

8: Exceptions and I/O Page 1

8 Exceptions and I/O

8.1 Objectives

After completing this lab, you will:

• Understand the exception mechanism in MIPS

• Understand Coprocessor 0 instructions

• Write exception handlers

• Understand Memory Mapped I/O

8.2 Exception Mechanism in MIPS

Branches and jumps change the control flow in a program. Exceptions also change the control flow.
The MIPS architecture calls an exception any unexpected change in control flow, regardless of its
source.

An exception is said to be synchronous if it is caused by an instruction in the running program.
Examples of synchronous exceptions are arithmetic exceptions, invalid memory addresses
generated by load and store instructions, and trap instructions.

An exception is said to be asynchronous if it is caused by an I/O device requesting the processor.
This is also known as a hardware interrupt, which is not related to program execution. Interrupts
can be caused by a variety of I/O devices, such as the keyboard, timer, and disk controller.

When an exception happens, control is transferred to an exception handler, written specifically for
the purpose of dealing with exceptions. After executing the exception handler, control is returned
back to the program. The program continues as if nothing happened. The exception handler appears
as a procedure called suddenly in the program with no parameters and no return value.

The MIPS processor operates either in user or kernel mode. User programs (applications) run in
user mode. The CPU enters the kernel mode when an exception happens. The exception handling
mechanism is implemented by Coprocessor 0, which has several important registers, such as:

vaddr, status, cause, and EPC, which record information about an exception.

1. Vaddr ($8): Contains the invalid memory address caused by load, store, or fetch.

2. Status ($12): Contains the interrupt mask and enable bits (see below).

3. Cause ($13): Contains the type of exception and any pending bits (see below).

4. EPC ($14): Contains the address of the instruction when the exception occurred.

8: Exceptions and I/O Page 2

The MARS tool shows the values of registers: vaddr, status, cause, and epc under the
Coprocessor 0 tab, as shown in Figure 8.1.

Figure 8.1: Coprocessor 0 registers in the MARS tool

Examples of exceptions are shown in Figure 8.2. The first example initializes register $t0 with

0x7fffffff and $t1 with 1. The addu instruction ignores overflow. However, add detects and
causes an arithmetic overflow exception. The second example is about storing data at an illegal
address in memory. The third example is about loading a word from a misaligned address in

memory. The last example is about inserting a breakpoint (break instruction) inside the program.
All of these examples cause exceptions and require special handling.

Examples of Exceptions Coprocessor 0 Registers

Arithmetic Overflow Exception

li $t0, 0x7fffffff # $t0 = MAX_INT

li $t1, 1 # $t1 = 1

addu $t2, $t0, $t1 # Ignores Overflow

add $t3, $t0, $t1 # Detects Overflow

Store Address Exception

Cannot store at address 4

li $t0, 4

li $a0, 5

sw $a0, ($t0)

Misaligned Load Address Exception

.data

arr: .word 12, 17

. . .

la $t0, arr

lw $t0, 1($t0)

Breakpoint Exception

Caused by the break instruction

.text

. . .

break

Figure 8.2: Examples of exceptions and corresponding values of Coprocessor 0 registers

8: Exceptions and I/O Page 3

The second column of Figure 8.2 shows Coprocessor 0 registers when an exception happens. The

Exception Program Counter (EPC) register $14 stores the address of the instruction that caused the

exception. The value of EPC in Figure 8.2 is 0x00400010, which is the address of the add

instruction that caused arithmetic overflow. It is 0x0040001c, which is the address of sw that

attempted to write to an illegal address in memory. It is 0x00400028, which is the address of lw
that generated a misaligned address in memory.

The cause register $13 provides information about the cause of an exception (exception code) and
about pending interrupts, if any. The exception code is stored in bits 2 to 6 of the cause register. The
bit fields of the cause register is shown in Figure 8.3.

