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8 Exceptions and I/O 

 

8.1 Objectives 

After completing this lab, you will: 

• Understand the exception mechanism in MIPS 

• Understand Coprocessor 0 instructions 

• Write exception handlers 

• Understand Memory Mapped I/O 
 

8.2 Exception Mechanism in MIPS 

Branches and jumps change the control flow in a program. Exceptions also change the control flow. 
The MIPS architecture calls an exception any unexpected change in control flow, regardless of its 
source. 

An exception is said to be synchronous if it is caused by an instruction in the running program. 
Examples of synchronous exceptions are arithmetic exceptions, invalid memory addresses 
generated by load and store instructions, and trap instructions. 

An exception is said to be asynchronous if it is caused by an I/O device requesting the processor. 
This is also known as a hardware interrupt, which is not related to program execution. Interrupts 
can be caused by a variety of I/O devices, such as the keyboard, timer, and disk controller. 

When an exception happens, control is transferred to an exception handler, written specifically for 
the purpose of dealing with exceptions. After executing the exception handler, control is returned 
back to the program. The program continues as if nothing happened. The exception handler appears 
as a procedure called suddenly in the program with no parameters and no return value. 

The MIPS processor operates either in user or kernel mode. User programs (applications) run in 
user mode. The CPU enters the kernel mode when an exception happens. The exception handling 
mechanism is implemented by Coprocessor 0, which has several important registers, such as: 

vaddr, status, cause, and EPC, which record information about an exception. 

1. Vaddr ($8): Contains the invalid memory address caused by load, store, or fetch. 

2. Status ($12): Contains the interrupt mask and enable bits (see below). 

3. Cause ($13): Contains the type of exception and any pending bits (see below). 

4. EPC ($14): Contains the address of the instruction when the exception occurred. 
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The MARS tool shows the values of registers: vaddr, status, cause, and epc under the 
Coprocessor 0 tab, as shown in Figure 8.1. 

 

Figure 8.1: Coprocessor 0 registers in the MARS tool 

Examples of exceptions are shown in Figure 8.2. The first example initializes register $t0 with 

0x7fffffff and $t1 with 1. The addu instruction ignores overflow. However, add detects and 
causes an arithmetic overflow exception. The second example is about storing data at an illegal 
address in memory. The third example is about loading a word from a misaligned address in 

memory. The last example is about inserting a breakpoint (break instruction) inside the program. 
All of these examples cause exceptions and require special handling. 

Examples of Exceptions Coprocessor 0 Registers 

# Arithmetic Overflow Exception 

li   $t0, 0x7fffffff  # $t0 = MAX_INT 

li   $t1, 1           # $t1 = 1 

addu $t2, $t0, $t1    # Ignores Overflow 

add  $t3, $t0, $t1    # Detects Overflow 
 

# Store Address Exception 

# Cannot store at address 4 

li   $t0, 4 

li   $a0, 5 

sw   $a0, ($t0) 
 

# Misaligned Load Address Exception 

.data 

arr: .word 12, 17 

. . . 

la   $t0, arr 

lw   $t0, 1($t0)  

# Breakpoint Exception 

# Caused by the break instruction 

.text 

. . . 

break 
 

Figure 8.2: Examples of exceptions and corresponding values of Coprocessor 0 registers 
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The second column of Figure 8.2 shows Coprocessor 0 registers when an exception happens. The 

Exception Program Counter (EPC) register $14 stores the address of the instruction that caused the 

exception. The value of EPC in Figure 8.2 is 0x00400010, which is the address of the add 

instruction that caused arithmetic overflow. It is 0x0040001c, which is the address of sw that 

attempted to write to an illegal address in memory. It is 0x00400028, which is the address of lw 
that generated a misaligned address in memory. 

The cause register $13 provides information about the cause of an exception (exception code) and 
about pending interrupts, if any. The exception code is stored in bits 2 to 6 of the cause register. The 
bit fields of the cause register is shown in Figure 8.3. 

