Machine Representation of Numbers

Objectives

- In this lesson, you will learn how signed numbers (positive or negative) are represented in digital computers.
- You will learn the 2 main methods for signed number representation:
 - a. The signed-magnitude method, and
 - b. The complement method.

Registers

- Digital computers store numbers in special digital electronic devices called
 Registers
- \square Registers consist of a fixed number *n* of storage elements.
- □ Each storage element is capable of storing one bit of data (either 0 or 1).
- \Box The register **size** is the number of storage bits in this register (n).
- \Box Thus, registers are capable of holding *n*-bit binary numbers
- \square Register size (*n*) is typically a power of 2, e.g. 8, 16, 32, 64, etc.
- \Box An *n-bit* register can represent (store) one of 2^n *Distinct Values*.
- □ Numbers stored in registers may be either <u>unsigned</u> or <u>signed</u> numbers. For example, 13 is an unsigned number but +13 and -13 are signed numbers.

Unsigned Number Representation

N-Bit Register holding an n-Bit Unsigned Number

• A register of n-bits, can store any unsigned number that has n-bits or less.

- Typically, the *rightmost* bit of the register is designated to be the least significant bit (LSB), while the *leftmost* bit is designated to be the most-significant bit (MSB).
- When representing an integer number, this *n-bit* register can hold values from 0 up to $(2^n 1)$.

Example

Show how the value $(13)_{10}$ (or **D** in Hexadecimal) is stored in a 4-bit register and in an 8-bit register

4-Bit Register Storing 13

8-Bit Register Storing 13

Signed Number Representation

- The n-bits of the register holding an <u>unsigned number</u> need only represent the value (magnitude) of the number. No sign information needs to be represented in this case.
- \Box In the case of a signed number, the *n-bits* of the register should represent both the magnitude of the number and its sign as well.
- □ Two major techniques are used to represent signed numbers:
 - 1. Signed Magnitude Representation
 - 2. Complement method
 - Radix (R's) Complement (2's Complement)
 - Diminished Radix (R-1's) Complement (1's Complement)

Signed Magnitude Number Representation

Signed-Magnitude Number Representation in *n*-Bit Register

- Independent Representation of The Sign and The Magnitude
- □ The leftmost bit is used as a *Sign Bit*.
- □ The Sign Bit:
 - \circ = 0 \rightarrow +ive number
 - \circ = 1 \rightarrow -ive number.
- \Box The remaining (*n-1*) bits are used to represent the magnitude of the number.
- \Box Thus, the *largest* representable *magnitude*, in this method, is $(2^{n-1}-1)$

Example

Show the signed-magnitude representations of +6, -6, +13 and -13 using a 4-Bit register and an 8-Bit register

Solution

- □ For a 4-bit register, the leftmost bit is a sign bit, which leaves 3 bits only to represent the magnitude.
- □ The largest magnitude representable in 3-bits is 7. Accordingly, we cannot use a 4-bit register to represent +13 or -13.

0 1	1	0
-----	---	---

Signed-Magnitude Representation of +6

Signed-Magnitude Representation of -6

- □ For an 8-bit register, the leftmost bit is a sign bit, which leaves 7 bits to represent the magnitude.
- \Box The largest magnitude representable in 7-bits is 127 (= 2^7 -1).

0	0	0	0	0	1	1	0		1	0	0	0	0	1	1	0
Signed-Magnitude Representation of +6							F	Sig Rep		d-Ma enta	_					
0	0 0 0 0 1 1 0 1						1	0	0	0	1	1	0	1		
Signed-Magnitude Representation of +13					'	F	Sig Repi	•	d-M enta	_			}			

Notes

Signed magnitude method has Two representations for 0 → {+0 , -0} → nuisance for implementation.

- 2. Signed magnitude method has a symmetric range of representation {-(2ⁿ⁻¹
 -1): +(2ⁿ⁻¹-1)}
- 3. Harder to implement addition/subtraction.
 - a) The sign and magnitude parts have to be processed independently.
 - b) Sign bits of the operands have to be examined to determine the actual operation (addition or subtraction).
 - c) Separate circuits are required to perform the addition and subtraction operations.
- 4. Multiplication & division are less problematic.

