
Semiconductor Memories: RAMs and ROMs

Lesson Objectives:
In this lesson you will be introduced to:

 Different memory devices like, RAM, ROM, PROM, EPROM, EEPROM, etc.
 Different terms like: read, write, access time, nibble, byte, bus, word, word length,
address, volatile, non-volatile etc.

 How to implement combinational and sequential circuits using ROM.

Introduction:
The smallest unit of information a digital system can store is a bit, which can be stored in
a flip-flop or a 1-bit register.

To store m bits of data, an m-bit register with parallel load capability may be used. Data
available on the m-bit input lines (I0 to Im-1) may be stored/written into this register under
control of the clock by asserting the “Load” control input. The stored m bits of data may
be read from the register outputs (O0 to Om-1).

The m bits of data stored in a register make up a word. It is simply a number of bits
operated upon or considered by the hardware as a group. The number of bits in the word,
m, is called word length.

The m inputs of the register are provided through an m-bit input data bus and m outputs
by an m-bit output data bus.

A bus is a number of signal lines, grouped together because of similarity of function,
which connect two or more systems or subsystems.

A unit of 8-bits of information is referred to as a byte, while 4-bits of information is
referred to as a nibble.

A memory device can be looked at as consisting of a number of equally sized registers
sharing a common set of inputs, and a common set of outputs, as shown in the Figure.

Storing data in a memory register is referred to as a memory write operation and looking
up the contents of a memory register is referred to as a memory read operation.

In case of a write operation, the input data need to be written into one particular register
in the memory device.

Since the input data lines are common to all registers of the memory device, only the
selected register should have its load control signal asserted while the other registers
should not.

If the number of registers is 2n, n lines will be required to select the register to be written
into. The n-lines are used as an input to a decoder where the decoder’s 2n outputs may be
used as the load control inputs to the 2n registers.

The load control signal of a particular register is asserted by a unique combination of the
n-select lines. This unique combination is considered as the address for that particular
register.

Thus, a memory device can be thought of as a collection of addressable registers.

A read or a write operation into the memory device has to specify the address of the
particular register to be read or written into.

The capacity of the memory is specified in terms of the number of bits or the number of
words available in this memory device.

For a memory device with n-bit address lines and word (register) size of m-bits, the
memory has 2n words (storage locations/registers) each having m bits for a total capacity
of 2n x m bits.

For example, if n = 10 and m = 8, the memory is a “1024 x 8” bit memory. Alternatively,
it is said that the memory has 1K bytes.

A block diagram of the memory device is shown in the figure. The address inputs are
decoded by address decoder to select one, and only one, of the memory words
(registers), either for reading or writing.

The WRRD / line is a control signal that determines the type of operation to be
performed; a read operation or a write operation.

1/ =WRRD indicates a read operation, while 0/ =WRRD indicates a write operation.

To read the memory contents stored in a particular word, the address of this word is
applied, and logic 1 is applied to the WRRD / line that enables the output buffers of the
memory.

To write at a location, the address of the location to be written is provided at the address
inputs, data is provided at the data inputs, and logic 0 is applied to the WRRD / line.

There is a time delay between the application of an address and the appearance of
contents at the output, this is called the memory access time. This depends both on the
technology and on the structure used to implement the memory.

Random Access Memory (RAM):
For the shown above memory structure, the access time is independent of the sequence in
which addresses are applied.

Such a memory is called random access memory (RAM). Thus, the contents of any one
location can be accessed in essentially the same time as can the contents of any other
location chosen at random.

RAMs are volatile memories that will only retain the stored data as long as power is ON
but will lose this data when power is turned OFF.

RAMs are classified into two main categories: Static RAM (SRAM) and Dynamic RAM
(DRAM). These will be studied in greater details in future courses.

Read Only Memory (ROM):
Read Only Memory (ROM) is memory whose stored data can only be read but cannot be
re-written (altered).

It is a device in which “permanent” binary information has been stored.

ROMs are nonvolatile where stored data are not lost even when power is turned OFF.

The Figure shows a block diagram of a ROM.

Like RAMS, a ROM has n address inputs and m outputs. This corresponds to 2n memory
words each of m storage bits for a total capacity of 2n x m bits.

Unlike RAMs, ROMs do not have data input lines, because they do not have a write
operation.

ROMs are common to use in storing system-level programs that should be available at all
times.

The most common example is the PC system BIOS (Basic Input Output System), which
is stored in a ROM called the system BIOS ROM.

Several classes of ROMs are in common use. These may be categorized according to
their fabrication technologies that influence the way data are introduced into the ROM.
The process of storing the desired data into the ROM is referred to as ROM
programming.

Types of ROMs:
Following are the different types of ROMs.
1. Programming is done by the manufacturer during the last fabrication steps according

to the truth table provided by the customer. This type is known as mask programmable
ROMs or simply ROM. Data stored this way can never be altered.

