
Complement Arithmetic

Objectives
In this lesson, you will learn:

 How additions and subtractions are performed using the complement representation,

 What is the Overflow condition, and

 How to perform arithmetic shifts.

Summary of the Last Lesson
Basic Rules

1. Negation is replaced by complementing (- N N’)

2. Subtraction is replaced by addition to the complement.

• Thus, (X – Y) is replaced by (X + Y')

3. For some number N, its complement N’ is computed as N’ = M –N, where

 M = r n for R’s complement representation, where n is the number of integral digits of

the register holding the number.

 M = (r n – ulp) for (R-1)’s complement representation

4. The operation Z= X–Y, where both X and Y are positive numbers (computed as X + Y’)

yields two different results depending on the relative magnitudes of X & Y. (Review page

12 of the previous lesson).

a) First case Y > X (Negative Result)
 The result Z is –ive, where

Z = – (Y-X)

 Being –ive, Z should be represented in the complement form as

 Z = M-(Y-X) (1)

Expected
Correct Result

 Using the complement method:

Z = X + Y’

 = X + (M-Y), i.e.

 Z = M - (Y-X) (2)

 = Correct Answer in the Complement Form

 In this case, any value of M gives correct result.

Note In this case the result fits in the n-digits of the operands. In other words, there is no end

carry irrespective of the value of M.

Second case Y < X (Positive Result)

The result Z is +ive where,

Z = +(X-Y).

Using complement arithmetic we get:

 Z = X + Y’

 = X + (M-Y)

 Z = M + (X-Y) (3)

• which is different from the expected correct result of

 Z = +(X-Y) (4)

 In this case, a correction step is required for the final result.

 The correction step depends on the value of M.

Computed Result

Computed
Result

Expected
Correct Result

Correction Step for R’s and (R-1)’s Complements

The previous analysis shows that computing Z = (X-Y) using complement arithmetic gives:

 The correct complement representation of the answer if the result is negative, that is M

- (Y-X).

 Alternatively, if the result is positive it gives an answer of M + (X-Y) which is different

from the correct answer of +(X-Y) requiring a correction step.

 The correction step depends on the value of M

For the R’s Complement

Note that MR = r n = 1000…00.000

Thus, the computed result (M + (X-Y)) is given by

Z = r n + (X-Y)

Since (X-Y) is positive, the computed Z value {r n + (X-Y)} requires (n + 1) integral digits to be

expressed as shown in Figure.

digit 0digit 1digit 2digit n-11

(n+1)-digits required to hold computed Z value = rn + (X-Y)

.

n-digits holding the value of (X-Y)

rn

(n+1)th digit

n Positions(n+1)th
Position

In this case, it is clear that Z = r n + (X-Y) consists of the digit 1 in the (n+1)th digit position

while the least significant n digits will hold the expected correct result of (X-Y).

Since X, Y, and the result Z are stored in registers of n digits, the correct result (X- Y) is simply

obtained by neglecting the 1 in the (n+1)th digit.

The 1 in the (n+1)th digit is typically referred to as “end carry”.

Conclusion:

 For the R’s complement method;

i. If the computed result has no end carry. This result is the correct answer.

ii. In case the computed result has an end carry, this end carry is DISACRDED and the

remaining digits represent the correct answer.

For the (R-1)’s Complement

 MR-1 = r n- ulp

Thus, the computed result (M + (X-Y)) is given by

Z = (r n – ulp) + (X-Y)

For a positive value of (X-Y), the computed Z value {(r n – ulp)+ (X-Y)} requires (n + 1)

integral digits for its representation.

Again, r n represents a 1 in the (n+1)th digit position (i.e. an end carry) while the least

significant n digits will hold the value (X-Y-ulp).

Since the expected correct answer is (X-Y), the correct result is obtained by adding a ulp to the

least significant digit position.

Q. What does the computed result represent in case X=Y ?

Conclusion:

 For the (R-1)’s complement method;

a. If the computed result has no end carry. This result is the correct answer.

b. In case the computed result has an end carry, this end carry is added to the least

significant position (i.e., as ulp).

Important Note:

• The previous conclusions are valid irrespective of the signs of X or Y and for both

addition and subtraction operations.

Add/Subtract Procedure

It is desired to compute Z = X ± Y, where X, Y and Z:

(a) are signed numbers represented in one of the complement representation methods.

(b) have n integral digits including the sign digit.

The procedure for computing the value of Z depends on the used complement representation

method:

R’s Complement Arithmetic

1. If the operation to be performed is addition compute Z = X + Y, otherwise if it is

subtraction, Z = X – Y, compute Z = X + Y’ instead.

2. If the result has no end carry, the obtained value is the correct answer.

3. If the result has an end carry, discard it and the value in the remaining digits is the

correct answer.

(R-1)’s Complement Arithmetic

1. If the operation to be performed is addition compute Z = X + Y, otherwise if it is

subtraction, Z = X – Y, compute Z = X + Y’ instead.

2. If the result has no end carry, the obtained value is the correct answer.

3. If the result has an end carry, this end carry should be added to the least significant digit

(ulp) to obtain the final correct answer.

