Name: KEY Id#

COE 202, Term 112 Digital Logic Design

Quiz# 6

Date: Monday, May 7

Q1. It is required to design a sequential circuit that receives a serial input X, and produces a serial output Z, equivalent to 3*X, i.e., Z=3*X. The state diagram for this circuit is shown below:

(i) Show the state table of the sequential circuit.

Current State	Input (X)	Next State	Output (Z)
S0	0	S0	0
S0	1	S 1	1
S 1	0	S0	1
S1	1	S2	0
S2	0	S 1	0
S2	1	S2	1

- (iii) Implement the sequential circuit using D-FFs and the smallest number of gates possible assuming the state assignment: S0=00, S1=01, and S2=10. Minimize your equations using K-map method.
- (iv) Draw the circuit diagram.

We need two flip flops to implement the design F1 and F0.

Transition Table:

Current State (F1 F0)	Input (X)	Next State (F1 F0)	Output (Z)
00	0	00	0
00	1	01	1
01	0	00	1
01	1	10	0
10	0	01	0
10	1	10	1
11	0	XX	X
11	1	XX	X

	00	01	11	10
0	0	0	1	0
1	0	1	×	×

$$D1 = F1 X + F0 X = X (F1 + F0)$$

	00	01	11	10
0	0	1	0	0
1	1	0	×	×

$$D0 = F1 X' + F1' F0' X$$

$$Z = F0$$
' $X + F0$ X ' $= F0 \oplus X$

- $\mathbf{Q2}$. It is required to design a sequential circuit that receives a serial input X and produces a serial output Z. The output Z will be 1 when the circuit detects the sequence 10010 assuming overlapping sequence detection.
 - (i) Derive the state diagram for your circuit assuming Mealy model.

(ii) Derive the state diagram for your circuit assuming Moore model.

