
1

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

1

MIPSMIPS PROCESSORPROCESSOR
INSTRUCTION SETINSTRUCTION SET

ICS 233ICS 233
Computer Architecture & Computer Architecture &

Assembly LanguageAssembly Language

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

2

ICS 233ICS 233
Computer Architecture & Computer Architecture &

Assembly LanguageAssembly Language

Lecture 10Lecture 10

2

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

3

Lecture Outline

SPIM MIPS Simulator

Assembly Language statements

System Calls

Assembler Pseudo-instructions

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

4

Memory Usage
Systems based on MIPS processors typically divide memory into
three parts :
• Text Segment
• Data Segment
• Stack Segment

Text segment is the first part of the memory near the bottom of the address
space starting at address 400000hex, which holds the program’s instructions.
Data segment which is second part of the memory above the text segment which
is further divided into two parts :

- Static data starting at address 10000000hex contains objects whose
size is known to the compiler and whose lifetime – i.e., the interval
during which a program can access them – is the program’s entire
execution.

- Dynamic Data which is immediately above static data. This data as its
name implies, is allocated by the program as it executes.

Stack Segment is the third part of the memory which resides at the top of the
virtual address space starting at address 7FFFFFFF hex.
- Like dynamic data, the maximum size of a program’s stack is not known in

advance.
- As the program pushes values onto the stack, the operating system

expands the stack segment down towards the data segment

3

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

5

Stack Segment

Data Segment

Text Segment

Reserved
400000hex

10000000hex

7FFFFFFFhex

Dynamic Data

Static Data

MEMORY LAYOUT

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

6

SPIM - MIPS SIMULATOR
SPIM is a software simulator that runs programs
written for MIPS R2000/R3000 processors

SPIM’s name is just MIPS spelled backwards

SPIM can read and immediately execute assembly
language files.

SPIM is a self-contained system for running MIPS
programs.

It contains a debugger and provides a few
operating system-like services.

4

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

7

SPIM - MIPS SIMULATOR
SPIM comes in multiple versions
spim
It is a command line-driven program and requires only an
alphanumeric terminal to display it.
It operates like most programs of this type : type a line of
text,i.e., command, hit the return key and spim executes
the command

xspim
It runs in the X-window environment of the UNIX system.
It is a much easier program to learn and use because its
commands are always visible on the screen and because
it continually displays the machine’s register

PCspim
It is compatible with Microsoft Windows 3.1, Windows
95/XP and Windows NT
The UNIX, Windows, and DOS versions of SPIM are
available through www.mkp.com/cod2e.htm

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

8

5

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

9

Assembly Language Statements
• Three types of statements in assembly language

– Typically, one statement should appear on a line

1. Executable Instructions
– Generate machine code for the processor to execute at runtime
– Instructions tell the processor what to do

2. Pseudo-Instructions and Macros
– Translated by the assembler into real instructions
– Simplify the programmer task

3. Assembler Directives
– Provide information to the assembler while translating a program
– Used to define segments, allocate memory variables, etc.
– Non-executable: directives are not part of the instruction set

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

10

Instructions
• Assembly language instructions have the format:

[label:] mnemonic [operands] [#comment]

• Label: (optional)
– Marks the address of a memory location, must have a colon
– Typically appear in data and text segments

• Mnemonic
– Identifies the operation (e.g. add, sub, etc.)

• Operands
– Specify the data required by the operation
– Operands can be registers, memory variables, or constants
– Most instructions have three operands
L1: addiu $t0, $t0, 1 #increment $t0

6

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

11

Comments
• Comments are very important!

– Explain the program's purpose

– When it was written, revised, and by whom

– Explain data used in the program, input, and output

– Explain instruction sequences and algorithms used

– Comments are also required at the beginning of every procedure

• Indicate input parameters and results of a procedure

• Describe what the procedure does

• Single-line comment
– Begins with a hash symbol # and terminates at end of line

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

12

Program Template
Title: Filename:
Author: Date:
Description:
Input:
Output:
################# Data segment####################
.data
. . .
################# Code segmen#####################
.text
.globl main
main: # main program entry
. . .
li $v0, 10 # Exit program
syscall