Examples

RADIX COMPLEMENT

Compute (M-N) and (N-M), where M=(072532)10 N=(003250)10

Both M & N must have the same # of Digits (Pad with 0`s if needed).

COMPUTING (M – N)

Regular Subtraction

M 0 7 2 5 3 2

N ─ 0 0 3 2 5 0

 0 6 9 2 8 2

Complement Method

Compute (M+N’)

M 0 7 2 5 3 2

N’ + 9 9 6 7 5 0

 1 0 6 9 2 8 2

Correct Result

Discard
End Carry

COMPUTING (N – M)

Regular Subtraction

N 0 0 3 2 5 0

M ─ 0 7 2 5 3 2

 ─ 0 6 9 2 8 2

Complement Method

Compute (N + M’)

N 0 0 3 2 5 0

M’ + 9 2 7 4 6 8

 9 3 0 7 1 8

-ive sign
Equivalent Results
The –ive Result is
Represented by the
10’s Complement

No End Carry

This is the 10’s complement representation of
a –ive number, i.e. the result (930718)
represents the number (-069282)

Example : (2`s Comp) M=(01010100)2 N=(01000100)2

Note: Both M & N are positive 8-bit numbers

COMPUTING (M – N)

Regular Subtraction

M 0 1 0 1 0 1 0 0

N ─ 0 1 0 0 0 1 0 0

 0 0 0 1 0 0 0 0

Complement Method

Compute (M+N’)

M 0 1 0 1 0 1 0 0

N’ + 1 0 1 1 1 1 0 0

 1 0 0 0 1 0 0 0 0

Discard
Carry Out

Correct Result

Sign Bit

COMPUTING (N – M)

Regular Subtraction

N 0 1 0 0 0 1 0 0

M ─ 0 1 0 1 0 1 0 0

 ─ 0 0 0 1 0 0 0 0

Complement Method

Compute (N + M’)

N 0 1 0 0 0 1 0 0

M’ + 1 0 1 0 1 1 0 0

 1 1 1 1 0 0 0 0

-ive sign

No End Carry

This is the 2’s complement representation of a
–ive number, i.e. the result (11110000)
represents the number (-00010000)

Sign Bit

Equivalent Results
The –ive Result is
Represented by the
2’s Complement

DIMINISHED / (R-1)’s RADIX COMPLEMENT

Compute (M-N) and (N-M), where M=(072532)10 N=(003250)10

Both M & N must have the same # of Digits (Pad with 0`s if needed).

COMPUTING (M – N)

Regular Subtraction

M 0 7 2 5 3 2

N ─ 0 0 3 2 5 0

 0 6 9 2 8 2

Complement Method

Compute (M+N’)

M 0 7 2 5 3 2

N’ + 9 9 6 7 4 9

 1 0 6 9 2 8 1

 + 1
 0 6 9 2 8 2

Correct Result

End Carry

COMPUTING (N – M)

Regular Subtraction

N 0 0 3 2 5 0

M ─ 0 7 2 5 3 2

 ─ 0 6 9 2 8 2

Complement Method

Compute (N + M’)

N 0 0 3 2 5 0

M’ + 9 2 7 4 6 7

 9 3 0 7 1 7

-ive sign

Equivalent Results
The –ive Result is
Represented by the
9’s Complement

No End Carry

This is the 9’s complement representation of a
–ive number, i.e. the result (930717)
represents the number (-069282)

Example : (1`s Comp) M=(01010100)2 N=(01000100)2

Note: Both M & N are positive 8-bit numbers

COMPUTING (M – N)

Regular Subtraction

M 0 1 0 1 0 1 0 0

N ─ 0 1 0 0 0 1 0 0

 0 0 0 1 0 0 0 0

Complement Method

Compute (M+N’)

M 0 1 0 1 0 1 0 0

N’ + 1 0 1 1 1 0 1 1

 1 0 0 0 0 1 1 1 1

 1
 0 0 0 1 0 0 0 0

Correct ResultSign Bit

End Carry

COMPUTING (N – M)

Regular Subtraction

N 0 1 0 0 0 1 0 0

M ─ 0 1 0 1 0 1 0 0

 ─ 0 0 0 1 0 0 0 0

Complement Method

Compute (N + M’)

N 0 1 0 0 0 1 0 0

M’ + 1 0 1 0 1 0 1 1

 1 1 1 0 1 1 1 1

-ive sign

No End Carry

This is the 1’s complement representation of a
–ive number, i.e. the result (11101111)
represents the number (-00010000)

Sign Bit

Equivalent Results
The –ive Result is
Represented by the
1’s Complement

Overflow Condition

 If adding two n-digit unsigned numbers results in an n+1 digit sum, this represents an

overflow condition.

 In digital computers, overflow represents a problem since register sizes are fixed,

accordingly a result of n+1 bits cannot fit into an n-bit register and the most significant bit

will be lost.

 Overflow condition is a problem whether the added numbers are signed or unsigned.

 In case of signed numbers, overflow may occur only if the two numbers being added have

the same sign, i.e. either both numbers are positive or both are negative.

 For 2’s complement represented numbers, the sign bit is treated as part of the number and

an end carry does not necessarily indicate an overflow.

