
Complement Arithmetic 

Objectives 
In this lesson, you will learn: 

 How additions and subtractions are performed using the complement representation, 

 What is the Overflow condition, and 

 How to perform arithmetic shifts. 

Summary of the Last Lesson 
Basic Rules 

1. Negation  is  replaced   by   complementing ( - N  N’ ) 

2. Subtraction is replaced by addition to the complement. 

• Thus,  (X – Y) is replaced by (X + Y' ) 

3. For some number N, its complement N’ is computed as N’ = M –N,  where  

 M = r n for R’s complement representation, where n is the number of integral digits of 

the register holding the number. 

 M = (r n – ulp) for (R-1)’s complement representation 

4. The operation Z= X–Y, where both X and Y are positive numbers (computed as X + Y’) 

yields two different results depending on the relative magnitudes of X & Y. (Review page 

12 of the previous lesson). 

a) First case  Y > X  (Negative Result) 
 The result Z is –ive, where   

Z = – (Y-X)   

 Being –ive, Z should be represented in the complement form as    

           Z = M-(Y-X)    (1) 

 

 

 

 

 

 

 

 

 

 

Expected 
Correct Result 



 Using the complement method: 

Z  = X + Y’  

 = X + (M-Y), i.e.  

   Z  = M - (Y-X)    (2) 

   = Correct Answer in the Complement Form  

 In this case, any value of M gives correct result. 

 

Note In this case the result fits in the n-digits of the operands. In other words, there is no end 

carry irrespective of the value of M.  

 

 

Second case Y < X  (Positive Result) 

The result Z is +ive where, 

Z = +(X-Y). 

Using complement arithmetic we get: 

 Z  = X + Y’  

  = X + (M-Y)  

    Z = M + (X-Y)   (3) 

• which is different from the expected correct result of  

    Z  = +(X-Y)    (4) 

 

 

 

 

 In this case, a correction step is required for the final result.  

 The correction step depends on the value of M. 

 

Computed Result 

Computed 
Result 

Expected 
Correct Result 



Correction Step for R’s and (R-1)’s Complements  

The previous analysis shows that computing Z = (X-Y) using complement arithmetic gives: 

 The correct complement representation of the answer if the result is negative, that is   M 

- (Y-X). 

 Alternatively, if the result is positive it gives an answer of  M + (X-Y)  which is different 

from the correct answer of +(X-Y)  requiring a correction step. 

 The correction step depends on the value of M 

 

For the R’s Complement 

Note that MR =  r n = 1000…00.000  

 

 

 

Thus, the computed result (M + (X-Y)) is given by 

Z = r n + (X-Y) 

Since (X-Y) is positive, the computed Z value {r n + (X-Y)} requires (n + 1) integral digits to be 

expressed as shown in Figure.  

 

digit 0digit 1digit 2digit n-11

(n+1)-digits  required  to  hold  computed Z value = rn + (X-Y)

. . . . . . . . . .

n-digits holding the value of (X-Y)

rn

(n+1)th digit

 
 

n Positions(n+1)th  
Position 



In this case, it is clear that Z = r n + (X-Y) consists of the digit 1 in the (n+1)th digit position 

while the least significant n digits will hold the expected correct result of (X-Y). 

Since X, Y, and the result Z are stored in registers of n digits, the correct result (X- Y) is simply 

obtained by neglecting the 1 in the (n+1)th digit. 

 

The 1 in the (n+1)th digit is typically referred to as “end carry”. 

 

Conclusion: 

 For the R’s complement method; 

i.  If the computed result has no end carry. This result is the correct answer. 

ii. In case the computed result has an end carry, this end carry is DISACRDED and the 

remaining digits represent the correct answer. 

 

For the (R-1)’s Complement  

 MR-1 = r n- ulp 

Thus, the computed result (M + (X-Y)) is given by 

Z = (r n – ulp) + (X-Y) 

For a positive value of (X-Y), the computed Z value {(r n – ulp)+ (X-Y)} requires (n + 1) 

integral digits for its representation.  

 
Again, r n represents a 1 in the (n+1)th digit position (i.e. an end carry) while the least 

significant n digits will hold the value (X-Y-ulp).  

 
Since the expected correct answer is (X-Y), the correct result is obtained by adding a ulp to the 

least significant digit position. 