7

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

13

.DATA, .TEXT, & .GLOBL Directives
• .DATA directive

– Defines the data segment of a program containing data

– The program's variables should be defined under this directive

– Assembler will allocate and initialize the storage of variables

• .TEXT directive

– Defines the code segment of a program containing instructions

• .GLOBL directive

– Declares a symbol as global

– Global symbols can be referenced from other files

– We use this directive to declare main procedure of a program

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

14

Layout of a Program in Memory

Stack Segment
0x7FFFFFFF

Dynamic Area

Static Area

Text Segment

Reserved
0x04000000

0x10000000

0

Data Segment

Memory
Addresses

in Hex

Stack Grows
Downwards

8

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

15

Defines the Kernel Data Segment
Like the Data segment, but used by the Operating System

.kdata addr

Defines the Kernel Text Segment
Like the Text segment, but used by the Operating System

.ktext addr

Defines the Data Segment
The items following this statement are to be assembled
into the segment. By default, begin at the next available
address in the data segment. If the optional argument
addr is present, then begin at addr.

.data addr

Defines the Text Segment (Code Segment)
The items following this statement are to be assembled
into the text segment. By default, begin at the next
available address in the text segment. If the optional
argument addr is present, then begin at addr. In SPIM,
the only items that can be assembled into the text
segment are instructions

.text addr

DescriptionName Arguments

SPIM Assembler Segment Directives

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

16

Declares as global the label sym .globl sym

Declare as global the label sym, and
declare that it is size bytes in length (this
information can be used by the assembler)

.extern sym size

DescriptionName Arguments

SPIM Assembler Linker Directives

9

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

17

Data Definition Statement
• Sets aside storage in memory for a variable

• May optionally assign a name (label) to the data

• Syntax:

[name:] directive initializer [, initializer] . . .

var1: .WORD 10

• All initializers become binary data in memory

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

18

Data Directives
• .BYTE Directive

– Stores the list of values as 8-bit bytes

• .HALF Directive
– Stores the list as 16-bit values aligned on half-word boundary

• .WORD Directive
– Stores the list as 32-bit values aligned on a word boundary

• .FLOAT Directive
– Stores the listed values as single-precision floating point

• .DOUBLE Directive
– Stores the listed values as double-precision floating point

10

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

19

String Directives
• .ASCII Directive

– Allocates a sequence of bytes for an ASCII string

• .ASCIIZ Directive

– Same as .ASCII directive, but adds a NULL char at end of
string

– Strings are null-terminated, as in the C programming
language

• .SPACE Directive

– Allocates space of n uninitialized bytes in the data
segment

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

20

Examples of Data Definitions

.DATA

var1: .BYTE 'A', 'E', 127, -1, '\n'

var2: .HALF -10, 0xffff

var3: .WORD 0x12345678

var4: .FLOAT 12.3, -0.1

var5: .DOUBLE 1.5e-10

str1: .ASCII "A String\n"

str2: .ASCIIZ "NULL Terminated String"

array: .SPACE 100

11

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

21

Allocate size bytes of space in the
current segment. In SPIM, this is only
permitted in the data segment.

.space size

Assemble the given words (32-bit
integers)

.word word1
……………wordN

Assemble the given halfwords (16-bit
integers)

.half half1 ……………halfN

Align the next item on the next 2n byte
boundary. .align 0 turns off automatic
alignment.

.align n

Assemble the given bytes (8-bit
integers)

.byte byte1 ……………byteN

.Assemble the given string in memory.
Do null-terminate.

.asciiz str

Assemble the given string in memory.
Do not null-terminate.

.ascii str

DescriptionName Arguments

SPIM Assembler Data Directives

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

22

Program to compute N1 x N2
(signed numbers)

.text

.globl main
main:

lw $t0, N1
lw $t1, N2
mult $t0, $t1
mflo $t2
mfhi $t3
sw $t2, PRDL
sw $t3,PRDH

li $v0,10
syscall # exit

.data
N1: .word 0xFFFFFFFF
N2: .word 0x0000000F
PRDL: .word 0x00000000
PRDH: .word 0x00000000

Program to compute N1 x N2
(unsigned numbers)

.text

.globl main
main:

lw $t0, N1
lw $t1, N2
multu $t0, $t1
mflo $t2
mfhi $t3
sw $t2, PRDL
sw $t3,PRDH

li $v0,10
syscall # exit

.data
N1: .word 0xFFFFFFFF
N2: .word 0x0000000F
PRDL: .word 0x00000000
PRDH: .word 0x00000000

