were introduce<br>chnology is impl | e abbreviatio<br>on processors<br>d in October ' | ,<br>n L1, 2nd k<br>, with adva<br>1999. | evel cache is<br>inced transfe           |                                 |                                   | n 0.18 micror                                                   |

| <ul> <li>Implementation Technology Trends</li> <li>Four implementation technologies of interest</li> </ul>                                                                                                                                                                                             |   |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| <ul> <li>Integrated circuit logic</li> <li>Transistor density: increases by ~35% per year</li> <li>Die size: increases by ~10-20% per year</li> <li>The combined effect is a growth rate in transistor count on a chip of about ~55% per year</li> </ul>                                               |   |
| <ul> <li>Semiconductor DRAM</li> <li>Capacity increases by ~40-60% per year</li> <li>Cycle time has not decreased as much: ~33% over 10 years</li> <li>Bandwidth has increased: about ~66% more over 10 years</li> <li>Also, changes to the interface have helped further improve bandwidth</li> </ul> |   |
| <ul> <li>Magnetic disk technology</li> <li>Recently, capacity improving by ~100% every year (quadrupling in two years)</li> <li>Access time has improved by one-third in 10 years</li> </ul>                                                                                                           |   |
| <ul> <li>Network technology</li> <li>More improvements in bandwidth, less in latency</li> <li>Bandwidth doubling every year in US</li> <li>Gigabit Ethernet available</li> </ul>                                                                                                                       |   |
| Lecture Slides on Computer Arch<br>& Assembly Lang ICS 233 @ Dr A                                                                                                                                                                                                                                      | 8 |





| Where Has This Performance Improvement<br>Come From?                |    |
|---------------------------------------------------------------------|----|
| Technology                                                          |    |
| <ul> <li>More transistors per chip</li> </ul>                       |    |
| – Faster logic                                                      |    |
| Machine Organization/Implementation                                 |    |
| – Deeper pipelines                                                  |    |
| <ul> <li>More instructions executed in parallel</li> </ul>          |    |
| Instruction Set Architecture                                        |    |
| <ul> <li>Reduced Instruction Set Computers (RISC)</li> </ul>        |    |
| – Multimedia extensions                                             |    |
| – Explicit parallelism                                              |    |
| Compiler technology                                                 |    |
| <ul> <li>Finding more parallelism in code</li> </ul>                |    |
| - Greater levels of optimization                                    |    |
| Lecture Slides on Computer Arch 1<br>& Assembly Lang ICS 233 @ Dr A | 11 |











## Inside the Pentium 4 Processor Chip



Lecture Slides on Computer Arch & Assembly Lang ICS 233 @ Dr A R Naseer



Lecture Slides on Computer Arch & Assembly Lang ICS 233 @ Dr A 18

17



















| Datapath Components                                                                    |    |
|----------------------------------------------------------------------------------------|----|
| Program Counter (PC)                                                                   |    |
| <ul> <li>Contains address of instruction to be fetched</li> </ul>                      |    |
| <ul> <li>Next Program Counter: computes address of next<br/>instruction</li> </ul>     |    |
| Instruction and Data Caches                                                            |    |
| <ul> <li>Small and fast memory containing most recent<br/>instructions/data</li> </ul> |    |
| Register File                                                                          |    |
| <ul> <li>General-purpose registers used for intermediate<br/>computations</li> </ul>   |    |
| <ul> <li>ALU = Arithmetic and Logic Unit</li> </ul>                                    |    |
| <ul> <li>Executes arithmetic and logic instructions</li> </ul>                         |    |
| • Buses                                                                                |    |
| <ul> <li>Used to wire and interconnect the various components</li> </ul>               |    |
| Lecture Slides on Computer Arch<br>& Assembly Lang ICS 233 @ Dr A                      | 28 |



