 
Q. What does the computed result represent in case X=Y ? 

 
Conclusion: 

 For the (R-1)’s complement method; 

a.  If the computed result has no end carry. This result is the correct answer. 

b. In case the computed result has an end carry, this end carry is added to the least 

significant position  (i.e., as ulp). 

 



Important Note:  

• The previous conclusions are valid irrespective of the signs of X or Y and for both 

addition and subtraction operations. 

Add/Subtract Procedure 

It is desired to compute Z = X ± Y, where X, Y and Z: 

(a) are signed numbers represented in one of the complement representation methods.  

(b) have n integral digits including the sign digit. 

 
The procedure for computing the value of Z depends on the used complement representation 

method: 

 
R’s Complement Arithmetic 

1. If the operation to be performed is addition compute Z = X + Y, otherwise if it is 

subtraction, Z = X – Y, compute Z = X + Y’ instead. 

2. If the result has no end carry, the obtained value is the correct answer. 

3. If the result has an end carry, discard it and the value in the remaining digits is the 

correct answer. 

 
(R-1)’s Complement Arithmetic 

1. If the operation to be performed is addition compute Z = X + Y, otherwise if it is 

subtraction, Z = X – Y, compute Z = X + Y’ instead. 

2. If the result has no end carry, the obtained value is the correct answer. 

3. If the result has an end carry, this end carry should be added to the least significant digit 

(ulp) to obtain the final correct answer. 

 



Examples 

RADIX   COMPLEMENT 
 
Compute (M-N) and (N-M), where M=(072532)10     N=(003250)10 

Both M & N must have the same # of Digits (Pad with 0`s if needed). 

 
COMPUTING (M – N) 

 
Regular Subtraction 
 
M  0 7 2 5 3 2 

 
N ─ 0 0 3 2 5 0 

 
  0 6 9 2 8 2 

 
 
Complement Method 
 
Compute (M+N’) 
 
M  0 7 2 5 3 2 

 
N’ + 9 9 6 7 5 0 

 
 1 0 6 9 2 8 2 
        

 

Correct Result

Discard 
End Carry 



COMPUTING (N – M) 
 

Regular Subtraction 
 
N  0 0 3 2 5 0 

 
M ─ 0 7 2 5 3 2 

 
 ─ 0 6 9 2 8 2 
        
        

 
 
 
Complement Method 
 
Compute (N + M’) 
 
N  0 0 3 2 5 0 

 
M’ + 9 2 7 4 6 8 

 
  9 3 0 7 1 8 
        

 
 
 
 

-ive  sign 
Equivalent Results 
The –ive Result is 
Represented by the 
10’s Complement

No End Carry 

This is the 10’s complement representation of 
a –ive number, i.e. the result (930718) 
represents the number (-069282) 



Example : (2`s Comp)  M=(01010100)2    N=(01000100)2 
 
Note: Both M & N are positive 8-bit numbers 
 

COMPUTING (M – N) 
 
Regular Subtraction 
 
M  0 1 0 1 0 1 0 0 

 
N ─ 0 1 0 0 0 1 0 0 

 
  0 0 0 1 0 0 0 0 
 
 
Complement Method 
 
Compute (M+N’) 
 
M  0 1 0 1 0 1 0 0 

 
N’ + 1 0 1 1 1 1 0 0 

 
 1 0 0 0 1 0 0 0 0 
 

Discard 
Carry Out 

Correct Result

Sign Bit 



COMPUTING (N – M) 
 
Regular Subtraction 
 
N  0 1 0 0 0 1 0 0 

 
M ─ 0 1 0 1 0 1 0 0 

 
 ─ 0 0 0 1 0 0 0 0 
 
 
 
 
 
Complement Method 
 
Compute (N + M’) 
 
N  0 1 0 0 0 1 0 0 

 
M’ + 1 0 1 0 1 1 0 0 

 
  1 1 1 1 0 0 0 0 
 
 
 
 
 
 
 
 
 
 
 
 
 

-ive  sign 

No End Carry 

This is the 2’s complement representation of a 
–ive number, i.e. the result (11110000) 
represents the number (-00010000) 

Sign Bit 

Equivalent Results 
The –ive Result is 
Represented by the 
2’s Complement



DIMINISHED / (R-1)’s   RADIX   COMPLEMENT 
 
Compute (M-N) and (N-M), where M=(072532)10     N=(003250)10 

Both M & N must have the same # of Digits (Pad with 0`s if needed). 