 15 14 13 12 11 10 9 8 6 5 4 3 2

 Pending Interrupts Exception Code

Figure 8.3: The Cause Register $13

The MIPS architecture defines exception codes for different types of exceptions. Some are listed in
Figure 8.4. The MARS tool simulates some of these exception codes.

Code Name Description

0 INT Hardware Interrupt
4 ADDRL Address error exception caused by load or instruction fetch
5 ADDRS Address error exception caused by store
6 IBUS Bus error on instruction fetch
7 DBUS Bus error on data load or store
8 SYSCALL System call exception caused by the syscall instruction

9 BKPT Breakpoint exception caused by the break instruction

10 RI Reserved instruction exception
12 OVF Arithmetic overflow exception
13 TRAP Exception caused by a trap instruction
15 FPE Floating-Point exception cause by a floating-point instruction

Figure 8.4: Some of the MIPS exception codes

If a load, store, jump, or branch instruction generates an exception, then vaddr (register $8)
contains the invalid memory address that caused the exception. Consider again the examples of

Figure 8.2, the illegal data address of sw that caused the exception is vaddr = 0x00000004 and the

misaligned data address of lw that caused the exception is vaddr = 0x10010001.

The status (register $12) is shown in Figure 8.5. Bit 0 is the Interrupt Enable (IE), which enables

or disables interrupts. Bit 1 is the Exception Level (EL). The EL bit is normally 0, but is set to 1
after an exception occurs.

The interrupt mask field contains 8 bits and supports a bit for each of the six hardware and two
software interrupt levels. A mask bit that is 1 allows interrupts at that level to interrupt the
processor. A mask bit that is 0 disables interrupts at that level. When an interrupt arrives, it sets its

8: Exceptions and I/O Page 4

interrupt pending bit in the cause register, even if the mask bit is disabled. When an interrupt is
pending, it will interrupt the processor when its mask bit is subsequently enabled.

 15 14 13 12 11 10 9 8 1 0

 EL IE

 Interrupt Mask

Figure 8.5: The Status Register $12

8.3 Coprocessor 0 Instructions

The MIPS architecture defines special instructions that cause exceptions and switch the processor

from user to kernel mode. These are the trap, break, and syscall instructions:

Instruction Meaning

teq Rs, Rt Raise the trap exception if register Rs is equal to register Rt

tne Rs, Rt Raise the trap exception if register Rs is not equal to register Rt

tlt Rs, Rt Raise the trap exception if register Rs is less than register Rt

. . . There are other trap instructions not listed here (see Appendix B)

break code Raise the breakpoint exception. Code 1 is reserved for the debugger

syscall Raise the system call exception. Service number is specified in $v0

The trap instructions (teq, tne, … etc.) raise the TRAP exception code 13. The break instruction
raises the breakpoint exception code 9. However, the MARS simulator provides services for the

syscall instruction without raising an exception. On a real system, the syscall instruction raises
the system call exception code 8, which is serviced by the operating system.

When an exception occurs, the processor switches to kernel mode. Coprocessor 0 registers can be
accessed only when the processor is servicing an exception in kernel mode. Register values can be
transferred from and to coprocessor 0 using the following instructions. Load and store instructions
that transfer data between coprocessor 0 registers and memory are also available. These instructions
can be used when writing an exception handler.

After an exception is processed, the exception handler can return back and resume the execution of

a program. The eret instruction is used to return from an exception.

Instruction Meaning

mfc0 Rd, C0src Move from Coprocessor 0 register C0src into destination register Rd

mtc0 Rs, C0dst Move to Coprocessor 0 register C0dst the value of register Rs

lwc0 C0dst, addr Load a word from memory into Coprocessor 0 register C0dst

swc0 C0src, addr Store Coprocessor 0 register C0src in memory

eret Reset EL = 0 (back to user mode) and return: PC = EPC

8: Exceptions and I/O Page 5

8.4 Exception Handlers

The layout of a MIPS program is shown in Figure 8.6. The Operating System appears in the upper
half of the address space, which can only be accessed when the processor is running in kernel mode.