12

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

23

Program to compute N1 / N2
(signed numbers)

.text

.globl main
main:

lw $t0, N1
lw $t1, N2
div $t0, $t1
mflo $t2
mfhi $t3
sw $t2, QUOT
sw $t3, REM

li $v0,10
syscall # exit

.data
N1: .word 0xFFFFFFFF
N2: .word 0x0000000F
QUOT: .word 0x00000000
REM: .word 0x00000000

Program to compute N1 / N2
(unsigned numbers)

.text

.globl main
main:

lw $t0, N1
lw $t1, N2
divu $t0, $t1
mflo $t2
mfhi $t3
sw $t2, QUOT
sw $t3, REM

li $v0,10
syscall # exit

.data
N1: .word 0xFFFFFFFF
N2: .word 0x0000000F
QUOT: .word 0x00000000
REM: .word 0x00000000

• Memory is viewed as an array of bytes with
addresses
– Byte Addressing: address points to a byte in memory

• Words occupy 4 consecutive bytes in memory
– MIPS instructions and integers occupy 4 bytes

• Alignment: address is a multiple of size
– Word address should be a multiple of 4

• Least significant 2 bits of address should be 00

– Halfword address should be a multiple of 2

• .ALIGN n directive
– Aligns the next data definition on a 2n byte boundary

Memory Alignment

0

4

8

12

ad
dr

es
s

not aligned

. . .

aligned word

not aligned

Memory

13

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

25

• Assembler builds a symbol table for labels
(variables)
– Assembler computes the address of each label in data

segment

• Example Symbol Table

.DATA
var1: .BYTE 1, 2,'Z'
str1: .ASCIIZ "My String\n“
.ALIGN 2
var2: .WORD 0x12345678
.ALIGN 3
var3: .HALF 1000

Symbol Table

Label
var1
str1
var2
var3

Address
0x10010000
0x10010003
0x10010010
0x10010018

0 0 0 0 0 0

var1

1 2 'Z'0x10010000

str1

'M' 'y' ' ' 'S' 't' 'r' 'i' 'n' 'g' '\n' 0
0x123456780x10010010

var2 (aligned)

1000
var3 (address is multiple of 8)

0 0 Unused

0 00 0
Unused

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

26

• Processors can order bytes within a word in two ways
• Little Endian Byte Ordering

– Memory address = Address of least significant byte
– Example: Intel IA-32, Alpha

• Big Endian Byte Ordering
– Memory address = Address of most significant byte
– Example: SPARC, PA-RISC

• MIPS can operate with both byte orderings

Byte Ordering and Endianness

Byte 0Byte 1Byte 2Byte 3
32-bit Register

MSB LSB
.Byte 0Byte 1Byte 2Byte 3

a a+3a+2a+1

Memory

address

Byte 3Byte 0Byte 1Byte 2Byte 3
32-bit Register

MSB LSB
.Byte 0 Byte 1 Byte 2

a a+3a+2a+1

Memory

address

14

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

27

SPIM - MIPS SIMULATOR
System Calls
SPIM provides a small set of operating-system like
services through the system call (syscall) instruction.

System calls are used to invoke services to perform
system Input and Output operations.

To request a service, a program loads the system call
code into register $v0 and arguments into registers $a0-
$a3 (or $f12 for floating-point values).

System calls that return values put their results in
register $v0 (or $f0 for floating-point results)

When a program reads or writes, its I/O appears in a
separate window, called the console, which pops up
when needed.

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

28exits from program10exit

Returns a pointer to a block of memory in $v0 $a0=amount9sbrk

Reads up to length-1 characters from the
console into a buffer (address in $a0) and
terminates the string with a null byte

$a0 = buffer,
$a1 = length

8read_string

Reads a double floating point number from
the console and returns it in $f0

7read_double

Reads a single floating point number from the
console and returns it in $f0

6read_float

Reads an integer from the console and returns
it in $v0

5read_int

Passes a pointer to a null-terminated string in
$a0 as argument and displays it on the
console

$a0 = string4print_string

Passes double precision floating point number
in $f12 as argument and displays it on the
console

$f12 = double3print_double

Passes single precision floating point number
in $f12 as argument and displays it on the
console

$f12 = float2print_float

Passes an integer in $a0 as argument and
displays it on the console

$a0 = integer1print_int

OperationArgumentsSystem Call
Code

Service

15

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

29

System Calls
• Programs do input/output through system calls

• MIPS provides a special syscall instruction
– To obtain services from the operating system

– Many services are provided in the SPIM and MARS
simulators

• Using the syscall system services
– Load the service number in register $v0

– Load argument values, if any, in registers $a0, $a1, etc.

