
1

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

1

MIPSMIPS PROCESSORPROCESSOR
INSTRUCTION SETINSTRUCTION SET

ICS 233ICS 233
Computer Architecture & Computer Architecture &

Assembly LanguageAssembly Language

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

2

ICS 233ICS 233
Computer Architecture & Computer Architecture &

Assembly LanguageAssembly Language

Lecture 11Lecture 11

2

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

3

Lecture Outline

MIPS Procedure Call Instructions

MIPS Procedure Return Instructions

Parameter Passing

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

4

Instructions for Procedures

90
8000rs5op6 = 0PC = Rsjr Rs

rd50rs5op6 = 0Rd=PC+4,
PC=Rs

jalr Rd, Rs

imm26op6 = 3$31=PC+4, jumpjal label
FormatMeaningInstruction

• JAL (Jump-and-Link) used as the call instruction
– Save return address in $ra = PC+4 and jump to procedure
– Register $ra = $31 is used by JAL as the return address

• JR (Jump Register) used to return from a procedure
– Jump to instruction whose address is in register Rs (PC = Rs)

• JALR (Jump-and-Link Register)
– Save return address in Rd = PC+4, and
– Jump to procedure whose address is in register Rs (PC = Rs)
– Can be used to call methods (addresses known only at runtime)

3

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

5

MIPS – Procedure Call Instruction
jal (jump and link)

Instruction Mnemonic :
jal addr ;where addr is the label of the

target location

Meaning :
Jump to the location addr and store the address of
the next instruction in $ra (i.e., $ra = PC +4 &
jump to target address addr)

Example :
jal loop ; $ra = PC + 4; goto location having the label loop

(used for procedure call)

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

6

MIPS – Procedure Return Instruction

jr (jump to address in register)

Instruction Mnemonic :
jr rs ;where rs specifies the target

address for jump

Meaning :
jump to target address specified in register rs

Example :
jr $ra ; goto $ra (used for procedure return)

4

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

7

MIPS – Procedure Call Instruction
jalr (jump and link register)

Instruction Mnemonic :
jalr rd, rs ;where register rs contains

the address of the target location
and return address is stored in rd

Meaning :
Jump to the location in rs, and store the
address of the next instruction in rd

(used for procedure call)
Example :
jalr $ra, $t3 ; $ra = PC + 4; goto to target

address in register $t3

Parameters:
$a0 = Address of v[]
$a1 = k, and
Return address is in $ra

• Consider the following swap procedure (written in C)

void swap(int v[], int k)
{ int temp;

temp = v[k]
v[k] = v[k+1];
v[k+1] = temp;

}

swap:
sll $t0,$a1,2 # $t0=k*4
add $t0,$t0,$a0 # $t0=v+k*4
lw $t1,0($t0) # $t1=v[k]
lw $t2,4($t0) # $t2=v[k+1]
sw $t2,0($t0) # v[k]=$t2
sw $t1,4($t0) # v[k+1]=$t1
jr $ra # return

Procedures

Translate this procedure to MIPS assembly language

5

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

9

Call / Return Sequence
• Suppose we call procedure swap as: swap(a,10)

– Pass address of array a and 10 as arguments
– Call the procedure swap saving return address in

$31 = $ra
– Execute procedure swap
– Return control to the point of origin (return address)

swap:
sll $t0,$a1,2
add $t0,$t0,$a0
lw $t1,0($t0)
lw $t2,4($t0)
sw $t2,0($t0)
sw $t1,4($t0)
jr $ra

la $a0, a
li $a1, 10
jal swap

return here
. . .

Caller
addr a$a0=$4

10$a1=$5

ret addr$ra=$31

. . .

. . .

Registers

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

10

Register $31
is the return

address register

Details of JAL and JR
Address Instructions Assembly Language

00400020 lui $1, 0x1001 la $a0, a
00400024 ori $4, $1, 0
00400028 ori $5, $0, 10 ori $a1,$0,10
0040002C jal 0x10000f jal swap
00400030 . . . # return here

swap:
0040003C sll $8, $5, 2 sll $t0,$a1,2
00400040 add $8, $8, $4 add $t0,$t0,$a0
00400044 lw $9, 0($8) lw $t1,0($t0)
00400048 lw $10,4($8) lw $t2,4($t0)
0040004C sw $10,0($8) sw $t2,0($t0)
00400050 sw $9, 4($8) sw $t1,4($t0)
00400054 jr $31 jr $ra

Pseudo-Direct
Addressing

PC = imm26<<2
0x10000f << 2
= 0x0040003C

0x00400030$31

6

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

11

Parameter Passing
• Parameter passing in assembly language is different

– More complicated than that used in a high-level language

• In assembly language
– Place all required parameters in an accessible storage area
– Then call the procedure

• Two types of storage areas used
– Registers: general-purpose registers are used (register method)
– Memory: stack is used (stack method)