The OS kernel text segment starts at address 0x80000000 and the kernel data segment starts at

address 0x90000000. The last segment of the address space is mapped to I/O devices, starting at

address 0xffff0000. This is known as Memory-Mapped I/O (MMIO). The default memory
configuration is shown in Figure 8.6. It is also possible to change the memory configuration under
the MARS tool settings.

Figure 8.6: The layout of a MIPS program in memory

When a function is called using jal, control is transferred at the address provided by the instruction

and the return address is saved in register $ra. In the case of an exception there is no explicit call.

In MIPS, when an exception occurs, control is transferred at the fixed address 0x80000180. The
exception handler must be located at that address.

The exception return address cannot be saved in $ra since it will modify a return address that has

been placed in that register before the exception. The Exception Program Counter (EPC) register is
used to store the address of the instruction that was executing when the exception was generated.

An exception handler can be written in the same file as the regular program, or in a separate file.

The exception handler must start at the fixed address 0x80000180. This address is in the kernel

text segment. If there is no instruction at address 0x80000180, MARS will terminate the MIPS
program with an appropriate error message. An example of an exception handler that prints the
address of the instruction that caused the exception and the exception code is shown below:

Stack Segment

Dynamic Area

Stack grows

Downwards

Static Area

Data Segment

Memory-Mapped I/O

Kernel Data Segment

0x00000000
Reserved

0x10000000

Text Segment

0x90000000

0x80000000

0x00400000

Operating

System

Kernel Text Segment

0x10040000

0xffff0000

8: Exceptions and I/O Page 6

Exception Handler starts here

.ktext 0x80000180

move $k0, $at # $k0 = $at

la $k1, _regs # $k1 = address of _regs

sw $k0, 0($k1) # save $at

sw $v0, 4($k1) # save $v0

sw $a0, 8($k1) # save $a0

la $a0, _msg1 # $a0 = address of _msg1

li $v0, 4 # $v0 = service 4

syscall # Print _msg1

mfc0 $a0, $14 # $a0 = EPC

li $v0, 34 # $v0 = service 34

syscall # print EPC in hexadecimal

la $a0, _msg2 # $a0 = address of _msg2

li $v0, 4 # $v0 = service 4

syscall # Print _msg2

mfc0 $a0, $13 # $a0 = cause

srl $a0, $a0, 2 # shift right by 2 bits

andi $a0, $a0, 31 # $a0 = exception code

li $v0, 1 # $v0 = service 1

syscall # Print exception code

la $a0, _msg3 # $a0 = address of _msg3

li $v0, 4 # $v0 = service 4

syscall # Print _msg3

la $k1, _regs # $k1 = address of _regs

lw $at, 0($k1) # restore $at

lw $v0, 4($k1) # restore $v0

lw $a0, 8($k1) # restore $a0

mtc0 $zero, $8 # clear vaddr

mfc0 $k0, $14 # $k0 = EPC

addiu $k0, $k0, 4 # Increment $k0 by 4

mtc0 $k0, $14 # EPC = point to next instruction

eret # exception return: PC = EPC

kernel data is stored here

.kdata

_msg1: .asciiz "\nException caused by instruction at address: "

_msg2: .asciiz "\nException Code = "

_msg3: .asciiz "\nIgnore and continue program ...\n"

_regs: .word 0:3 # Space for saved registers

Figure 8.7: Example of an exception handler

8: Exceptions and I/O Page 7

Writing an exception handler is no easy job. Things that should be done are:

• Save registers before modifying them by the exception handler.

• Read the coprocessor registers to determine what exception has occurred.

• Execute the specific handler for the exception code, usually via a jump table.

• Restore all the registers that were modified by the exception handler.

• Restart the user-mode program, or kill the program if it cannot be restarted.

