ICS 233
Computer Architecture &
Assembly Language

MIPS PROCESSOR
INSTRUCTION SET

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

ICS 233
Computer Architecture &
Assembly Language

Lecture 11

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

Lecture Outline

J MIPS Procedure Call Instructions
J MIPS Procedure Return Instructions

Parameter Passing

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

Instructions for Procedures

* JAL (Jump-and-Link) used as the call instruction
— Save return address in $ra = PC+4 and jump to procedure
— Register $ra = $31 is used by JAL as the return address

* JR (Jump Register) used to return from a procedure
— Jump to instruction whose address is in register Rs (PC = Rs)

* JALR (Jump-and-Link Register)
— Save return address in Rd = PC+4, and
— Jump to procedure whose address is in register Rs (PC = Rs)
— Can be used to call methods (addresses known only at runtime)

Instruction \ Meaning \ Format
jal label $31=PC+4, jump | op® =3 imm?26
jr Rs PC =Rs op®=0]| rsb 0 0 0

jalr Rd, Rs Rd=PC+4, op®t=0| rs® 0 rd> | 0
PC:Rs’ .

MIPS — Procedure Call Instruction
Ujal (jump and link)

> Instruction Mnemonic :

jal addr ;where addr is the label of the
target location

» Meaning :

Jump to the location addr and store the address of
the next instruction in $ra (i.e., $ra = PC +4 &
jump to target address addr)

» Example :
jal loop ; $ra=PC +4; goto location having the label loop
(used for procedure call)

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

MIPS — Procedure Return Instruction
Qjr (jump to address in register)

» Instruction Mnemonic :

jr rs ;where rs specifies the target
address for jump

» Meaning :
jump to target address specified in register rs

> Example :
jr $ra ; goto $ra (used for procedure return)

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

Qjalr

MIPS — Procedure Call Instruction
(jump and link register)

> Instruction Mnemonic :

jalr

rd, rs

» Meaning :

Jump to the location in rs, and store the
address of the next instruction in rd

(used for procedure call)

» Example :

jalr

$ra, $t3

;where register rs contains
the address of the target location
and return address is stored in rd

; $ra = PC + 4; goto to target
address in register $t3

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

Procedures

» Consider the following swap procedure (written in C)

$t0
$to
$tl
$t2
$t2
$tl

,$al,2
,$t0,%a0
,0($t0)
,4($t0)
,0($t0)
,4($t0)

$t0=k*4
$t0=v+k*4
$t1=v[k]
$t2=v[k+1]
vIk]=$t2
vlk+1]=%$t1

void swap(int v[], int k)
{ int temp;
temp = v[k]
VK] = v[k+1];
v[k+1] = temp;
}
» Translate this procedure to MIPS assembly language
swap:
Parameters: sl
$a0 = Address of v[] add
$al =k, and Iw
Return address is in $ra Iw
S\
Sw
jr

$ra

#
#
#
#
#
#
#

return

Call / Return Sequence
» Suppose we call procedure swap as: swap(a,10)
— Pass address of array a and 10 as arguments
— Call the procedure swap saving return address in

$31 = %ra
— Execute procedure swap

— Return control to the point of origin (return address)

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

. ' swap:

Registers - sIl $t0,%al,2
_____________ Caller /add $t0,$t0,$a0

$a0=%$4 | addr a la %$a0, a Iw $t1,0($t0)

$a1=$5 10 li $al, 10 Iw $t2,4($t0)

jal swap sw $t2,0($t0)

i#return here L sw $tl1,4($t0)

$ra=$31 [ret addr| | - _jr Sra

Lecture Slides on Computer 9

Architecture ICS 233 @ DrAR

Details of JAL and JR

Address Instructions
00400020
00400024
00400028
0040002C

$1, 0x1001
$4, $1, O
$5, $0, 10
0x10000F

Tui
ori
ori
jal

- ~

“0040003¢ sI1°$8, $5, 2

<00400030-_ . . . el
L

Assembly Language

la $a0, a Pseudo-Direct

Addressing
ori $al,%$0,10 pc - jum26<<2
jal swap

0x10000f << 2
= 0x0040003C

swap- $31 | 0x00400030

sll $t0,%al,2

return here

00400040 add $8, $8, $4 add $t0,$t0,$a0 | Register $31
00400044 Iw $9,°0($8) Iw $tl1,0($t0) is the return
00400048 Iw $10,4¢$8) Iw $t2,4($to) | addressregister
0040004C sw $10,0($8) sw $t2,0($t0)
00400050 sw $9, 4($8) sw $t1,4($t0)
00400054 jr $31 jr $ra

Lecture Slides on Computer 10

Architecture ICS 233 @ DrAR

Parameter Passing

Parameter passing in assembly language is different
— More complicated than that used in a high-level language

In assembly language
— Place all required parameters in an accessible storage area
— Then call the procedure

Two types of storage areas used
— Registers: general-purpose registers are used (register method)
— Memory: stack is used (stack method)

Two common mechanisms of parameter passing
— Pass-by-value: parameter value is passed
— Pass-by-reference: address of parameter is passed

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

11

Parameter Passing

By convention, registers are used for parameter passing
— $a0 = $4 .. $a3 = $7 are used for passing arguments
— $v0 = $2 .. $vl1 = $3 are used for result values

Additional arguments/results can be placed on the stack

Runtime stack is also needed to ...