– Issue the syscall instruction

– Retrieve return values, if any, from result registers

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

30

Syscall Services

10Exit Program

$a0 = character read12Read Char
$a0 = character to print11Print Char

$a0 = address of input buffer
$a1 = maximum number of characters to read

8Read String
$f0 = double read7Read Double
$f0 = float read6Read Float
$v0 = integer read5Read Integer
$a0 = address of null-terminated string4Print String
$f12 = double value to print
$f12 = float value to print
$a0 = integer value to print

Arguments / Result

3Print Double
2Print Float
1Print Integer

$v0Service

Supported by MARS

16

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

31

Reading and Printing an Integer
################# Code segment##################
.text
.globl main
main: # main program entry

li $v0, 5 # Read integer
syscall # $v0 = value read

move $a0, $v0 # $a0 = value to print
li $v0, 1 # Print integer
syscall

li $v0, 10 # Exit program
syscall

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

32

Reading and Printing a String
################# Data segment##################
.data

str: .space 10 # array of 10 bytes
################# Code segment##################
.text
.globl main
main: # main program entry

la $a0, str # $a0 = address of str
li $a1, 10 # $a1 = max string length
li $v0, 8 # read string
syscall
li $v0, 4 # Print string str
syscall
li $v0, 10 # Exit program
syscall

17

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

33

Program 1: Sum of Three Integers
Sum of three integers
#
Objective: Computes the sum of three integers.
Input: Requests three numbers.
Output: Outputs the sum.
################### Data segment ###################
.data
prompt: .asciiz "Please enter three numbers: \n"
sum_msg: .asciiz "The sum is: "
################### Code segment ###################
.text
.globl main
main:

la $a0,prompt # display prompt string
li $v0,4
syscall
li $v0,5 # read 1st integer into $t0
syscall
move $t0,$v0

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

34

Sum of Three Integers – Continued
li $v0,5 # read 2nd integer into $t1
syscall
move $t1,$v0

li $v0,5 # read 3rd integer into $t2
syscall
move $t2,$v0

addu $t0,$t0,$t1 # accumulate the sum
addu $t0,$t0,$t2

la $a0,sum_msg # write sum message
li $v0,4
syscall

move $a0,$t0 # output sum
li $v0,1
syscall

li $v0,10 # exit
syscall

18

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

35

Program 2: Case Conversion
Objective: Convert lowercase letters to uppercase
Input: Requests a character string from the user.
Output: Prints the input string in uppercase.
################### Data segment #####################
.data
name_prompt:.asciiz "Please type your name: "
out_msg: .asciiz "Your name in capitals is: "
in_name: .space 31 # space for input string
################### Code segment #####################
.text
.globl main
main:

la $a0,name_prompt # print prompt string
li $v0,4
syscall
la $a0,in_name # read the input string
li $a1,31 # at most 30 chars + 1 null char
li $v0,8
syscall

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

36

Case Conversion – Continued
la $a0,out_msg # write output message
li $v0,4
syscall
la $t0,in_name

loop:
lb $t1,($t0)
beqz $t1,exit_loop # if NULL, we are done
blt $t1,'a',no_change
bgt $t1,'z',no_change
addiu $t1,$t1,-32 # convert to uppercase: 'A'-'a'=-32

no_change:
sb $t1,($t0)
addiu $t0,$t0,1 # increment pointer
j loop

exit_loop:
la $a0,in_name # output converted string
li $v0,4
syscall
li $v0,10 # exit
syscall

19

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

37

SPIM - MIPS SIMULATOR
Assembler Pseudoinstructions

SPIM provides assembler pseudoinstructions
which are not real instructions of the MIPS
processor

SPIM translates assembler pseudoinstructions
into one to three MIPS instructions.