The exception handler must preserve the value of any register it may modify, such that the
execution of the interrupted program can continue at a later time. The MIPS architecture reserves

register $26 and $27 ($k0 and $k1) for the use of the exception handler. The handler can modify
these two registers without having to save them first. Additional registers should be saved in
memory before they can be modified by the exception handler. For example, the exception handler

of Figure 8.7 saves register $at, $a0, and $v0 in the kernel data segment.

The EPC contains the address of the instruction that has generated the software exception. The
return address must be incremented by 4 to avoid executing the same instruction again. The return
sequence from a software exception can be written as follows:

mfc0 $k0, $14 # $k0 = EPC

addiu $k0, $k0, 4 # increment $k0 by 4

mtc0 $k0, $14 # EPC = point to next instruction

eret # exception return: PC = EPC

Rather than writing the exception handler at the end of every MIPS program, it is better to write the
exception handler in a separate file, then open the “Exception Handler …” dialog box in the MARS
settings and include the exception handler file in all your MIPS programs.

8.5 Memory Mapped I/O

In any computer system, input and output devices are outside the processor chip. A MIPS processor
communicates with I/O devices using a technique called memory-mapped I/O. Using memory-

mapped I/O, there is no need to add additional instructions to the MIPS instruction set. Any lw or

sw instruction with an effective address of 0xffff0000 or greater will not access the main
memory. These addresses are reserved to make access to registers in I/O devices. The I/O device
controllers must be connected to the system I/O bus, as shown in Figure 8.8.

Unique address decode logic is associated with each I/O register. When the MIPS processor reads
from or writes to one of these addresses, the processor is actually reading from or writing to a
selected register in one of the I/O device controllers. The processor can read data about the state of
the I/O device and write control data to change the state of the device.

The two registers associated with the keyboard are the receiver control and data registers. These are

mapped to addresses 0xffff0000 and 0xffff0004 respectively. To communicate with the
keyboard, the processor reads the control register. As long as the ready bit is zero, the processor
keeps reading the control register in a loop. This approach is known as polling.

8: Exceptions and I/O Page 8

Figure 8.8: MIPS System I/O Bus

When a key is pressed, the data register stores the character and the ready bit is set. Then the
processor reads the character. The following MIPS code provides an example of memory-mapped
access to the keyboard control and data registers via polling:

li $t0, 0xffff0000 # Address of keyboard control register

li $t1, 0 # Initialize wait_counter = 0

wait_keyboard:

lw $t2, ($t0) # Read the keyboard control register

andi $t2, $t2, 1 # Extract ready bit

addiu $t1, $t1, 1 # wait_counter++ (counts iterations)

beqz $t2, wait_keyboard # loop back while not ready

lw $a0, 4($t0) # Get character from keyboard

The rate that characters are typed on the keyboard is very slow compared to the rate that the MIPS
processor can execute instructions. Typically, millions of instructions are executed until a key is

pressed. Register $t1 keeps track of the number of iterations in the wait_keyboard loop. The lw
instruction outside the loop gets the character from the keyboard data register, which also clears the
ready bit. A MIPS programmer can only read the keyboard data register. Writing to the keyboard
data register has no effect.

Communicating with the display controller can be done via polling in a similar way. The display

registers are mapped to addresses 0xffff0008 and 0xffff000c. As long as the ready bit is zero,
the processor keeps reading it in a loop. We must not store a character in the data register until the
display is ready to receive it. The display controller clears the ready bit when a character is stored in
the data register. It then sets the ready bit again after the character is displayed and it is ready to
receive the next character to display.

li $t0, 0xffff0008 # Address of display control register

wait_display:

lw $t2, ($t0) # Read the display control register

andi $t2, $t2, 1 # Extract ready bit

beqz $t2, wait_display # loop back while not ready

sw $a0, 4($t0) # Send character to display

8: Exceptions and I/O Page 9

The MARS simulator provides a tool to simulate the keyboard and display, as shown in Figure 8.9.
Press “Connect to MIPS” to connect this tool to the MIPS program. You must activate this tool to
communicate character-by-character with the keyboard and display. The code that communicates
with I/O devices at this level is known as a device driver. This is one of the advantages of using a
simulator to learn how to communicate directly with I/O devices.

