Exceptions and 1/0

8.1 Objectives

After completing this lab, you will:

. Understand the exception mechanism in MIPS
. Understand Coprocessor 0O instructions

. Write exception handlers

. Understand Memory Mapped I/O

8.2 Exception Mechanism in MIPS

Branches and jumps change the control flow in gnaom. Exceptions also change the control flow.
The MIPS architecture calls @&ception anyunexpected change in control flow, regardless of its
source.

An exception is said to bg/nchronous if it is caused by an instruction in the runninggram.
Examples of synchronous exceptions are arithmekicemions, invalid memory addresses
generated by load and store instructions, anditigtpuctions.

An exception is said to kasynchronous if it is caused by an I/O device requesting thecpssor.
This is also known as a hardwargerrupt, which is not related to program execution. Inipts
can be caused by a variety of /O devices, sutcheakeyboard, timer, and disk controller.

When an exception happens, control is transfemeahexception handler, written specifically for

the purpose of dealing with exceptions. After exieguthe exception handler, control is returned
back to the program. The program continues astking happened. The exception handler appears
as a procedure called suddenly in the program matparameters and no return value.

The MIPS processor operates eitheuser or kernel mode. User programs (applications) run in
user mode. The CPU enters the kernel mode wherx@peon happens. The exception handling
mechanism is implemented I§oprocessor 0, which has several important registers, such as:
vaddr, status, cause, andEPC, which record information about an exception.

1. Vaddr ($8): Contains the invalid memory address caused &g, Istore, or fetch.
2. Status ($12): Contains the interrupt mask and enable bits lisd@w).

3. Cause ($13): Contains the type of exception and any penditgy(bee below).

4. EPC ($14): Contains the address of the instruction wheretteeption occurred.

8: Exceptions and 1/0

The MARS tool shows the values of registeraddr, status, cause, andepc under the
Coprocessor 0 tab, as shown in Figure 8.1.

[Registers | Coproc 1 Coproc 0

Name Number Value
$8 (vaddr) 8 0x00000000
$12 (status) 12 0x0000££11
$13 (cause) 11z 0x00000000
$14 (epc) 14 0x00000000

Figure 8.1: Coprocessor 0 registers in the MAR$ too

Examples of exceptions are shown in Figure 8.2. fliseé example initializes registefto with
ox7fffffff and$tl with 1. Theaddu instruction ignores overflow. Howeveadd detects and
causes an arithmetic overflow exception. The se@mample is about storing data at an illegal
address in memory. The third example is about t@adi word from a misaligned address in
memory. The last example is about inserting a lpeak (break instruction) inside the program.
All of these examples cause exceptions and regpeeial handling.

Examples of Exceptions Coprocessor 0 Registers
Arithmetic Overflow Exception (Registers | Coproc1 | Coproc 0 L
1li $to, ox7fffffff # $t0 = MAX_INT Name Number Value
1i $t1, 1 # $t1 = 1 $8 (vaddr) 8| 0x00000000
addu $t2, $to, $t1 # Ignores Overflow ||+ (status) EAnXIOOREEE
$13 (cause) 13| 0x00000030
add $t3, $to, $t1 # Detects Overflow ||:1; (opc) 14 0x00400010
Store Address Exception [Registers | Coproc1 | Coproc0 |
Cannot store at address 4 Name Number Value
1i $to, 4 $8 (vaddr) 8| 0x00000004
1i $a@, 5 $12 (status) 12| 0x0000££13
g $13 (cause) 13| 0x00000014
sw $a0, ($t0) $14 (epc) 14| 0x0040001c
Misaligned Load Address Exception (Registers [Coproc1 [iCoproc® L
.data = = e
ame umoer alue
arr: .word 12, 17 $8 (vaddr) 8| 0x10010001
e v $12 (status) 12 0x0000££13
la $to, arr $13 (cause) 13| 0x00000010
1w $t0, 1($t0) $14 (epc) 14| 0x00400028
Br\eakpoj_nt Exception | Registers I Coproc 1 Coproc 0 L
Caused by the break instruction Name Number Value
.text $8 (vaddr) 8| 0x00000000
$12 (status) 12| 0x0000££13
o $13 (cause) 13| 0x00000024
break $14 (epc) 14| 0x0040002c

Figure 8.2: Examples of exceptions and correspandatues of Coprocessor 0O registers

8: Exceptions and 1/0

The second column of Figure 8.2 shows Coprocessegi8ters when an exception happens. The
Exception Program CounteERC) register$14 stores the address of the instruction that catlsed
exception. The value OEPC in Figure 8.2 is@x00400010, which is the address of thadd
instruction that caused arithmetic overflow. 1t6g0040001c, which is the address aiw that
attempted to write to an illegal address in memdiris 9x00400028, which is the address diw

that generated a misaligned address in memory.