       15 14 13 12 11 10 9 8  6 5 4 3 2   

                

       Pending Interrupts  Exception Code   

Figure 8.3: The Cause Register $13 

The MIPS architecture defines exception codes for different types of exceptions. Some are listed in 
Figure 8.4. The MARS tool simulates some of these exception codes. 

Code Name Description 

0 INT Hardware Interrupt 
4 ADDRL Address error exception caused by load or instruction fetch 
5 ADDRS Address error exception caused by store 
6 IBUS Bus error on instruction fetch 
7 DBUS Bus error on data load or store 
8 SYSCALL System call exception caused by the syscall instruction 

9 BKPT Breakpoint exception caused by the break instruction 

10 RI Reserved instruction exception 
12 OVF Arithmetic overflow exception 
13 TRAP Exception caused by a trap instruction 
15 FPE Floating-Point exception cause by a floating-point instruction 

Figure 8.4: Some of the MIPS exception codes 

If a load, store, jump, or branch instruction generates an exception, then vaddr (register $8) 
contains the invalid memory address that caused the exception. Consider again the examples of 

Figure 8.2, the illegal data address of sw that caused the exception is vaddr = 0x00000004 and the 

misaligned data address of lw that caused the exception is vaddr = 0x10010001. 

The status (register $12) is shown in Figure 8.5. Bit 0 is the Interrupt Enable (IE), which enables 

or disables interrupts. Bit 1 is the Exception Level (EL). The EL bit is normally 0, but is set to 1 
after an exception occurs. 

The interrupt mask field contains 8 bits and supports a bit for each of the six hardware and two 
software interrupt levels. A mask bit that is 1 allows interrupts at that level to interrupt the 
processor. A mask bit that is 0 disables interrupts at that level. When an interrupt arrives, it sets its 
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interrupt pending bit in the cause register, even if the mask bit is disabled. When an interrupt is 
pending, it will interrupt the processor when its mask bit is subsequently enabled. 

       15 14 13 12 11 10 9 8       1 0 

          EL IE 

       Interrupt Mask     

Figure 8.5: The Status Register $12 

8.3 Coprocessor 0 Instructions 

The MIPS architecture defines special instructions that cause exceptions and switch the processor 

from user to kernel mode. These are the trap, break, and syscall instructions: 

Instruction Meaning 

teq Rs, Rt Raise the trap exception if register Rs is equal to register Rt 

tne Rs, Rt Raise the trap exception if register Rs is not equal to register Rt 

tlt Rs, Rt Raise the trap exception if register Rs is less than register Rt 

. . . There are other trap instructions not listed here (see Appendix B) 

break code Raise the breakpoint exception. Code 1 is reserved for the debugger 

syscall Raise the system call exception. Service number is specified in $v0 

The trap instructions (teq, tne, … etc.) raise the TRAP exception code 13. The break instruction 
raises the breakpoint exception code 9. However, the MARS simulator provides services for the 

syscall instruction without raising an exception. On a real system, the syscall instruction raises 
the system call exception code 8, which is serviced by the operating system. 

When an exception occurs, the processor switches to kernel mode. Coprocessor 0 registers can be 
accessed only when the processor is servicing an exception in kernel mode. Register values can be 
transferred from and to coprocessor 0 using the following instructions. Load and store instructions 
that transfer data between coprocessor 0 registers and memory are also available. These instructions 
can be used when writing an exception handler. 

After an exception is processed, the exception handler can return back and resume the execution of 

a program. The eret instruction is used to return from an exception. 

Instruction Meaning 

mfc0 Rd, C0src Move from Coprocessor 0 register C0src into destination register Rd 

mtc0 Rs, C0dst Move to Coprocessor 0 register C0dst the value of register Rs  

lwc0 C0dst, addr Load a word from memory into Coprocessor 0 register C0dst 

swc0 C0src, addr Store Coprocessor 0 register C0src in memory 

eret Reset EL = 0 (back to user mode) and return: PC = EPC 
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8.4 Exception Handlers 

The layout of a MIPS program is shown in Figure 8.6. The Operating System appears in the upper 
half of the address space, which can only be accessed when the processor is running in kernel mode. 