Figure 8.9: Keyboard and Display MMIO Simulator under the MARS Tools

The main drawback of polling is that it keeps the processor busy, wasting millions of cycles before
the I/O device (such as the keyboard) becomes ready. An alternative to polling is to use interrupts.
Interrupts can be enabled for the keyboard by setting the Interrupt Enable bit in the keyboard
control register as follows:

li $t0, 0xffff0000 # Address of keyboard control register

li $t1, 2

sw $t1, ($t0) # Enable keyboard interrupt

When a key is pressed, the keyboard sends an interrupt signal to the MIPS processor and sets the

cause register $13 to the value 0x00000100. Bit 8 in the cause register is set to indicate that the
keyboard has interrupted the processor. An interrupt handler must be written to read the character
from the keyboard and returning its value to the running program. This requires modifying the code
of the exception handler shown in Figure 8.7 to deal with interrupts.

The Disk and Ethernet I/O device controllers use Direct Memory Access (DMA) to transfer blocks
of data directly between the device and memory. As controllers become more complex, more than
two registers are associated with each device controller. These devices are not part of the MARS
simulator. In general, the supplier of any I/O device must provide programmers with an explanation
of how to properly communicate with the I/O device controller.

8: Exceptions and I/O Page 10

8.6 In-Lab Tasks

1. Just before dividing $s0 by $s1, the programmer might want to check that $s1 is not equal to

zero. Use teq $s1, $zero (trap if equal) to cause an exception. What is the address of the teq

instruction in your program? What is the value of the cause register, the exception code, and

the epc when the exception occurs?

2. Use lb $t1, 5($zero) to cause an exception when attempting to load a byte from address 5.

What is the address of the lb instruction in your program? What is the value of the cause

register, the exception code, the vaddr, and the epc when the exception occurs?

3. Write a complete program that uses the exception handler of Figure 8.7 to generate multiple
exceptions. The exception handler should report the address of the instruction that caused the
exception, the exception code, and should resume the program after handling each exception.
Insert instructions that cause overflow, invalid memory addresses, trap and break instructions.

4. Modify the exception handler of Figure 8.7 to print the invalid vaddr, when it is caused by a
load, store, or instruction fetch (exception code 4 or 5). Test your exception handler by writing
load and store instructions that generate invalid memory addresses.

5. Using memory-mapped I/O and polling, write a function print_string that prints a string on

the display, without using any system call. The address of the string is passed in register $a0
and the string must be null-terminated. Test this function by calling it from the main function.
Make sure to activate the “Keyboard and Display MMIO Simulator”.

6. Using memory-mapped I/O and polling, write a program that reads characters directly from the
keyboard. To demonstrate how slow the keyboard device is, print the character pressed and the

number of iterations after exiting the wait_keyboard loop. Repeat the execution of the
program until the newline character is pressed. Make sure to activate the “Keyboard and
Display MMIO Simulator” and to run the MARS simulator at maximum speed.

7. If the keyboard interrupt enable bit is set then the keyboard will interrupt the processor each
time a key is pressed. Write a simple interrupt handler that returns the character pressed in

register $v0. Rewrite the main function of question 6 using keyboard interrupts.

8.7 Bonus Problem

8. Using memory-mapped I/O and polling, write a function read_string that reads a string
directly from the keyboard. The function will get characters from the keyboard and stores them

in an array pointed by register $a0. The function should continue until n-1 characters are read

or the newline character is pressed. The parameter n should be passed in register $a1. The
function should insert a NULL byte at the end of the string. It should return the actual number

of characters read in register $v0. Make sure to activate the “Keyboard and Display MMIO

Simulator”. Write a main function to test read_string repeatedly, and to print the string after
each call.