The cause register$13 provides information about the cause of an exoeggxception code) and
about pending interrupts, if any. The exceptionecisdstored in bits 2 to 6 of the cause registke T
bit fields of the cause register is shown in FigBu®&

15 14 13 12 11 10 9 8 6 5 4 3 2

Pending Interrupts Exception Code
Figure 8.3: Th&€ause Register$13

The MIPS architecture defines exception codes ifterént types of exceptions. Some are listed in
Figure 8.4. The MARS tool simulates some of theseption codes.

Code | Name Description
0O | INT Hardware Interrupt
4 | ADDRL Address error exception caused by loadstruction fetch
5 | ADDRS Address error exception caused by store
6 IBUS Bus error on instruction fetch
7 | DBUS Bus error on data load or store
8 | SYSCALL | System call exception caused by #lyscall instruction
9 BKPT Breakpoint exception caused by threeak instruction
10 | RI Reserved instruction exception
12 | OVF Arithmetic overflow exception
13 | TRAP Exception caused by a trap instruction
15 | FPE Floating-Point exception cause by a floapiamt instruction

Figure 8.4: Some of the MIPS exception codes

If a load, store, jump, or branch instruction getes an exception, themaddr (register$8)
contains the invalid memory address that causedexiception. Consider again the examples of
Figure 8.2, the illegal data addresswafthat caused the exceptiorviaddr = 0x00000004 and the
misaligned data address I that caused the exceptionvisddr = 0x10010001.

Thestatus (register$12) is shown in Figure 8.5. Bit O is the Interruptabie {E), which enables
or disables interrupts. Bit 1 is the Exception LUefEt). The EL bit is normally O, but is set to 1
after an exception occurs.

Theinterrupt mask field contains 8 bits and supports a bit for each ofsikenardware and two
software interrupt levels. A mask bit that is lowalé interrupts at that level to interrupt the
processor. A mask bit that is O disables interrapthat level. When an interrupt arrives, it stts

8: Exceptions and 1/0

interrupt pending bit in the cause register, eveth@ mask bit is disabled. When an interrupt is
pending, it will interrupt the processor when itask bit is subsequently enabled.

15 14 13 12 11 10 9 8 1 0
EL | TE

Interrupt Mask
Figure 8.5: Th&status Register$12

8.3 Coprocessor 0 Instructions

The MIPS architecture defines special instructitheg cause exceptions and switch the processor
from user to kernel mode. These arethap, break, andsyscall instructions:

Instruction Meaning

teq Rs, Rt Raise the trap exception if regisRa is equal to registeRt

tne Rs, Rt Raise the trap exception if regisRa is not equal to regist®t

tlt Rs, Rt Raise the trap exception if regisRx is less than regist@t

. .. There are other trap instructions not listed hsee Appendix B)
break code Raise the breakpoint exception. Code 1 is resdveitie debugger
syscall Raise the system call exception. Service numbspesified ingve

The trap instructionsteq, tne, ... etc.) raise the TRAP exception code 13. Bheak instruction
raises the breakpoint exception code 9. However, MARS simulator provides services for the
syscall instruction without raising an exception. On d s&tem, thesyscall instruction raises
the system call exception code 8, which is servimethe operating system.

When an exception occurs, the processor switch&erntel mode. Coprocessor 0 registers can be
accessed only when the processor is servicing eaption in kernel mode. Register values can be
transferred from and to coprocessor 0 using theviahg instructions. Load and store instructions
that transfer data between coprocessor 0 regiatersnemory are also available. These instructions
can be used when writing an exception handler.

After an exception is processed, the exception learan return back and resume the execution of
a program. Theret instruction is used to return from an exception.