— Store variables / data structures when they cannot fit in
registers

— Save and restore registers across procedure calls
— Implement recursion

Runtime stack is implemented via software convention
— The stack pointer $sp = $29 (points to top of stack)
— The frame pointer $fp = $30 (points to a procedure frame)

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

12

Stack Frame

Stack frame is the segment of the stack containing ...
— Saved arguments, registers, and local data structures (if any)

Called also the activation frame or activation record

Frames are pushed and popped by adjusting ...
— Stack pointer $sp = $29 and Frame pointer $fp = R30

— Decrement $sp to allocate stack frame, and increment to free

- $fp |
Stack Stack Stack s arguments
$fp — - $fp—>
Frame f() | 5 Frame f() Frame f() saved $ra
$sp > 2 $fp > g $sp—> saved
= N registers
! Frame g() | £ T \ g
$sp =
o \ local data
stack grows allocate free stack \ structures
downwards stack frame frame $ or variables
Sp—>
13

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

Preserving Registers

* Need to preserve registers across a procedure call

— Stack can be used to preserve register values

* Which registers should be saved?

— Registers modified by the called procedure, and

— Still used by the calling procedure

* Who should preserve the registers?
— Called Procedure: preferred method for modular code
» Register preservation is done inside the called procedure
— By convention, registers $s0, $s1, ..., $s7 should be preserved

— Also, registers $sp, $fp, and $ra should also be preserved

Lecture Slides on Computer 14

Architecture ICS 233 @ DrAR

Selection Sort

Array Array Array Array
first = first = first = first =
max max value max last value
last —|
last —| last last value last max value max value
Unaﬂrd Locate Swap Max Decrement
¢ Examp € Max with Last Last
first—=> 3 3 | first—> 3 3 |fist—> 3 2 |rfiest—> 2 1
1 1 1 1 1 1 | last—= 1 2
max—> 5 4 |max— 4 2 | last—= 2 3 3 3
2 2 | last—> 2 4 4 4 4 4
last—+ 4 5 5 5 5 5 5 5
Lecture Slides on Computer 15

Architecture ICS 233 @ DrAR

Selection Sort Procedure

Objective: Sort array using selection sort algorithm

Input: $a0 = pointer to first, $al = pointer to last
Output: array is sorted in place

HAHAH AR AR R R AR AR

sort: addiu$sp, $sp, -4 # allocate one word on stack
S $ra, 0($sp) save return address on stack
top: jal max call max procedure
Iw $t0, 0(%al) $t0 = last value
sw $t0, 0($v0) swap last and max values
sw $vi, 0($al)
addiu$al, $al, -4 # decrement pointer to last
bne $a0, $al, top # more elements to sort
Iw $ra, 0($sp) # pop return address
addiu$sp, $sp, 4
jr $ra # return to caller

H OH OH OH

Lecture Slides on Computer 16
Architecture ICS 233 @ DrAR

Max Procedure

Objective: Find the address and value of maximum element
Input: $a0 = pointer to first, $al = pointer to last
Output: $vO = pointer to max, $vl = value of max
HAHH AR AR R R A R R R
max: move $vO, $al # max pointer = first pointer
Tw $vl, 0($v0) # $vl = first value
beq $a0, $al, ret # if (first == last) return
move $tO0, $a0 $t0 = array pointer
loop: addi $t0, $t0, 4 # point to next array element
1w $t1, 0($t0) # $tl = value of A[i]
#
#

1+

ble $tl1, $v1, skip if (A[i] <= max) then skip
move $vO0, $tO found new maximum
move $v1, $tl
skip: bne $t0, $al, loop # loop back if more elements
ret: jr $ra

Lecture Slides on Computer 17

Architecture ICS 233 @ DrAR

Example of a Recursive Procedure

int fact(int n) { if (n<2) return 1; else return (n*fact(n-1)); }

free stack frame
return to caller

main: lw $a0, N .data
jal fact N: .word 3
sw $v0, FAC FAC: .space 4
fact: slti $t0,%a0,2 # (n<2)?
beq $t0,%$0,else # if false branch to else
] $v0,1 # $v0 = 1
Jjr $ra # return to caller
else: addiu $sp,$sp,-8 # allocate 2 words on stack
sw $a0,4($sp) # save argument n
sw $ra,0($sp) # save return address
addiu $a0,%a0,-1 # argument = n-1
jal fact # call fact(n-1)
Iw $a0,4($sp) # restore argument
Iw $ra,0($sp) # restore return address
mul $v0,%$a0,$v0 # $v0 = n*fact(n-1)
#
#

addi $sp,$sp,8
jr $ra

18

Reading Assignments

Chapter 2 : Instructions : Language of the
Computer

Sections 2.1 to 2.16
UFrom CD
Appendix A: Assemblers, Linkers &

SPIM Simulator
Sections A.1to A.12

Lecture Slides on Computer
Architecture ICS 233 @ DrAR

19

10