The OS kernel text segment starts at address 0x80000000 and the kernel data segment starts at 

address 0x90000000. The last segment of the address space is mapped to I/O devices, starting at 

address 0xffff0000. This is known as Memory-Mapped I/O (MMIO). The default memory 
configuration is shown in Figure 8.6. It is also possible to change the memory configuration under 
the MARS tool settings. 

 

Figure 8.6: The layout of a MIPS program in memory 

When a function is called using jal, control is transferred at the address provided by the instruction 

and the return address is saved in register $ra. In the case of an exception there is no explicit call. 

In MIPS, when an exception occurs, control is transferred at the fixed address 0x80000180. The 
exception handler must be located at that address. 

The exception return address cannot be saved in $ra since it will modify a return address that has 

been placed in that register before the exception. The Exception Program Counter (EPC) register is 
used to store the address of the instruction that was executing when the exception was generated. 

An exception handler can be written in the same file as the regular program, or in a separate file. 

The exception handler must start at the fixed address 0x80000180. This address is in the kernel 

text segment. If there is no instruction at address 0x80000180, MARS will terminate the MIPS 
program with an appropriate error message. An example of an exception handler that prints the 
address of the instruction that caused the exception and the exception code is shown below: 
 

Stack Segment 

 

Dynamic Area  

Stack grows 

Downwards 

Static Area 

Data Segment 

Memory-Mapped I/O 

Kernel Data Segment 
 

0x00000000 
Reserved 

0x10000000 

Text Segment 

0x90000000 

0x80000000 

0x00400000 

Operating 

System 

Kernel Text Segment 

0x10040000 

0xffff0000 



 

8: Exceptions and I/O Page 6 

 

# Exception Handler starts here 

.ktext  0x80000180 

move $k0, $at # $k0 = $at 

la $k1, _regs # $k1 = address of _regs 

sw $k0, 0($k1) # save $at 

sw $v0, 4($k1) # save $v0 

sw $a0, 8($k1) # save $a0 

la $a0, _msg1 # $a0 = address of _msg1 

li $v0, 4 # $v0 = service 4 

syscall # Print _msg1 

mfc0 $a0, $14 # $a0 = EPC 

li $v0, 34 # $v0 = service 34 

syscall # print EPC in hexadecimal 

la $a0, _msg2 # $a0 = address of _msg2 

li $v0, 4 # $v0 = service 4 

syscall # Print _msg2 

mfc0 $a0, $13 # $a0 = cause 

srl $a0, $a0, 2 # shift right by 2 bits 

andi $a0, $a0, 31 # $a0 = exception code 

li $v0, 1 # $v0 = service 1 

syscall # Print exception code 

la $a0, _msg3 # $a0 = address of _msg3 

li $v0, 4 # $v0 = service 4 

syscall # Print _msg3 

la $k1, _regs # $k1 = address of _regs 

lw $at, 0($k1) # restore $at 

lw $v0, 4($k1) # restore $v0 

lw $a0, 8($k1) # restore $a0 

mtc0 $zero, $8 # clear vaddr 

mfc0 $k0, $14 # $k0 = EPC 

addiu $k0, $k0, 4 # Increment $k0 by 4 

mtc0 $k0, $14 # EPC = point to next instruction 

eret  # exception return: PC = EPC 

# kernel data is stored here 

.kdata 

_msg1: .asciiz   "\nException caused by instruction at address: " 

_msg2: .asciiz   "\nException Code = " 

_msg3: .asciiz   "\nIgnore and continue program ...\n" 

_regs: .word 0:3 # Space for saved registers 

Figure 8.7: Example of an exception handler 
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Writing an exception handler is no easy job. Things that should be done are: 

• Save registers before modifying them by the exception handler. 

• Read the coprocessor registers to determine what exception has occurred. 

• Execute the specific handler for the exception code, usually via a jump table. 

• Restore all the registers that were modified by the exception handler. 

• Restart the user-mode program, or kill the program if it cannot be restarted. 