Instruction Meaning
mfcO Rd, COsrc Move from Coprocessor 0 regis@src into destination regist®d
mtcO Rs, Codst Move to Coprocessor 0 regis&dst the value of registeRs

lwco Codst, addr | Load a word from memory into Coprocessor 0 regiceelst

swc@ COsrc, addr | Store Coprocessor O regis@src in memory

eret ResetEL = @ (back to user mode) and retuRC = EPC

8: Exceptions and 1/0

8.4 Exception Handlers

The layout of a MIPS program is shown in Figure 86e Operating System appears in the upper
half of the address space, which can only be aedesken the processor is running in kernel mode.
The OS kernel text segment starts at addes8©000000 and the kernel data segment starts at
addres®x90000000. The last segment of the address space is mappé@ tevices, starting at
addressexffffeee0. This is known as Memory-Mapped /O (MMIO). Thefaldt memory
configuration is shown in Figure 8.6. It is alscspible to change the memory configuration under
the MARS tool settings.

oxtfffooos | Memory-Mapped I/O R
Kernel Data Segment)
Operating
9x90000000
System
Kernel Text Segment
0x80000000)
Stack Segment Stack grows
\[, Downwards
Dynamic Area
0x10040000 Data Segment
0Xx10000000 Static Area
Text Segment
0x00400000
0x00000000 Reserved

Figure 8.6: The layout of a MIPS program in memory

When a function is called usinal, control is transferred at the address providethbyinstruction
and the return address is saved in regitar. In the case of an exception there is no expiait

In MIPS, when an exception occurs, control is tfamed at the fixed addre€x80000180. The
exception handler must be located at that address.

The exception return address cannot be savéeansince it will modify a return address that has
been placed in that register before the exceplibe. Exception Program Countd&PC) register is
used to store the address of the instruction tlagtexecuting when the exception was generated.

An exception handler can be written in the sanme d8 the regular program, or in a separate file.
The exception handler must start at the fixed asBe80000180. This address is in the kernel
text segment. If there is no instruction at addec80000180, MARS will terminate the MIPS
program with an appropriate error message. An el@ampan exception handler that prints the
address of the instruction that caused the exaepia the exception code is shown below:

8: Exceptions and 1/0

Exception Handler starts here

.ktext ©0x800001860

move $ko, $at # $ko = $at

la $k1, _regs # $k1 = address of _regs

Sw $ko, o($k1) # save $at

sw $vo, 4(%kl) # save $vO

Sw $a0, 8(%$k1) # save $a0

la $a0, _msgl # $a0 = address of _msgl

1i $vo, 4 # $vO = service 4

syscall # Print _msgl

mfco $a0, $14 # $a@ = EPC

1i $vo, 34 # $vO = service 34

syscall # print EPC in hexadecimal

la $a0, _msg2 # $a0 = address of _msg2

1i $vo, 4 # $vO = service 4

syscall # Print _msg2

mfco $a0, $13 # $a0 = cause

srl $a0, $%$a0, 2 # shift right by 2 bits

andi $a0, %$a0, 31 # $a0 = exception code

1i $vo, 1 # $vO = service 1

syscall # Print exception code

la $a0, _msg3 # $a0 = address of _msg3

1i $vo, 4 # $vO = service 4

syscall # Print _msg3

la $k1, _regs # $k1 = address of _regs

1w $at, o(%$k1) # restore $at

1w $vo, 4(%k1l) # restore $vO

1w $a0, 8(%$k1) # restore $a0

mtco $zero, $8 # clear vaddr

mfco $ko, $14 # $ko = EPC

addiu $ko, $ko, 4 # Increment $ko by 4

mtc® $ko, $14 # EPC = point to next instruction

eret # exception return: PC = EPC

kernel data is stored here

.kdata

_msgl: .asciiz "\nException caused by instruction at address: "

_msg2: .asciiz "\nException Code = "

_msg3: .asciiz "\nIgnore and continue program ...\n"

_regs: .word 0:3 # Space for saved registers

Figure 8.7: Example of an exception handler

: Exceptions and 1I/0

Writing an exception handler is no easy job. Thitiga should be done are:

» Save registers before modifying them by the exoegtandler.

* Read the coprocessor registers to determine wicapérn has occurred.

» Execute the specific handler for the exception cadaally via a jump table.
* Restore all the registers that were modified byetkeeption handler.

» Restart the user-mode program, or kill the progifabhtannot be restarted.