 In 2’s complement system, an overflow condition always changes the sign of the result and

gives an erroneous n-bit answer. Two cases are possible:

1. Both operands are positive (sign bits=0). In this case, an overflow will result from a carry

of 1 into the sign bit column; causing the sum to be interpreted as a negative number.

2. Both operands are negative (sign bits=1). In this case, an overflow will result when no

carry is received at the sign bit column causing the two sign bits to be added resulting in a

0 in the sign bit column and a carry out in the (n+1)th. bit position which will be

discarded. This causes the sum to be interpreted as a positive number.

 Accordingly, an overflow condition is detected if one of the two following conditions

occurs:

(a) There is a carry into the sign bit column but no carry out of that column.

(b) There is a carry out of the sign bit column but no carry into that column.

Example:

 Consider the case of adding the binary values corresponding to (+5)10 and (+6) 10 where the

correct result should be (+11).

 Even though the operands (+5)10 & (+6)10 can be represented in 4-bits, the result (+11)10

cannot be represented in 4-bits.

 Accordingly, the 4-bit result will be erroneous due to “overflow”.

Add (+5) to (+6) using 4-bit registers and 2’s complement representation.

(+5)10 (0101)2

(+6)10 (0110)2

 0 1 0 1
+ 0 1 1 0

 1 0 1 1

 If this overflow condition is not detected, the resulting sum would be erroneously

interpreted as a negative number (1011) which equals (-5)10.

Example:

Add (-5) to (-6) using 4-bit registers and 2’s complement representation.

(-5)10 (1011)2

(-6)10 (1010)2

 1 0 1 1
+ 1 0 1 0

 0 1 0 1

 If this overflow condition is not detected, the resulting sum would be erroneously

interpreted as a positive number (0101) which equals (+5)10.

1

Sign Bit

1

Sign Bit

There is a carry into the
sign bit column but no
carry out of it

There is a carry out of
the sign bit column but
no carry into it.

Example:

Using 8-bit registers, show the binary number representation of the decimal numbers (37), (-37),
(54), and (-54) using the following systems:

 Signed magnitude
system

Signed 1’s complement
System

Signed 2’s complement
system

37 00100101 00100101 00100101
-37 10100101 11011010 11011011
54 00110110 00110110 00110110
-54 10110110 11001001 11001010

Compute the result of the following operations in
the signed 2’s complement system.

I. (+37) – (+54)

Subtraction is turned into addition to the complement, i.e.

(+37) – (+54) (+37) + (+54)’

 0 0 1 0 0 1 0 1
 +
 1 1 0 0 1 0 1 0
 1 1 1 0 1 1 1 1

= (-17)10

II. (-37) – (+54)

Subtraction is turned into addition to the complement, i.e.

(-37) – (+54) (-37) + (+54)’

 1 1 0 1 1 0 1 1
 +
 1 1 0 0 1 0 1 0
 1 1 0 1 0 0 1 0 1

= -(01011011) =- (91)10

III. (54) + (-37)

 0 0 1 1 0 1 1 0
 +
 1 1 0 1 1 0 1 1
 1 0 0 0 1 0 0 0 1

= + (17)10

Discard End
Carry

Discard End
Carry

Range Extension of 2’s Complement Numbers
 To extend the representation of some 2’s complement number X from n-bits to n`-bits

where n` > n.

1. If X is +ive pad with 0`s to the right of fractional part and/or to the left of the

integral part.

2. If X is -ive pad with 0`s to the right of fractional part and/or with 1`s to the left of

the integral part.

In General

 Pad with 0`s to the right of fractional part and/or extend sign bit to the left of the integral

part (Sign Bit Extension).

xn-1 xn-2 x2 x1 x0 x-1 x-2 x-m…. ….

X- Before Extending its Range

xn-2 x2 x1 x0 x-1 x-2 x-m… … 0 0 0…xn-1 xn-1xn-1xn-1 …

Sign Extension Pad with 0's

Sign Bit

X- After Extending its Range

(0’s Padded to the Right of Fractional Part and the Sign is Extended to the Left of the

Integral Part)

Example:

Show how the numbers (+5)10 and (−5)10 are represented in 2’s complemenr using 4-bit registers

then extend this representation to 8-bit registers.

1 1 1 1 1 0 1 11 0 1 1 Extend
To 8-bits

Sign Bit Sign bit extension

(-5)10 (-5)10

0 0 0 0 0 1 0 10 1 0 1 Extend
To 8-bits

Sign Bit Sign bit extension

(+5)10 (+5)10

Arithmetic Shifts
Effect of 1-Digit Shift

 Left Shift Multiply by radix r

 Right Shift Divide by radix r

(a) Shifting Unsigned Numbers

 Shift-in 0`s (for both Left & Right Shifts)

(b) Shifting 2’s Complement Numbers

 Left Shifts: 0`s are shifted-in

 Right Shifts: Sign Bit Extended

Example:

 +1 000001 -1 111111

 +2 000010 -2 111110

 +4 000100 -4 111100

 +8 001000 -8 111000

 +16 010000 -16 110000

Shift Right Shift Right

Shift Left