The exception handler must preserve the value of any register it may modify, such that the 
execution of the interrupted program can continue at a later time. The MIPS architecture reserves 

register $26 and $27 ($k0 and $k1) for the use of the exception handler. The handler can modify 
these two registers without having to save them first. Additional registers should be saved in 
memory before they can be modified by the exception handler. For example, the exception handler 

of Figure 8.7 saves register $at, $a0, and $v0 in the kernel data segment. 

The EPC contains the address of the instruction that has generated the software exception. The 
return address must be incremented by 4 to avoid executing the same instruction again. The return 
sequence from a software exception can be written as follows: 

mfc0 $k0, $14 # $k0 = EPC 

addiu $k0, $k0, 4 # increment $k0 by 4 

mtc0 $k0, $14 # EPC = point to next instruction 

eret  # exception return: PC = EPC 

Rather than writing the exception handler at the end of every MIPS program, it is better to write the 
exception handler in a separate file, then open the “Exception Handler …” dialog box in the MARS 
settings and include the exception handler file in all your MIPS programs. 

8.5 Memory Mapped I/O 

In any computer system, input and output devices are outside the processor chip. A MIPS processor 
communicates with I/O devices using a technique called memory-mapped I/O. Using memory-

mapped I/O, there is no need to add additional instructions to the MIPS instruction set. Any lw or 

sw instruction with an effective address of 0xffff0000 or greater will not access the main 
memory. These addresses are reserved to make access to registers in I/O devices. The I/O device 
controllers must be connected to the system I/O bus, as shown in Figure 8.8. 

Unique address decode logic is associated with each I/O register. When the MIPS processor reads 
from or writes to one of these addresses, the processor is actually reading from or writing to a 
selected register in one of the I/O device controllers. The processor can read data about the state of 
the I/O device and write control data to change the state of the device. 

The two registers associated with the keyboard are the receiver control and data registers. These are 

mapped to addresses 0xffff0000 and 0xffff0004 respectively. To communicate with the 
keyboard, the processor reads the control register. As long as the ready bit is zero, the processor 
keeps reading the control register in a loop. This approach is known as polling. 
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Figure 8.8: MIPS System I/O Bus 

When a key is pressed, the data register stores the character and the ready bit is set. Then the 
processor reads the character. The following MIPS code provides an example of memory-mapped 
access to the keyboard control and data registers via polling: 

li $t0, 0xffff0000 # Address of keyboard control register 

li $t1, 0 # Initialize wait_counter = 0 

wait_keyboard: 

lw $t2, ($t0) # Read the keyboard control register 

andi $t2, $t2, 1 # Extract ready bit 

addiu $t1, $t1, 1 # wait_counter++ (counts iterations) 

beqz $t2, wait_keyboard # loop back while not ready 

lw $a0, 4($t0) # Get character from keyboard 

The rate that characters are typed on the keyboard is very slow compared to the rate that the MIPS 
processor can execute instructions. Typically, millions of instructions are executed until a key is 

pressed. Register $t1 keeps track of the number of iterations in the wait_keyboard loop. The lw 
instruction outside the loop gets the character from the keyboard data register, which also clears the 
ready bit. A MIPS programmer can only read the keyboard data register. Writing to the keyboard 
data register has no effect. 

Communicating with the display controller can be done via polling in a similar way. The display 

registers are mapped to addresses 0xffff0008 and 0xffff000c. As long as the ready bit is zero, 
the processor keeps reading it in a loop. We must not store a character in the data register until the 
display is ready to receive it. The display controller clears the ready bit when a character is stored in 
the data register. It then sets the ready bit again after the character is displayed and it is ready to 
receive the next character to display. 

li $t0, 0xffff0008 # Address of display control register 

wait_display: 

lw $t2, ($t0) # Read the display control register 

andi $t2, $t2, 1 # Extract ready bit 

beqz $t2, wait_display # loop back while not ready 

sw $a0, 4($t0) # Send character to display 
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The MARS simulator provides a tool to simulate the keyboard and display, as shown in Figure 8.9. 
Press “Connect to MIPS” to connect this tool to the MIPS program. You must activate this tool to 
communicate character-by-character with the keyboard and display. The code that communicates 
with I/O devices at this level is known as a device driver. This is one of the advantages of using a 
simulator to learn how to communicate directly with I/O devices. 