The exception handler must preserve the value ¢f register it may modify, such that the
execution of the interrupted program can continua kter time. The MIPS architecture reserves
register$26 and$27 ($ke and$k1) for the use of the exception handler. The hancher modify
these two registers without having to save therst.fiAdditional registers should be saved in
memory before they can be modified by the exceptimmdler. For example, the exception handler
of Figure 8.7 saves registgat, $a0, and$ve in the kernel data segment.

The EPC contains the address of the instruction that reseted the software exception. The
return address must be incremented by 4 to avaduwgig the same instruction again. The return
sequence from a software exception can be writgeolbws:

mfco $ko, $14 # $ko = EPC

addiu $ke, $ko, 4 # increment $ko by 4

mtco $ko, $14 # EPC = point to next instruction
eret # exception return: PC = EPC

Rather than writing the exception handler at the @nevery MIPS program, it is better to write the
exception handler in a separate file, then operiEReeption Handler ...” dialog box in the MARS
settings and include the exception handler filaliryour MIPS programs.

8.5 Memory Mapped I/O

In any computer system, input and output devicesatside the processor chip. A MIPS processor
communicates with 1/0 devices using a techniquédahemory-mapped 1/0. Using memory-
mapped /O, there is no need to add additionatungbns to the MIPS instruction set. Adw or

sw instruction with an effective address exffffeeee or greater willnot access the main
memory. These addresses are reserved to make @aoaeggsters in I/O devices. The 1/0O device
controllers must be connected to the system I/Q &mishown in Figure 8.8.

Unique address decode logic is associated with B@chegister. When the MIPS processor reads
from or writes to one of these addresses, the psoceis actually reading from or writing to a
selected register in one of the 1/0 device corgrsll The processor can read data about the state of
the I/O device and write control data to changesthée of the device.

The two registers associated with the keyboardhrar@eceiver control and data registers. These are
mapped to address@xffff0000 and exffff0004 respectively. To communicate with the
keyboard, the processor reads the control regidetong as theeady bit is zero, the processor
keeps reading the control register in a loop. &pisroach is known gmlling.

8: Exceptions and 1/0

Oxffff0000
VIS { | | | Control
Processor Interrupt Enable _'M_ Ready Keyboard
Oxffff0004
| |8 bits| Data
Main
Memory Oxffff0008
I | | | Control
Interrupt Enable i Ready :
Disk (DMA) Display
Oxffff000c
,= |8 bits] Data

Figure 8.8: MIPS System 1/O Bus

When a key is pressed, the data register storeshheacter and theeady bit is set. Then the
processor reads the character. The following MIB& qrovides an example of memory-mapped
access to the keyboard control and data regigtayolling:

1i $to, oxffffooo00 # Address of keyboard control register

1li $t1, o # Initialize wait_counter = 0
wait_keyboard:

1w $t2, (%$to) # Read the keyboard control register

andi $t2, $t2, 1 # Extract ready bit

addiu $t1, $t1, 1 # wait_counter++ (counts iterations)

beqz $t2, wait_keyboard # loop back while not ready

#

1w $a0, 4($t0) Get character from keyboard

The rate that characters are typed on the keylisarery slow compared to the rate that the MIPS
processor can execute instructions. Typically, ionB of instructions are executed until a key is
pressed. Registétl keeps track of the number of iterations inwladt_keyboard loop. Thelw
instruction outside the loop gets the charactanftbe keyboard data register, which also clears the
ready bit. A MIPS programmer can only read the keyt data register. Writing to the keyboard
data register has no effect.

Communicating with the display controller can benelwia polling in a similar way. The display
registers are mapped to addregpesf 0008 andoxffff000c. As long as the ready bit is zero,
the processor keeps reading it in a loop. We moisstore a character in the data register until the
display is ready to receive it. The display conéotlears the ready bit when a character is stored
the data register. It then sets the ready bit aghier the character is displayed and it is ready t
receive the next character to display.

1i $to, oxffffooes # Address of display control register
wait_display:

1w $t2, (%$to) # Read the display control register

andi $t2, $t2, 1 # Extract ready bit

beqz $t2, wait_display # loop back while not ready

sw $a0, 4(%t9) # Send character to display

8: Exceptions and 1/0

The MARS simulator provides a tool to simulate kiegboard and display, as shown in Figure 8.9.
Press “Connect to MIPS” to connect this tool to k&S program. You must activate this tool to
communicate character-by-character with the keyb@and display. The code that communicates
with 1/O devices at this level is known aslevice driver. This is one of the advantages of using a
simulator to learn how to communicate directly wiQ devices.