Use MIPS simulator, SPIM available at
http://www.cs.wisc.edu/~larus/spim.html

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

38

Assembler Pseudoinstructions
li (load immediate register with a value)

Instruction Mnemonic :
li rd, const ;where rd is a register,

; const is a value
Meaning :

rd const

Example :
i) li $v0, 4 ; $v0 4

translated to ori $2, $0, 4

ii) li $t0, 0xABCDEF90
translated to lui $at, 0xABCD

ori $t0, $at, 0xEF90

20

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

39

Assembler Pseudoinstructions
la (load register with address)

Instruction Mnemonic :
la rd, addr ;where rd is a register,

; addr is the label of the memory location
Meaning :

rd address of the location having the label addr

Example :
la $v0, mem-addr ; $v0 address of mem_addr

translated to lui $at, mem_addr_upper16bits
ori $v0, $at, mem_addr_lower16bits

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

40

Assembler Pseudoinstructions
move
- Moves data between registers directly

Instruction Mnemonic :
move rd, rs ;where rs, rd are registers,

Meaning :
rd rs

Example :
move $a0, $t0 ; $a0 $t0

translated to addu $4, $0, $8
same as or $4, $0, $8

21

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

41

Assembler Pseudoinstructions
abs
- gets absolute value

Instruction Mnemonic :
abs rd, rs ;where rs, rd are registers,

Meaning :
rd | rs |

Example :
abs $a0, $t0 ; $a0 | $t0 |

translated to add $a0, $0, $t0
bgez $t0, skip
sub $a0, $0, $t0

skip:

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

42

Assembler Pseudoinstructions
not (logical not)

Instruction Mnemonic :
not rd, rs ;where rs, rd are registers,

Meaning :
rd not rs

Example :
not $a0, $t0 ; $a0 not $t0

translated to nor $a0, $t0, $0

22

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

43

Assembler Pseudoinstructions
neg (negate)

Instruction Mnemonic :
neg rd, rs ;where rs, rd are registers

Meaning :
rd - rs

Example :
neg $a0, $t0 ; $a0 - $t0

translated to sub $a0, $0, $t0
__

negu (negate unsigned)

Instruction Mnemonic :
negu rd, rs ;where rs, rd are registers

Meaning :
rd - rs

Example :
negu $a0, $t0 ; $a0 - $t0

translated to subu $a0, $0, $t0

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

44

Assembler Pseudoinstructions
rem (remainder)

Instruction Mnemonic :
rem rd, rs, rt ;where rs, rt, rd are registers,

Meaning :
rd remainder of rs/rt

Example :
rem $t0, $t1, $t2 ; $t0 rem ($t1 / $t2)

__

remu (remainder unsigned)

Instruction Mnemonic :
remu rd, rs, rt ;where rs, rt, rd are registers,

Meaning :
rd remainder of rs/rt

Example :
remu $t0, $t1, $t2 ; $t0 rem ($t1 / $t2)

23

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

45

Assembler Pseudoinstructions
rol (rotate left)

Instruction Mnemonic :
rol rd, rs, const ;where rs, rd are registers,

Meaning :
rd rotate rs left const bits

Example :
rol $t0, $t1, 4

; rotate contents of $t1 left by 4 bits and store the result in $t0

ror (rotate right)

Instruction Mnemonic :
ror rd, rs, const ;where rs, rd are registers,

Meaning :
rd rotate rs right const bits

Example :
ror $t0, $t1, 3

; rotate contents of $t1 right by 3 bits and store the result in $t0

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

46

Assembler Pseudoinstructions
Question : Expand the following pseudo-instruction

rol $t1, $t0, 1

srl $at, $t0, 31
sll $t1, $t0, 1
or $t1, $t1, $at

Question : Expand the following pseudo-instruction
rol $t1, $t0, 4

srl $at, $t0, 28
sll $t1, $t0, 4
or $t1, $t1, $at

24

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

47

Assembler Pseudoinstructions
Question : Expand the following pseudo-instruction

ror $t1, $t0, 1

sll $at, $t0, 31
srl $t1, $t0, 1
or $t1, $t1, $at

Question : Expand the following pseudo-instruction
ror $t1, $t0, 4

sll $at, $t0, 28
srl $t1, $t0, 4
or $t1, $t1, $at

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

48

Pseudo-Instructions
• Introduced by assembler as if they were real instructions

– To facilitate assembly language programming
– Assembler reserves $at = $1 for its own use