Complement Representation

- Positive numbers (+N) are represented in <u>exactly</u> the same way as in signed magnitude system
- \Box Negative numbers (-N) are represented by the <u>complement</u> of N (N')

<u>Define the Complement N' of some number N as:</u>

$$N' = M - N$$
 where, $M = Some\ Constant$

- □ Applying a negative sign to a number $(N \rightarrow -N)$ is equivalent to <u>Complementing</u> that number $(N \rightarrow N')$
- □ Thus, given the representation of some number N, the representation of –N is equivalent to the representation of the complement N'.

Important Property:

The Complement of the Complement of some number N is the original number N.

$$N' = M-N$$

(N')' = $M-(M-N) = N$

This is a required property to match the negation process since a number negated twice must yield the original number $\{-(-N) = N\}$

Why Use the Complement Method?

Through the proper choice of the constant **M**, the complement operation can be fairly *simple* and quite *fast*. A simple complement process allows:

- i. Simplified arithmetic operations since. subtraction can be totally replaced by addition and complementing.
- ii. Lower cost, since no subtractor circuitry will be required and only an adder is needed.

Complement Arithmetic

Basic Rules

- 1. Negation is replaced by complementing $(-N \rightarrow N')$
- 2. Subtraction is replaced by addition to the complement.
 - Thus, (X Y) is replaced by (X + Y')

Choice of M

The value of M should be chosen such that:

- 1. It simplifies the computation of the complement of a number.
- 2. It results in simplified arithmetic operations.
- Consider the operation

$$Z = X - Y$$

where both X and Y are positive numbers

 In complement arithmetic, Z is computed by adding X to the complement of Y

$$Z = X + Y'$$

Consider the following two possible cases:

First case $Y > X \rightarrow$ (Negative Result)

➤ The result **Z** is **–ive**, *where*

$$Z = -(Y-X) \rightarrow$$

- \triangleright Being –ive, **Z** should be represented in the *complement form* as **M-(Y-X)**
- ➤ Using the complement method:

$$Z = X - Y$$

$$Z = X + Y'$$

$$= X + (M-Y)$$

$$= M - (Y-X)$$

- = Correct Answer in the Complement Form
- □ Thus, in the case of a *negative result*, any value of M may be used.

Second case $Y \le X$ → (Positive Result)

The result **Z** is **+ive** where,

$$\mathbf{Z} = +(\mathbf{X} - \mathbf{Y}).$$

Using complement arithmetic we get:

$$Z = X-Y$$

$$Z = X + Y'$$

$$= X + (M-Y)$$

$$Z = M + (X-Y)$$

- which is <u>different</u> from the expected <u>correct result</u> of +(X-Y)
- □ In this case, a *correction step* is required for the final result.
- □ The choice of the value of M affects the complexity of this correction step.

To summarize,

There are two constraints on the choice of M

- 1. Simple and fast complement operation.
- 2. Elimination or simplification of the correction step.

R's and (R-1)'s Complements

- > Two complement methods have generally been used.
- The two methods differ in the choice of the value of M.
 - 1. The diminished radix complement method {(R-1)'s Complement }, and
 - 2. The radix complement method (R's Complement).
 - \triangleright Consider the number **X**, with *n* integral digits and *m* fractional digits, where

$$X = X_{n-1} X_{n-2} \dots X_1 X_0 \cdot X_{-1} X_{-2} \dots X_{-m}$$

➤ Next, we will show how to compute the (R-1)'s and the R's complements of X

The Diminished Radix Complement (R-1)'s Complement:

$$\mathbf{M}_{R-1} = \mathbf{r} \, n - \mathbf{r} - m$$

and;
$$\mathbf{r}^{-m} = 000...00$$
. $00...001$

n Positions

m Positions

Note that, if X is integer, then m=0 and r-m=1.

