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Instructions for Procedures

90
8000rs5op6 = 0PC = Rsjr Rs

rd50rs5op6 = 0Rd=PC+4, 
PC=Rs

jalr Rd, Rs

imm26op6 = 3$31=PC+4, jumpjal label
FormatMeaningInstruction

• JAL (Jump-and-Link) used as the call instruction
– Save return address in $ra = PC+4 and jump to procedure
– Register $ra = $31 is used by JAL as the return address

• JR (Jump Register) used to return from a procedure
– Jump to instruction whose address is in register Rs (PC = Rs)

• JALR (Jump-and-Link Register)
– Save return address in Rd = PC+4, and
– Jump to procedure whose address is in register Rs (PC = Rs)
– Can be used to call methods (addresses known only at runtime)
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MIPS – Procedure Call Instruction
jal (jump and link)

Instruction Mnemonic :  
jal addr ;where addr is the  label of  the 

target location

Meaning  :
Jump to the location addr and store the address of 
the next  instruction in $ra (i.e.,  $ra = PC +4 &  
jump to  target address addr) 

Example : 
jal loop ; $ra = PC + 4;  goto location having the label loop

(used for procedure call)
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MIPS – Procedure Return Instruction

jr (jump to address in register)

Instruction Mnemonic :  
jr rs ;where rs specifies the target 

address for jump

Meaning  :
jump to  target address  specified in register  rs

Example : 
jr $ra ; goto $ra (used for  procedure return) 
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MIPS – Procedure Call Instruction
jalr (jump and link register)

Instruction Mnemonic :  
jalr rd, rs ;where register rs contains 

the address of  the target location
and return address is stored in rd

Meaning  :
Jump to the location in rs, and store the 
address of the next instruction in rd

(used for procedure call)
Example : 
jalr $ra, $t3 ; $ra = PC + 4;  goto to target  

address in register $t3

Parameters:
$a0 = Address of v[]
$a1 = k, and 
Return address is in $ra

• Consider the following swap procedure (written in C)

void swap(int v[], int k)
{  int temp;

temp = v[k]
v[k] = v[k+1];
v[k+1] = temp;

}

swap:
sll $t0,$a1,2 # $t0=k*4
add $t0,$t0,$a0 # $t0=v+k*4
lw  $t1,0($t0) # $t1=v[k]
lw  $t2,4($t0) # $t2=v[k+1]
sw  $t2,0($t0) # v[k]=$t2
sw  $t1,4($t0) # v[k+1]=$t1
jr  $ra # return

Procedures

Translate this procedure to MIPS assembly language
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Call / Return Sequence
• Suppose we call procedure swap as: swap(a,10)

– Pass address of array a and 10 as arguments
– Call the procedure swap saving return address in 

$31 = $ra
– Execute procedure swap
– Return control to the point of origin (return address)

swap:
sll $t0,$a1,2
add $t0,$t0,$a0
lw  $t1,0($t0)
lw  $t2,4($t0)
sw  $t2,0($t0)
sw  $t1,4($t0)
jr  $ra

la   $a0, a
li $a1, 10
jal swap

# return here
. . .

Caller
addr a$a0=$4

10$a1=$5

ret addr$ra=$31

. . .

. . .

Registers
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Register $31
is the return 

address register

Details of JAL and JR
Address Instructions             Assembly Language

00400020 lui $1, 0x1001 la   $a0, a
00400024 ori $4, $1, 0
00400028 ori $5, $0, 10 ori $a1,$0,10
0040002C jal 0x10000f jal swap
00400030  . . . # return here

swap:
0040003C sll $8, $5, 2 sll $t0,$a1,2
00400040 add $8, $8, $4 add $t0,$t0,$a0
00400044 lw $9, 0($8) lw $t1,0($t0)
00400048 lw $10,4($8) lw $t2,4($t0)
0040004C sw $10,0($8) sw $t2,0($t0)
00400050 sw $9, 4($8) sw $t1,4($t0)
00400054 jr $31 jr $ra

Pseudo-Direct
Addressing

PC = imm26<<2
0x10000f << 2
= 0x0040003C

0x00400030$31
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Parameter Passing
• Parameter passing in assembly language is different

– More complicated than that used in a high-level language

• In assembly language
– Place all required parameters in an accessible storage area
– Then call the procedure 

• Two types of storage areas used
– Registers: general-purpose registers are used (register method)
– Memory: stack is used (stack method)