 
COMPUTING (M – N) 

 
Regular Subtraction 
 
M  0 7 2 5 3 2 

 
N ─ 0 0 3 2 5 0 

 
  0 6 9 2 8 2 

 
 
Complement Method 
 
Compute (M+N’) 
 

M  0 7 2 5 3 2 
 

N’ + 9 9 6 7 4 9 
 

 1 0 6 9 2 8 1 
        
 +      1 
  0 6 9 2 8 2 

 

Correct Result

End Carry 



COMPUTING (N – M) 
 
Regular Subtraction 
 
N  0 0 3 2 5 0 

 
M ─ 0 7 2 5 3 2 

 
 ─ 0 6 9 2 8 2 
        
        

 
 
 
 
Complement Method 
 
Compute (N + M’) 
 
N  0 0 3 2 5 0 

 
M’ + 9 2 7 4 6 7 

 
  9 3 0 7 1 7 
        

 
 
 

-ive  sign 

Equivalent Results 
The –ive Result is 
Represented by the 
9’s Complement

No End Carry 

This is the 9’s complement representation of a 
–ive number, i.e. the result (930717) 
represents the number (-069282) 



Example : (1`s Comp)  M=(01010100)2    N=(01000100)2 
 
Note: Both M & N are positive 8-bit numbers 
 

COMPUTING (M – N) 
 
Regular Subtraction 
 
M  0 1 0 1 0 1 0 0 

 
N ─ 0 1 0 0 0 1 0 0 

 
  0 0 0 1 0 0 0 0 
 
 
Complement Method 
 
Compute (M+N’) 
 

M  0 1 0 1 0 1 0 0 
 

N’ + 1 0 1 1 1 0 1 1 
 

 1 0 0 0 0 1 1 1 1 
          
         1 
  0 0 0 1 0 0 0 0 

 

Correct ResultSign Bit

End Carry 



COMPUTING (N – M) 
 
Regular Subtraction 
 
N  0 1 0 0 0 1 0 0 

 
M ─ 0 1 0 1 0 1 0 0 

 
 ─ 0 0 0 1 0 0 0 0 
 
 
 
 
 
 
Complement Method 
 
Compute (N + M’) 
 
N  0 1 0 0 0 1 0 0 

 
M’ + 1 0 1 0 1 0 1 1 

 
  1 1 1 0 1 1 1 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

-ive  sign 

No End Carry 

This is the 1’s complement representation of a 
–ive number, i.e. the result (11101111) 
represents the number (-00010000) 

Sign Bit 

Equivalent Results 
The –ive Result is 
Represented by the 
1’s Complement



Overflow Condition 

 If adding two n-digit unsigned numbers results in an n+1 digit sum, this represents an 

overflow condition. 

 In digital computers, overflow represents a problem since register sizes are fixed, 

accordingly a result of n+1 bits cannot fit into an n-bit register and the most significant bit 

will be lost. 

 Overflow condition is a problem whether the added numbers are signed or unsigned. 

 In case of signed numbers, overflow may occur only if the two numbers being added have 

the same sign, i.e. either both numbers are positive or both are negative. 

 For 2’s complement represented numbers, the sign bit is treated as part of the number and 

an end carry does not necessarily indicate an overflow. 

 In 2’s complement system, an overflow condition always changes the sign of the result and 

gives an erroneous n-bit answer. Two cases are possible: 

1. Both operands are positive (sign bits=0). In this case, an overflow will result from a carry 

of 1 into the sign bit column; causing the sum to be interpreted as a negative number. 

2. Both operands are negative (sign bits=1). In this case, an overflow will result when no 

carry is received at the sign bit column causing the two sign bits to be added resulting in a 

0 in the sign bit column and a carry out in the (n+1)th. bit position which will be 

discarded. This causes the sum to be interpreted as a positive number. 

 Accordingly, an overflow condition is detected if one of the two following conditions 

occurs: 

(a) There is a carry into the sign bit column but no carry out of that column. 

(b) There is a carry out of the sign bit column but no carry into that column. 

 



Example: 

 Consider the case of adding the binary values corresponding to (+5)10 and (+6) 10 where the 

correct result should be (+11). 

 Even though the operands (+5)10 & (+6)10 can be represented in 4-bits, the result (+11)10 

cannot be represented in 4-bits.  

 Accordingly, the 4-bit result will be erroneous due to “overflow”. 

 
Add (+5) to (+6) using 4-bit registers and 2’s complement representation. 