– $at is called the assembler temporary register

ori $s1, $zero, 0xabcdli $s1, 0xabcd

slt $s1, $s3, $s2sgt $s1, $s2, $s3

nor $s1, $s2, $s2not $s1, $s2

slt $at, $s1, $s2
bne $at, $zero, label

blt $s1, $s2, label

lui $s1, 0xabcd
ori $s1, $s1, 0x1234

li $s1, 0xabcd1234

addu Ss1, $s2, $zeromove $s1, $s2
Conversion to Real InstructionsPseudo-Instructions

25

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

49

#Example : Swap values in registers $s0 and $s1

.text

.globl main
main:

lw $s0, val1
lw $s1, val2

swap values $s0 and $s1
move $s2, $s0
move $s0, $s1
move $s1, $s2

li $v0,10
syscall # exit

.data
val1: .word 0xABCDEF98
val2: .word 0x76543210

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

50

26

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

51

Assembler Pseudoinstructions
Question : Expand the following pseudo instruction to

MIPS instruction
and $t0, $t0, 0xABCDEF98

translated to MIPS instruction

lui $at, 0xABCD
ori $at, 0xEF98
and $t0, $t0, $at

Question : Swap (exchange) the contents of register $s0
and $s1 without using memory accesses and
without using temporary registers.

xor $s0, $s0, $s1
xor $s1, $s0, $s1
xor $s0, $s0, $s1

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

52

load.asm - example demonstrating load instructions
##
t0 - holds word from memory location mem_addr
t1 - holds half word from memory location mem_addr
t2 - holds byte from memory location mem_addr
t3 - holds half word without sign extension from memory location mem_addr
t4 - holds byte without sign extension from memory location mem_addr
##
syscall used - print interger (call code 1)
syscall used - print string (call code 4)
##
###
#
text segment
#
###

.text

.globl main
main:

lw $t0,mem_addr # load word into $t0
lh $t1,mem_addr # load half word into $t1
lb $t2,mem_addr # load byte into $t2
lhu $t3,mem_addr # load halfword unsigned into $t3
lbu $t4,mem_addr # load byte unsigned into $t4

27

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

53

la $a0, message1 # $a0 with message1 address
li $v0, 4
syscall

move $a0, $t0 # $a0 with data from $t0
li $v0, 1
syscall

la $a0,endl # system call to print
li $v0,4 # out a newline
syscall

la $a0, message2 # $a0 with message2 address
li $v0, 4
syscall

move $a0, $t1 # $a0 with data from $t1
li $v0, 1
syscall

la $a0,endl # system call to print
li $v0,4 # out a newline
syscall

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

54

la $a0, message3 # $a0 with message3 address
li $v0, 4
syscall

move $a0, $t2 # $a0 with data from $t2
li $v0, 1
syscall

la $a0,endl # system call to print
li $v0,4 # out a newline
syscall

la $a0, message4 # $a0 with message4 address
li $v0, 4
syscall

move $a0, $t3 # $a0 with data from $t3
li $v0, 1
syscall

la $a0,endl # system call to print
li $v0,4 # out a newline
syscall

28

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

55

la $a0, message5 # $a0 with message5 address
li $v0, 4
syscall
move $a0, $t4 # $a0 with data from $t4
li $v0, 1
syscall
la $a0,endl # system call to print
li $v0,4 # out a newline
syscall

li $v0,10
syscall # exit

###
#
data segment
#
###

.data
mem_addr: .word 0x456789AB
message1: .asciiz "load word : "
message2: .asciiz "load halfword : "
message3: .asciiz "load byte : "
message4: .asciiz "load halfword unsigned : "
message5: .asciiz "load byte unsigned : "
endl: .asciiz "\n"

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

56

seq (set equal)

Instruction Mnemonic :
seq rd, rs, rt ;where rs, rt, rd are registers,

Meaning :
if (rs == rt) then rd = 1 else rd = 0

Example :
seq $s1, $s2, $s3 ; if ($s2 == $s3) then $s1=1 else $s1=0

sne (set not equal)

Instruction Mnemonic :
sne rd, rs, rt ;where rs, rt, rd are registers,

Meaning :
if (rs != rt) then rd = 1 else rd = 0

Example :
sne $s1, $s2, $s3 ; if ($s2 != $s3) then $s1=1 else $s1=0

Assembler Pseudoinstructions

29

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

57

sgt (greater than)

Instruction Mnemonic :
sgt rd, rs, rt ;where rs, rt, rd are registers,

Meaning :
if (rs > rt) then rd = 1 else rd = 0

Example :
sgt $s1, $s2, $s3 ; if ($s2 > $s3) then $s1=1 else $s1=0

sge (greater than or equal)