~

n Keyboard and Display MMIO Simulator, Version 1.4 X

Keyboard and Display MMIO Simulator
DISPLAY: Store to Transmitter Data 0xffff000c, cursor 0, area 97 x 2

[v' Delay length: 5 instruction executions

Font [v] DAD |Fixed transmitter delay, select using slider

KEYBOARD: Characters typed here are stored to Receiver Data 0xffff0004

Tool Control
Connect to MIPS Reset Help Close

Figure 8.9: Keyboard and Display MMIO Simulator enthe MARS Tools

The main drawback of polling is that it keeps thecpssor busy, wasting millions of cycles before
the 1/0O device (such as the keyboard) becomes refadglternative to polling is to use interrupts.
Interrupts can be enabled for the keyboard byrgetthe Interrupt Enable bit in the keyboard
control register as follows:

1i $to, oxffffooo00 # Address of keyboard control register
1i $t1, 2
Sw $t1, (%$to) # Enable keyboard interrupt

When a key is pressed, the keyboard sends anuptesignal to the MIPS processor and sets the
cause register$13 to the valuedx00000100. Bit 8 in the cause register is set to indicatd the
keyboard has interrupted the processor. An intérdnapdler must be written to read the character
from the keyboard and returning its value to thenfaog program. This requires modifying the code
of the exception handler shown in Figure 8.7 td deth interrupts.

The Disk and Ethernet I/O device controllers usee@iMemory Access (DMA) to transfer blocks
of data directly between the device and memorycésrollers become more complex, more than
two registers are associated with each device altgrtr These devices are not part of the MARS
simulator. In general, the supplier of any I/O @evinust provide programmers with an explanation
of how to properly communicate with the 1/0 devaantroller.

8: Exceptions and 1/0

8.6 In-Lab Tasks

1. Just before dividings@ by $s1, the programmer might want to check tfafl is not equal to
zero. Useteq $s1, $zero (trap if equal) to cause an exception. What isathdress of theeq
instruction in your program? What is the value lof ¢ause register, the exception code, and
theepc when the exception occurs?

2. Uselb $t1, 5(%$zero) to cause an exception when attempting to loadte fogm address.
What is the address of thib instruction in your program? What is the valuetlud cause
register, the exception code, Naddr, and theepc when the exception occurs?

3. Write a complete program that uses the exceptedler of Figure 8.7 to generate multiple
exceptions. The exception handler should reportatigress of the instruction that caused the
exception, the exception code, and should resumeiibgram after handling each exception.
Insert instructions that cause overflow, invalidnoey addresses, trap and break instructions.

4. Modify the exception handler of Figure 8.7 tanpthe invalidvaddr, when it is caused by a
load, store, or instruction fetch (exception coder 4). Test your exception handler by writing
load and store instructions that generate invakdnory addresses.

5. Using memory-mapped I/O and polling, write adtion print_string that prints a string on
the display, without using any system call. Theradsl of the string is passed in regie®
and the string must be null-terminated. Test thrsction by calling it from the main function.
Make sure to activate the “Keyboard and Display NIN8imulator”.

6. Using memory-mapped I/O and polling, write agsean that reads characters directly from the
keyboard. To demonstrate how slow the keyboardcees, print the character pressed and the
number of iterations after exiting theait_keyboard loop. Repeat the execution of the
program until the newline character is pressed. éalire to activate the “Keyboard and
Display MMIO Simulator” and to run the MARS simubatat maximum speed.

7. If the keyboard interrupt enable bit is set thlee keyboard will interrupt the processor each
time a key is pressed. Write a simple interruptdiemthat returns the character pressed in
registersve. Rewrite the main function of question 6 usingl@srd interrupts.

8.7 Bonus Problem

8. Using memory-mapped I/O and polling, write adtion read_string that reads a string
directly from the keyboard. The function will gdtaracters from the keyboard and stores them
in an array pointed by regist$a@. The function should continue untit1 characters are read
or the newline character is pressed. The parammesdrould be passed in registkail. The
function should insert a NULL byte at the end o 8tring. It should return the actual number
of characters read in registpv@. Make sure to activate the “Keyboard and Displaylika
Simulator”. Write a main function to tesead_string repeatedly, and to print the string after
each call.

8: Exceptions and 1/0 Page 10