(+5)10  (0101)2 

(+6)10  (0110)2 

 

 0 1 0 1 
+ 0 1 1 0 

 
 1 0 1 1 

 

 

 
 If this overflow condition is not detected, the resulting sum would be erroneously 

interpreted as a negative number (1011) which equals (-5)10. 

 

 

Example: 

Add (-5) to (-6) using 4-bit registers and 2’s complement representation. 

(-5)10  (1011)2 

(-6)10  (1010)2 

 

 1 0 1 1 
+ 1 0 1 0 

 
 0 1 0 1 

 

 

 

 If this overflow condition is not detected, the resulting sum would be erroneously 

interpreted as a positive number (0101) which equals (+5)10. 

 

1 

Sign Bit 

1 

Sign Bit 

There is a carry into the 
sign bit column but no 
carry out of it 

There is a carry out of 
the sign bit column but 
no carry into it. 



Example: 

Using 8-bit registers, show the binary number representation of the decimal numbers  (37), (-37),   
(54), and   (-54) using the following systems: 
 

 Signed magnitude 
system 

Signed 1’s complement 
System 

Signed 2’s complement 
system 

37 00100101 00100101 00100101 
-37 10100101 11011010 11011011 
54 00110110 00110110 00110110 
-54 10110110 11001001 11001010 

 
Compute the result of the following operations in 
the signed 2’s complement system.  
 

I.  (+37) – (+54) 

Subtraction is turned into addition to the complement, i.e. 

(+37) – (+54)   (+37) + (+54)’ 

  0 0 1 0 0 1 0 1
 +         
  1 1 0 0 1 0 1 0
  1 1 1 0 1 1 1 1
          

= (-17)10  

 
II.  (-37) – (+54) 

Subtraction is turned into addition to the complement, i.e. 

(-37) – (+54)   (-37) + (+54)’ 

 
  1 1 0 1 1 0 1 1
 +         
  1 1 0 0 1 0 1 0
 1 1 0 1 0 0 1 0 1
          

 
= -(01011011) =- (91)10  

 

III.  (54) + (-37) 
 

  0 0 1 1 0 1 1 0
 +         
  1 1 0 1 1 0 1 1
 1 0 0 0 1 0 0 0 1
          

 

= + (17)10  

Discard End 
Carry 

Discard End 
Carry 



Range Extension of 2’s Complement Numbers 
 To extend the representation of some 2’s complement  number  X  from   n-bits to n`-bits 

where n` > n. 

1. If X is +ive  pad with 0`s to the right of fractional part and/or to the  left of the 

integral part. 

2. If X is -ive  pad with 0`s to the right of fractional part and/or with 1`s to the left of 

the integral part. 

In General 

 Pad with 0`s to the right of fractional part and/or extend sign bit to the left of the integral 

part (Sign Bit Extension).  

 

xn-1 xn-2 x2 x1 x0 x-1 x-2 x-m…. ….
 

X- Before Extending its Range 

xn-2 x2 x1 x0 x-1 x-2 x-m… … 0 0 0…xn-1 xn-1xn-1xn-1 …

Sign Extension Pad with 0's

Sign Bit

 
X- After Extending its Range 

(0’s Padded to the Right of Fractional Part and the Sign is Extended to the Left of the 

Integral Part) 

Example:  

Show how the numbers (+5)10 and (−5)10 are represented in 2’s complemenr using 4-bit registers 

then extend this representation to 8-bit registers. 



1 1 1 1 1 0 1 11 0 1 1 Extend
To 8-bits

Sign Bit Sign bit extension

(-5)10 (-5)10

0 0 0 0 0 1 0 10 1 0 1 Extend
To 8-bits

Sign Bit Sign bit extension

(+5)10 (+5)10

 

Arithmetic Shifts 
Effect of 1-Digit Shift 

 Left Shift   Multiply by radix r  

 Right Shift  Divide by radix r 

(a) Shifting Unsigned Numbers 

 Shift-in 0`s (for both Left & Right Shifts) 

 
(b) Shifting 2’s Complement Numbers 

 Left Shifts:   0`s are shifted-in 

 Right Shifts:  Sign Bit Extended  

 
Example:  

 
 

              

 +1 000001         -1 111111  

 +2 000010         -2 111110  

 +4 000100         -4 111100  

 +8 001000         -8 111000  

 +16 010000         -16 110000  

Shift Right Shift Right 

Shift Left