 

Figure 8.9: Keyboard and Display MMIO Simulator under the MARS Tools 

The main drawback of polling is that it keeps the processor busy, wasting millions of cycles before 
the I/O device (such as the keyboard) becomes ready. An alternative to polling is to use interrupts. 
Interrupts can be enabled for the keyboard by setting the Interrupt Enable bit in the keyboard 
control register as follows: 

li $t0, 0xffff0000 # Address of keyboard control register 

li $t1, 2 

sw $t1, ($t0) # Enable keyboard interrupt 

When a key is pressed, the keyboard sends an interrupt signal to the MIPS processor and sets the 

cause register $13 to the value 0x00000100. Bit 8 in the cause register is set to indicate that the 
keyboard has interrupted the processor. An interrupt handler must be written to read the character 
from the keyboard and returning its value to the running program. This requires modifying the code 
of the exception handler shown in Figure 8.7 to deal with interrupts. 

The Disk and Ethernet I/O device controllers use Direct Memory Access (DMA) to transfer blocks 
of data directly between the device and memory. As controllers become more complex, more than 
two registers are associated with each device controller. These devices are not part of the MARS 
simulator. In general, the supplier of any I/O device must provide programmers with an explanation 
of how to properly communicate with the I/O device controller. 
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8.6 In-Lab Tasks 

1. Just before dividing $s0 by $s1, the programmer might want to check that $s1 is not equal to 

zero. Use teq $s1, $zero (trap if equal) to cause an exception. What is the address of the teq 

instruction in your program? What is the value of the cause register, the exception code, and 

the epc when the exception occurs? 

2. Use lb $t1, 5($zero) to cause an exception when attempting to load a byte from address 5. 

What is the address of the lb instruction in your program? What is the value of the cause 

register, the exception code, the vaddr, and the epc when the exception occurs? 

3. Write a complete program that uses the exception handler of Figure 8.7 to generate multiple 
exceptions. The exception handler should report the address of the instruction that caused the 
exception, the exception code, and should resume the program after handling each exception. 
Insert instructions that cause overflow, invalid memory addresses, trap and break instructions. 

4. Modify the exception handler of Figure 8.7 to print the invalid vaddr, when it is caused by a 
load, store, or instruction fetch (exception code 4 or 5). Test your exception handler by writing 
load and store instructions that generate invalid memory addresses. 

5. Using memory-mapped I/O and polling, write a function print_string that prints a string on 

the display, without using any system call. The address of the string is passed in register $a0 
and the string must be null-terminated. Test this function by calling it from the main function. 
Make sure to activate the “Keyboard and Display MMIO Simulator”. 

6. Using memory-mapped I/O and polling, write a program that reads characters directly from the 
keyboard. To demonstrate how slow the keyboard device is, print the character pressed and the 

number of iterations after exiting the wait_keyboard loop. Repeat the execution of the 
program until the newline character is pressed. Make sure to activate the “Keyboard and 
Display MMIO Simulator” and to run the MARS simulator at maximum speed. 

7. If the keyboard interrupt enable bit is set then the keyboard will interrupt the processor each 
time a key is pressed. Write a simple interrupt handler that returns the character pressed in 

register $v0. Rewrite the main function of question 6 using keyboard interrupts. 

8.7 Bonus Problem 

8. Using memory-mapped I/O and polling, write a function read_string that reads a string 
directly from the keyboard. The function will get characters from the keyboard and stores them 

in an array pointed by register $a0. The function should continue until n-1 characters are read 

or the newline character is pressed. The parameter n should be passed in register $a1. The 
function should insert a NULL byte at the end of the string. It should return the actual number 

of characters read in register $v0. Make sure to activate the “Keyboard and Display MMIO 

Simulator”. Write a main function to test read_string repeatedly, and to print the string after 
each call. 