Instruction Mnemonic :
sge rd, rs, rt ;where rs, rt, rd are registers,

Meaning :
if (rs >= rt) then rd = 1 else rd = 0

Example :
sge $s1, $s2, $s3 ; if ($s2 >= $s3) then $s1=1 else $s1=0

Assembler Pseudoinstructions

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

58

sgtu (greater than unsigned)

Instruction Mnemonic :
sgtu rd, rs, rt ;where rs, rt, rd are registers,

Meaning :
if (rs > rt) then rd = 1 else rd = 0

Example :
sgtu $s1, $s2, $s3 ; if ($s2 > $s3) then $s1=1 else $s1=0

sgeu (greater than or equal unsigned)

Instruction Mnemonic :
sgeu rd, rs, rt ;where rs, rt, rd are registers,

Meaning :
if (rs >= rt) then rd = 1 else rd = 0

Example :
sgeu $s1, $s2, $s3 ; if ($s2 >= $s3) then $s1=1 else $s1=0

Assembler Pseudoinstructions

30

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

59

sle (less than or equal)

Instruction Mnemonic :
sle rd, rs, rt ;where rs, rt, rd are registers,

Meaning :
if (rs <= rt) then rd = 1 else rd = 0

Example :
sle $s1, $s2, $s3 ; if ($s2 <= $s3) then $s1=1 else $s1=0

sleu (less than or equal unsigned)

Instruction Mnemonic :
sleu rd, rs, rt ;where rs, rt, rd are registers,

Meaning :
if (rs <= rt) then rd = 1 else rd = 0

Example :
sleu $s1, $s2, $s3 ; if ($s2 <= $s3) then $s1=1 else $s1=0

Assembler Pseudoinstructions

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

60

bgt (branch on greater than)
Instruction Mnemonic :

bgt rd, rs, addr ;where rs, rd are registers,
; addr is the label of the target location

Meaning :
if (rd > rs) then branch to location addr

i.e., goto PC + 4 + const*4 (i.e., PC = Updated PC + offset)
Example :

bgt $s1, $s2, up ; if ($s1 > $s2) goto target location up

bge (branch on greater than or equal)
Instruction Mnemonic :

bge rd, rs, addr ;where rs, rd are registers,
; addr is the label of the target location

Meaning :
if (rd >= rs) then branch to location addr
i.e., goto PC + 4 + const*4 (i.e., PC = Updated PC + offset)

Example :
bge $s1, $s2, loop ; if ($s1 >= $s2) goto target location loop

Assembler Pseudoinstructions

31

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

61

bgtu (branch on greater than unsigned)
Instruction Mnemonic :

bgtu rd, rs, addr ;where rs, rd are registers,
; addr is the label of the target location

Meaning :
if (rd > rs) then branch to location addr
i.e., goto PC + 4 + const*4 (i.e., PC = Updated PC + offset)

Example :
bgtu $s1, $s2, up ; if ($s1 > $s2) goto target location up

bgeu (branch on greater than or equal unsigned)
Instruction Mnemonic :

bgeu rd, rs, addr ;where rs, rd are registers,
; addr is the label of the target location

Meaning :
if (rd >= rs) then branch to location addr
i.e., goto PC + 4 + const*4 (i.e., PC = Updated PC + offset)

Example :
bgeu $s1, $s2, loop ; if ($s1 >= $s2) goto target location loop

Assembler Pseudoinstructions

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

62

blt (branch on less than)
Instruction Mnemonic :

blt rd, rs, addr ;where rs, rd are registers,
; addr is the label of the target location

Meaning :
if (rd < rs) then branch to location addr

i.e., goto PC + 4 + const*4 (i.e., PC = Updated PC + offset)
Example :

blt $s1, $s2, up ; if ($s1 < $s2) goto target location up

ble (branch on less than or equal)
Instruction Mnemonic :

ble rd, rs, addr ;where rs, rd are registers,
; addr is the label of the target location

Meaning :
if (rd <= rs) then branch to location addr
i.e., goto PC + 4 + const*4 (i.e., PC = Updated PC + offset)

Example :
ble $s1, $s2, loop ; if ($s1 <= $s2) goto target location loop

Assembler Pseudoinstructions

32

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

63

bltu (branch on less than unsigned)
Instruction Mnemonic :

bltu rd, rs, addr ;where rs, rd are registers,
; addr is the label of the target location