• Two common mechanisms of parameter passing
– Pass-by-value: parameter value is passed
– Pass-by-reference: address of parameter is passed

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

12

Parameter Passing
• By convention, registers are used for parameter passing

– $a0 = $4 .. $a3 = $7 are used for passing arguments
– $v0 = $2 .. $v1 = $3 are used for result values

• Additional arguments/results can be placed on the stack

• Runtime stack is also needed to …
– Store variables / data structures when they cannot fit in

registers
– Save and restore registers across procedure calls
– Implement recursion

• Runtime stack is implemented via software convention
– The stack pointer $sp = $29 (points to top of stack)
– The frame pointer $fp = $30 (points to a procedure frame)

7

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

13

Stack Frame
• Stack frame is the segment of the stack containing …

– Saved arguments, registers, and local data structures (if any)

• Called also the activation frame or activation record

• Frames are pushed and popped by adjusting …
– Stack pointer $sp = $29 and Frame pointer $fp = R30
– Decrement $sp to allocate stack frame, and increment to free

Frame f()

Stack

↓

stack grows
downwards

$fp

$sp
Frame f()

Stack

allocate
stack frame

Frame g()
$fp

$sp

fc
al

ls
 g

g
re

tu
rn

s
Frame f()

Stack

↑

free stack
frame

$fp

$sp

$fp
arguments

saved $ra
saved

registers

local data
structures

or variables
$sp

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

14

Preserving Registers
• Need to preserve registers across a procedure call

– Stack can be used to preserve register values

• Which registers should be saved?

– Registers modified by the called procedure, and

– Still used by the calling procedure

• Who should preserve the registers?

– Called Procedure: preferred method for modular code

• Register preservation is done inside the called procedure

– By convention, registers $s0, $s1, …, $s7 should be preserved

– Also, registers $sp, $fp, and $ra should also be preserved

8

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

15

Selection Sort

• Example

first

last

Array

Unsorted

first

last

Array

max value

last value

max

Locate
Max

first

last

Array

max value

last valuemax

Swap Max
with Last

first

last

Array

max value

Decrement
Last

3
1
5
2
4last

max

first 3
1
4
2
5

last

max

first3
1
4
2
5

3
1
2
4
5

3
1
2
4
5

last

firstmax 2
1
3
4
5

2
1
3
4
5

last

firstmax 1
2
3
4
5

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

16

Selection Sort Procedure
Objective: Sort array using selection sort algorithm
Input: $a0 = pointer to first, $a1 = pointer to last
Output: array is sorted in place
##

sort: addiu $sp, $sp, -4 # allocate one word on stack
sw $ra, 0($sp) # save return address on stack

top: jal max # call max procedure
lw $t0, 0($a1) # $t0 = last value
sw $t0, 0($v0) # swap last and max values
sw $v1, 0($a1)
addiu $a1, $a1, -4 # decrement pointer to last
bne $a0, $a1, top # more elements to sort
lw $ra, 0($sp) # pop return address
addiu $sp, $sp, 4
jr $ra # return to caller

9

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

17

Max Procedure
Objective: Find the address and value of maximum element
Input: $a0 = pointer to first, $a1 = pointer to last
Output: $v0 = pointer to max, $v1 = value of max
##
max: move $v0, $a0 # max pointer = first pointer

lw $v1, 0($v0) # $v1 = first value
beq $a0, $a1, ret # if (first == last) return
move $t0, $a0 # $t0 = array pointer

loop: addi $t0, $t0, 4 # point to next array element
lw $t1, 0($t0) # $t1 = value of A[i]
ble $t1, $v1, skip # if (A[i] <= max) then skip
move $v0, $t0 # found new maximum
move $v1, $t1

skip: bne $t0, $a1, loop # loop back if more elements
ret: jr $ra

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

18

Example of a Recursive Procedure

fact: slti $t0,$a0,2 # (n<2)?
beq $t0,$0,else # if false branch to else
li $v0,1 # $v0 = 1
jr $ra # return to caller

else: addiu $sp,$sp,-8 # allocate 2 words on stack
sw $a0,4($sp) # save argument n
sw $ra,0($sp) # save return address
addiu $a0,$a0,-1 # argument = n-1
jal fact # call fact(n-1)
lw $a0,4($sp) # restore argument
lw $ra,0($sp) # restore return address
mul $v0,$a0,$v0 # $v0 = n*fact(n-1)
addi $sp,$sp,8 # free stack frame
jr $ra # return to caller

int fact(int n) { if (n<2) return 1; else return (n*fact(n-1)); }

main: lw $a0, N
jal fact
sw $v0, FAC

.data
N: .word 3
FAC: .space 4

10

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

19

Reading Assignments

Chapter 2 : Instructions : Language of the
Computer
Sections 2.1 to 2.16

From CD

Appendix A : Assemblers, Linkers &
SPIM Simulator
Sections A.1 to A.12