Thus;
$$\mathbf{r}^{-m} = 000...00 \cdot 00...001$$

= Unit (one) in Least Position (ulp)

OR
$$\mathbf{M}_{R-I} = \mathbf{r} \, n - ulp$$

where; $ulp = Unit \, (one) \, in \, Least \, Position = \mathbf{r} \, -m$

Important Notes:

- The (R-1)'s complement of X will be denoted by X_{r-1} .
- $(r^n r^{-m})$ is the <u>largest number representable</u> in *n integral* digits and *m* fractional digits.
- $X_{r-1} = L X$, where L is <u>largest number representable</u> in *n* integral digits and *m* fractional digits

The shown table shows how to compute the (r-1)'s complement of X for various number systems

Number	(R-1)'s	Complement of X	
System	Complement	(X' _{r-1})	n-integral digits m-fractional digits
Decimal	9's	$X'_{9} = (10^{n} - 10^{-m}) - X$	m-jractional aigus
	Complement	= 999.999-X	
Binary	1's	$X'_1 = (2^n - 2^{-m}) - X$	
	Complement	= 111.1111-X	
Octal	7's	$X'_7 = (8^n - 8^{-m}) - X$	
	Complement	= 777.77-X	
Hexadec	F's	$X_F^* = (16^n - 16^{-m}) - X$	
imal	Complement	= FFF. FFF-X	

Radix Complement (R's Complement):

$$\mathbf{M}_R = r n$$

Notes:

- 1. The R's complement of X will be denoted by X_r .
- 2. M_R depends only on the number of integral digits (n), but is independent of the number of fractional digits (m).

9

3.
$$X_r' = r^n - X$$

4.
$$X'_{r-1} = (\gamma^n - ulp) - X$$

5. Thus,
$$X'_r = X'_{r-1} + ulp$$
, i.e R's complement = (R-1)'s complement + ulp

The shown table summarizes the radix complement computation of X for various number systems

Number	R's Complement	Complement
System		of X (X' _r)
Decimal	10's Complement	$X_{10}^{*}=10^{n}-X$
Binary	2's Complement	$\mathbf{X}_{2}^{\bullet} = 2^{n} - \mathbf{X}$
Octal	8's Complement	$\mathbf{X'}_{8} = 8^{n} - \mathbf{X}$
Hexa-	16's Complement	X' ₁₆ =16 ⁿ -X
decimal		

Examples

Find the 9's and the 10's complement of the following decimal numbers:

- a- 2357
- b- 2895.786

Solution:

a-
$$X = 2357 \rightarrow n=4$$
,

- $X'_9 = (10^4 ulp) 2357$ = 9999 - 2357 = 7642
- $X'_{10}=10^4-2357=7643$;
- Alternatively, $X'_{10} = X'_9 + 0001 = 7643$

b-
$$X = 2895.786 \rightarrow n=4, m=3$$

•
$$X'_9 = (10^4 - ulp) - 2895.786$$

= $9999.999 - 2895.786 = 7104.213$

- $X'_{10}=10^4-2895.786=7104.214$;
- Alternatively,

$$X'_{10} = X'_9 + 0000.001 = 7104.214$$

Example

Find the 1's and the 2's complement of the following binary numbers:

- a- 110101010
- b- 1010011011
- c- 1010.001

Solution:

a-
$$X = 11010101010 \rightarrow n = 9$$
,

- $X'_1 = (2^9 ulp) 110101010$ = 111111111 110101010= 001010101
- $X'_2=2^9-110101010$ = 10000000000-110101010= 001010110
- <u>Alternatively</u>, $X'_2 = X'_1 + ulp$ = 001010101 + 000000001 = 001010110

b- $X = 1010011011 \rightarrow n = 10$,

- $X'_1 = (2^{10} ULP) 101001101$ = 1111111111 101001101= 010110010
- <u>Alternatively</u>, $X'_{2}=X'_{1}+ulp$ = 010110010+ 0000000001 = 010110011

c- $X = 1010.001 \rightarrow n=4, m=3$

- $X'_1 = (2^4 ULP) 1010.001$ = 1111.111 1010.001 = 0101.110
- $X'_2 = 2^4 1010.001$ = 10000 1010.001 = 0101.111

• Alternatively,
$$X'_2 = X'_1 + ulp$$
 = 0101.110+ 0000.001
= 0101.111

Important Notes:

- 1. The 1's complement of a number can be directly obtained by bitwise complementing of each bit, i.e. each 1 is replaced by a 0 and each 0 is replaced by a 1.
 - Example: X = 110010101
 - $X_1' = 0 \ 0 \ 1 \ 1 \ 0 \ 1 \ 1 \ 0$
- 2. The 2's complement of a number can be visually obtained as follows:
 - Scan the binary number from right to left.
 - 0's are replaced by 0's till the first 1 is encountered.
 - The first encountered 1 is replaced by a 1 but from this point onwards each bit is complemented replacing each 1 by a 0 and each 0 by a 1
 - Example: $X = 1 \ 1 \ 0 \ 0 \ 1 \ 0 \ 1 \ 0 \ 0$
 - $X_2' = 0.01101100$

Example

Find the 7's and the 8's complement of the following octal numbers:

- a- 6770
- b- 541.736

Solution:

a-
$$X = 6770 \rightarrow n = 4$$
,

•
$$X'_7 = (8^4 - ULP) - 6770$$
 = 7777 - 6770
= 1007

•
$$X'_8 = 8^4 - 6770$$
 = $10000 - 6770 = 1010$

• Alternatively,
$$X'_8 = X'_7 + ulp$$
 = 1007+ 0001= 1010

b-
$$X = 541.736 \rightarrow n=3, \rightarrow m=4$$

•
$$X'_7 = (8^3 - ULP) - 541.736$$
 = 777.7777 - 541.736 = 236.041

•
$$X'_8 = 8^3 - 541.736$$
 = $1000 - 541.736$ = 236.042

• Alternatively,
$$X'_8 = X'_7 + ulp$$
 = 236.041+ 0.001 = 236.042

Example

Find the F's and the 16's complement of the following HEX numbers:

- a- 3FA9
- b- 9B1.C70

Solution:

a-
$$X = 3FA9 \rightarrow n=4$$
.

•
$$X'_{F}=(16^4-ULP)-3FA9$$
 = $FFFF-3FA9$ = $C056$

•
$$X'_{16}=16^4-3FA9$$
 = $10000-3FA9$ = $C057$

• *Alternatively*,
$$X'_{16} = X'_F + ulp$$
 = C056+ 0001 = C057

b- X = 9B1.C70
$$\rightarrow n=3$$
. $\rightarrow m=3$

•
$$X'_F = (16^3 - ULP) - 9B1.C70$$
 = FFF.FFF - 9B1.C70= 64E.38F

•
$$X'_{16}=16^3-9B1.C70 = 1000-9B1.C70 = 64E.390$$

• Alternatively,
$$X'_{16} = X'_F + ulp = 64E.38F + 000.001 = 64E.390$$

Example

Show how the numbers +53 and -53 are represented in 8-bit registers using signed-magnitude, 1's complement and 2's complement representations.

	+53	-53
Signed Magnitude	0 0110101	1 0110101
1's Complement	0 0110101	1 1001010
2's Complement	0 0110101	1 1001011

Important Notes:

- 1. In <u>all</u> signed number representation methods, the leftmost bit indicates the sign of the number, i.e. it is considered as a <u>sign bit</u>
- 2. If the <u>sign bit</u> (leftmost) is 1, then the number is negative and if it is 0 the number is positive.

Comparison:

	Signed Magnitude	1's Complement	2's Complement
No. of 0's	2	2	1
110.0108	(±0)	(± 0)	(+0)
Symmetric	yes	yes	no
Largest +ive value	$+(2^{n-l}-1)$	$+(2^{n-1}-1)$	+(2 ⁿ⁻¹ -1)
Smallest -ive Value	$-(2^{n-1}-1)$	$-(2^{n-1}-1)$	- 2 ⁿ⁻¹

Quiz:

For the shown 4-bit numbers, write the corresponding decimal values in the indicated representation.

v	Un-	Signed	1's Comp	2's Comp
X	signed	Magnitude	(X ₁ ')	(X ₂ ')
0000				
0001				
0010				
0011				
0100				
0101				
0110				
0111				
1000				
1001				
1010				
1011				
1100				
1101				
1110				
1111				

End of Lessons Exercises

- 1. Find the binary representation in signed magnitude, 1's complement, and 2's complement for the following decimal numbers: +13, -13, +39, -39, +1, -1, +73 and -73. For all numbers, show the required representation for 6-bit and 8-bit registers
- 2. Indicate the decimal value corresponding to all 5-bit binary patterns if the binary pattern is interpreted as a number in the signed magnitude, 1's complement, and 2's complement representations.