• Two common mechanisms of parameter passing
– Pass-by-value: parameter value is passed
– Pass-by-reference: address of parameter is passed
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Parameter Passing
• By convention, registers are used for parameter passing

– $a0 = $4 .. $a3 = $7 are used for passing arguments
– $v0 = $2 .. $v1 = $3 are used for result values

• Additional arguments/results can be placed on the stack

• Runtime stack is also needed to …
– Store variables / data structures when they cannot fit in 

registers
– Save and restore registers across procedure calls
– Implement recursion

• Runtime stack is implemented via software convention
– The stack pointer $sp = $29 (points to top of stack)
– The frame pointer $fp = $30 (points to a procedure frame)
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Stack Frame
• Stack frame is the segment of the stack containing …

– Saved arguments, registers, and local data structures (if any)

• Called also the activation frame or activation record

• Frames are pushed and popped by adjusting …
– Stack pointer $sp = $29 and Frame pointer $fp = R30
– Decrement $sp to allocate stack frame, and increment to free

Frame f()

Stack

↓

stack grows 
downwards

$fp

$sp
Frame f()

Stack

allocate 
stack frame

Frame g()
$fp

$sp

fc
al

ls
 g

g
re

tu
rn

s
Frame f()

Stack

↑

free stack 
frame

$fp

$sp

$fp
arguments

saved $ra
saved 

registers

local data 
structures

or variables
$sp
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Preserving Registers
• Need to preserve registers across a procedure call

– Stack can be used to preserve register values

• Which registers should be saved?

– Registers modified by the called procedure, and

– Still used by the calling procedure

• Who should preserve the registers?

– Called Procedure: preferred method for modular code

• Register preservation is done inside the called procedure

– By convention, registers $s0, $s1, …, $s7 should be preserved

– Also, registers $sp, $fp, and $ra should also be preserved
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Selection Sort

• Example
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Selection Sort Procedure
# Objective: Sort array using selection sort algorithm
#     Input: $a0 = pointer to first, $a1 = pointer to last
#    Output: array is sorted in place
##########################################################

sort: addiu $sp, $sp, -4 # allocate one word on stack
sw $ra, 0($sp) # save return address on stack

top: jal max # call max procedure
lw $t0, 0($a1) # $t0 = last value
sw $t0, 0($v0) # swap last and max values
sw $v1, 0($a1)
addiu $a1, $a1, -4 # decrement pointer to last
bne $a0, $a1, top # more elements to sort
lw $ra, 0($sp) # pop return address
addiu $sp, $sp, 4
jr $ra # return to caller
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Max Procedure
# Objective: Find the address and value of maximum element
#     Input: $a0 = pointer to first, $a1 = pointer to last
#    Output: $v0 = pointer to max,   $v1 = value of max
##########################################################
max: move $v0, $a0 # max pointer = first pointer

lw $v1, 0($v0) # $v1 = first value
beq $a0, $a1, ret # if (first == last) return
move $t0, $a0 # $t0 = array pointer

loop: addi $t0, $t0, 4 # point to next array element
lw $t1, 0($t0) # $t1 = value of A[i]
ble $t1, $v1, skip # if (A[i] <= max) then skip
move $v0, $t0 # found new maximum
move $v1, $t1

skip: bne $t0, $a1, loop # loop back if more elements
ret: jr $ra
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Example of a Recursive Procedure

fact: slti $t0,$a0,2 # (n<2)?
beq $t0,$0,else # if false branch to else
li $v0,1 # $v0 = 1
jr $ra # return to caller

else: addiu $sp,$sp,-8 # allocate 2 words on stack
sw $a0,4($sp) # save argument n
sw $ra,0($sp) # save return address
addiu $a0,$a0,-1 # argument = n-1
jal fact # call fact(n-1)
lw $a0,4($sp) # restore argument
lw $ra,0($sp) # restore return address
mul $v0,$a0,$v0 # $v0 = n*fact(n-1)
addi $sp,$sp,8 # free stack frame
jr $ra # return to caller

int fact(int n) { if (n<2) return 1; else return (n*fact(n-1)); }

main: lw $a0, N
jal fact
sw $v0, FAC

.data
N:        .word  3
FAC:  .space  4
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Reading Assignments

Chapter 2 : Instructions : Language of the 
Computer
Sections 2.1 to 2.16

From CD

Appendix A : Assemblers, Linkers & 
SPIM Simulator
Sections A.1 to A.12