2. ROM is provided with fuses to allow users to introduce the desired data by electrically

blowing some of these fuses. This type is referred to as a programmable ROM, or
PROM. Fuse blowing is irreversible and, once programmed the ROM stored pattern
cannot be altered.

3. The ROM uses erasable floating-gate memory cells that allow erasure of the stored
data by Ultra-Violet light. In this type, programming is performed electrically by the
user using special hardware programmers. Data, thus stored, can later be erased
globally (all memory bits = 1) by exposing the memory array to UV-light. This ROM
type is referred to as UV-erasable, programmable ROM, or simply EPROM. The
EPROM IC package is provided with a quartz window to allow UV-light penetration
to the memory array.

Quartz
Window

Closer View of
Quartz Window

4. When special electrically erasable memory cells are used, the ROM can be electrically

erased at the byte level. Thus individual bytes may be addressed and programmed or
erased as desired. This type is referred to as electrically erasable, programmable
ROM, or EEPROM or E2PROM. The E2PROM technology is an expensive low-
capacity technology and is thus not used for high density or low-cost applications.

5. The most recent ROM technology is the flash technology that combines the low-cost

and high-density advantages of the UV-EPROM technology and the flexibility of
electrical erase of E2PROM technology. This technology is electrically erasable but
the erasure is performed either globally (the full array) or partially on complete sub-
arrays (sectors).

Combinational Circuit Implementation Using ROM:
ROM devices can be used to implement complex combinational circuits directly from
truth tables without need for minimization.

For an n-input, m-output combinational circuit, a 2n x m ROM is needed (2n words each
of m storage bits). The designer needs only to specify a ROM table that gives the
information stored in each of the 2n words.

When a combinational circuit is implemented using a ROM, the function may either be
expressed in the sum of minterms form, or using a truth table.

As an example, the ROM shown in the figure may be considered as a combinational
circuit with four outputs, each a function of the five input variables.

Outputs Z0 – Z3 can be expressed as sum of minterms as follows:
Z0 (A4, A3, A2, A1, A0) = ∑m (2, 3, 18, 21, 31)
Z1 (A4, A3, A2, A1, A0) = ∑m (0, 1, 17, 25, 31)
Z2 (A4, A3, A2, A1, A0) = ∑m (1, 6, 11, 29, 30)
Z3 (A4, A3, A2, A1, A0) = ∑m (7, 8, 16, 28, 29)

Example 1:
Consider a combinational circuit which is specified by the following two functions:
F1 (X, Y) = ∑m (1, 2, 3)
F2 (X, Y) = ∑m (0, 2)

The truth table for this circuit is as shown.

In this example, the ROM that implements the two combinational functions must have
two address inputs and two outputs. Thus, its size must be 4 x 2 (since 2n x m is the size
of ROM).

The ROM table for this example is as shown.

Example 2:
Design a combinational circuit using a ROM. The circuit accepts a 3-bit number and
generates an output binary number that is equal to the square of the input number.

The first step is to derive the truth table for the combinational circuit as shown. Three
inputs and six outputs are needed to accommodate all possible numbers.

By observation, we note that output B0 is always equal to input A0, and output B1 is
always 0. Thus, there is no need to store B0 and B1 in the ROM. We actually need to only
store values of the four outputs (B5 through B2) in the ROM.

The table shown specifies all the information that needs to be stored in the ROM, and
figure shows the required connections of the combinational circuit. The output B1 is
connected to logic 0 and output B0 is connected to A0 always to get B1 = 0 and B0 = A0.

The minimum size ROM needed must have three inputs and four outputs, for a total of 8
x 4 = 32 bits.

Synchronous Sequential Circuit Implementation Using ROM:
The block diagram of a sequential circuit is shown in the figure.

Since ROM can implement combinational logic, so this part can be replaced by a ROM
and Flip-Flops can be replaced by a register as shown in the figure.

Example 3:
Design a sequential circuit whose state transition table is given, using a ROM and a
register.

The next-state and output information are obtained from the table as:
Q1

+ = ∑m (1, 2, 5, 6)
Q2

+ = ∑m (4, 6)
Y (Q2, Q1, X) = ∑m (3, 7)

The ROM can be used to implement the combinational circuit and register will provide
the flip-flops.

The number of address inputs to the ROM is equal to the number of flip-flops plus the
number of external inputs.

The number of outputs of the ROM is equal to the number of flip-flops plus the number
of external outputs.

In this example, 3 inputs and 3 outputs of the ROM are required; so its size must be 8 x 3.

The ROM table is identical to the state transition table with Present State and Inputs
specifying the address of ROM and Next State and Outputs specifying the ROM outputs
(stored information). It is shown below:

The next state values must be connected from the ROM outputs to the register inputs as
shown in the figure below.

	In this lesson you will be introduced to:
	Different memory devices like, RAM, ROM, PROM, EPROM, EEPROM, etc.
	Different terms like: read, write, access time, nibble, byte, bus, word, word length, address, volatile, non-volatile etc.