Meaning :
if (rd < rs) then branch to location addr
i.e., goto PC + 4 + const*4 (i.e., PC = Updated PC + offset)

Example :
bltu $s1, $s2, up ; if ($s1 < $s2) goto target location up

bleu (branch on less than or equal unsigned)
Instruction Mnemonic :

bleu rd, rs, addr ;where rs, rd are registers,
; addr is the label of the target location

Meaning :
if (rd <= rs) then branch to location addr
i.e., goto PC + 4 + const*4 (i.e., PC = Updated PC + offset)

Example :
bleu $s1, $s2, loop ; if ($s1 <= $s2) goto target location loop

Assembler Pseudoinstructions

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

64

beqz (branch on equal to zero)
Instruction Mnemonic :

beqz rd, addr ;where rd is a register,
;addr is the label of the target location

Meaning :
if (rd == 0) then branch to location addr
i.e., goto PC + 4 + const*4 (i.e., PC = Updated PC + offset)

Example :
beqz $s1, up ; if ($s1 == 0) goto target location up

bnez (branch on not equal to zero)
Instruction Mnemonic :

bnez rd, rs, addr ;where rd is a register,
;addr is the label of the target location

Meaning :
if (rd != 0) then branch to location addr
i.e., goto PC + 4 + const*4 (i.e., PC = Updated PC + offset)

Example :
bnez $s1, loop ; if ($s1 != 0) goto target location loop

Assembler Pseudoinstructions

33

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

65

mul (multiply registers signed without overflow)
Instruction Mnemonic :

mul rd, rs, rt ;where rs, rt, rd are registers

Meaning :
rd = rs * rt ; 32-bit signed product in rd,

; overflow undetected

Example :
mul $s1, $s2,$s3 ; $s1 $s2 * $s3

__
mulo (multiply registers signed with overflow)
Instruction Mnemonic :

mulo rd, rs, rt ;where rs, rt, rd are registers

Meaning :
rd = rs * rt ; 32-bit signed product in rd

; overflow detected
Example :

mulo $s1, $s2,$s3 ; $s1 $s2 * $s3

Assembler Pseudoinstructions

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

66

mulou (multiply registers unsigned with overflow)

Instruction Mnemonic :
mulou rd, rs, rt ;where rs, rt, rd are registers

Meaning :
rd = rs * rt ; 32-bit unsigned product in rd

; overflow detected
Example :

mulou $s1, $s2,$s3 ; $s1 $s2 * $s3

Assembler Pseudoinstructions

34

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

67

Assembler Pseudoinstructions

div (signed divide registers with overflow)
Instruction Mnemonic :

div rd, rs, rt ;where rs, rt, rd are registers

Meaning :
rd = rs / rt ; signed quotient in rd

Example :
div $s1,$s2, $s3 ; $s1 $s2 / $s3

divu (unsigned divide registers without overflow)
Instruction Mnemonic :

divu rd, rs, rt ;where rs, rt, rd are registers

Meaning :
rd = rs / rt ; unsigned quotient in rd

Example :
divu $s1,$s2, $s3 ; $s1 $s2 / $s3

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

68

Example : Read N1 & N2 from keyboard, multiply N1 & N2 and display
the product on the console
.text
.globl main

main:
la $a0,prompt1 # print prompt1 on terminal
li $v0,4
syscall

li $v0,5 # syscall 5 reads an integer
syscall
move $t1,$v0 # $t1 holds first number N1

la $a0,prompt2 # print prompt2 on terminal
li $v0,4
syscall

li $v0,5 # syscall 5 reads an integer
syscall
move $t2,$v0 # $t2 holds second number N2

35

Lecture Slides on Computer
Architecture ICS 233 @ Dr A R

Naseer

69

mul $t0, $t1,$t2
sw $t0, PRD32
la $a0,promptr # print promptr on terminal
li $v0,4
syscall

move $a0,$t0 # display result
li $v0,1
syscall
la $a0,endl # print newline on terminal
li $v0,4
syscall
li $v0,10
syscall # exit

.data
PRD32: .space 4
prompt1: .asciiz "Enter first number N1 = "
prompt2: .asciiz "Enter second number N2 = "
promptr: .asciiz "Product = “
endl: .asciiz “\n”