| MARS Assembler and Simulator                                                 |                      |      |              |           |                          |  |  |
|------------------------------------------------------------------------------|----------------------|------|--------------|-----------|--------------------------|--|--|
| ΤοοΙ                                                                         |                      |      |              |           |                          |  |  |
| C:\Documents and Settings\Muhamed Mudawar\My Documents\ICS 23                | 3\Tools\MARS\Fibonac | ci.a | m - MAR      | \$ 3.2.1  | _ 🗆 🔀                    |  |  |
| <u>File Edit Run Settings Tools H</u> elp                                    |                      |      |              |           |                          |  |  |
| ► <mark>&gt;</mark> <b>&gt; &gt; &gt; &gt; &gt; &gt; &gt; &gt; &gt; &gt;</b> |                      |      |              |           |                          |  |  |
| Edit Execute                                                                 |                      |      | Regis        | ters Copi | roc 1 Coproc 0           |  |  |
| 1 # Compute first twelve Fibonacci numbers and put in array, th              | en print             |      | Name         | Number    | Value                    |  |  |
| 2 .data                                                                      | <b>*</b>             |      | \$zero       | 0         | 0x00000000 🔺             |  |  |
| 3 fibs: .word 0 : 12 # "array" of 12 words to contain                        | fib values           |      | \$at         | 1         | 0x00000000               |  |  |
| 4 size: .word 12 # size of "array"                                           |                      | =    | \$v0         | 2         | 0x00000000               |  |  |
| 5 .text                                                                      |                      |      | \$v1         | 3         | 0x00000000               |  |  |
| 6 la \$t0, fibs # load address of array                                      |                      | H    | \$a0         | 4         | 0x00000000               |  |  |
| 7 la \$t5, size # load address of size variable                              |                      |      | \$a1         | 5         | 0x00000000               |  |  |
| 8 lw \$t5, 0(\$t5) # load array size                                         |                      |      | \$a2         | 6         | 0x00000000               |  |  |
| 9 li \$t2, l # l is first and second Fib. numb                               | er                   |      | \$a3         | 7         | 0x00000000               |  |  |
| 10 add.d \$f0, \$f2, \$f4                                                    |                      |      | \$t0<br>\$t1 | 8         | 0x00000000 =             |  |  |
| 11 sw \$t2, 0(\$t0) # F[0] = 1                                               |                      |      | \$11<br>\$t2 | 9         | 0x00000000<br>0x00000000 |  |  |
| 12 sw \$t2, 4(\$t0) # F[1] = F[0] = 1                                        |                      |      | \$12<br>\$t3 | 10        | 0x00000000               |  |  |
| 13 addi \$t1, \$t5, -2 # Counter for loop, will execute                      | (size-2) times       |      | \$t4         | 12        | 0x00000000               |  |  |
| 14 loop: lw \$t3, 0(\$t0) # Get value from array F[n]                        |                      |      | \$t5         | 13        | 0x00000000               |  |  |
| 15 1w \$t4, 4(\$t0) # Get value from array F[n+1]                            |                      |      | \$16         | 14        | 0x00000000               |  |  |
| 16 add \$t2, \$t3, \$t4 # \$t2 = F[n] + F[n+1]                               |                      | •    | \$t7         | 15        | 0x00000000               |  |  |
|                                                                              | )                    |      | \$s0         | 16        | 0x00000000               |  |  |
| Line: 1 Column: 1 🗹 Show Line Numbers                                        |                      |      | \$s1         | 17        | 0x00000000               |  |  |
|                                                                              |                      |      | \$s2         | 18        | 0x00000000               |  |  |
| Mars Messages Run I/O                                                        |                      |      | \$s3         | 19        | 0x00000000               |  |  |
|                                                                              |                      | -    | \$s4         | 20        | 0x0000000                |  |  |
|                                                                              |                      |      | \$s5         | 21        | 0x00000000               |  |  |
| Clear                                                                        |                      |      | \$s6         | 22        | 0x00000000               |  |  |
|                                                                              |                      |      | \$s7         | 23        | 0x00000000               |  |  |
| Lecture Slides on C                                                          | computer Arch        |      |              |           | 42                       |  |  |
| & Assembly Lang IC                                                           | S 233 @ Dr A         |      |              |           |                          |  |  |
|                                                                              |                      |      |              |           |                          |  |  |



