COE 202, Term 162 Digital Logic Design HW# 3 Solution

Q.1. For the Boolean function E and F, as given in the following truth table:

X	Y	Z	Е	F
0	0	0	1	0
0	0	1	1	0
0	1	0	1	1
0	1	1	0	0
1	0	0	1	0
1	0	1	0	0
1	1	0	0	1
1	1	1	0	1

- (i) List the minterms and the maxterms of each function.
- (ii) List the minterms of E' and F'.
- (iii) List the minterms of E + F and $E \cdot F$.
- (iv) Express E and F in sum-of-minterms algebraic form.
- (v) Simplify E and F to expressions with a minimum number of literals.
- **Q.2.** Simplify the following Boolean functions **F** together with the don't care conditions **d**. Find all prime implicants and essential prime implicants, and apply the selection rule.
 - (i) $F(A, B, C)=\Sigma m(3, 5, 6), d(A,B,C)=\Sigma m(0, 7)$
 - (ii) $F(A, B, C, D) = \sum m(4, 6, 7, 8, 12, 15), d(A, B, C, D) = \sum m(2, 3, 5, 10, 11, 14)$
 - (iii) $F(A, B, C, D) =)=\Pi M(1, 3, 5, 6, 7, 9, 10, 11, 14)$
- **Q.3.** Simplify the following Boolean functions **F** together with the don't care conditions **d** in (1) sum-of-products and (2) product-of-sums form:
 - (i) $F(W, X, Y, Z) = \sum m(0, 1, 2, 3, 7, 8, 10), d(W, X, Y, Z) = \sum m(5, 6, 11, 15)$
 - (ii) $F(A, B, C, D)=\Sigma m(3, 4, 13, 15), d(A, B, C, D)=\Sigma m(1, 2, 5, 6, 8, 10, 12, 14)$
 - (iii) $F(A, B, C, D, E, F) = \sum m(6, 9, 13, 18, 19, 25, 27, 29, 41, 45, 57, 61)$
- **Q.4.** The following Boolean expression: BE + B`DE` is a simplified version of the expression: A`BE + BCDE + BC`D`E + A`B`DE` + B`C`DE`. Are there any don't care conditions? If so, what are they?

- **Q.5.** Simplify each of the following expressions, and implement them with (1) NAND gates, (2) NOR gates. Assume that both true and complement versions of the input variables are available.
 - (i) WX + WXZ + WYZ + WXY + WXZ
 - (ii) $XZ + XYZ^ + WX^Y$
- **Q.6.** Implement the following Boolean function with XOR and AND gates:

$$AB^CD + ABCD + ABCD + ABCD$$

Q.7. Convert the AND/OR/NOT logic diagram shown below to (a) a NAND logic diagram, and (b) a NOR logic diagram.

- **Q.8.** Derive the exclusive-OR/exclusive-NOR circuits for three-bit parity generator and a four-bit parity checker, using an even parity bit.
- **Q.9.** A NAND gate with seven inputs is required. For each of the following cases, minimize the number of gates used in the multiple-level result:
 - (i) Design the 7-input NAND gate using 2-input NAND gates and NOT gates.
 - (ii) Design the 7-input NAND gate using 2-input NAND gates, 2-input NOR gates, and NOT gates.

HW#3

QI (a)
$$E = \Sigma(m_0, m_1, m_2, m_4)$$

= $TT(M_3, M_5, M_6, M_7)$
 $F = \Sigma(m_2, m_6, m_7)$
= $TT(M_0, M_1, M_3, M_4, M_5)$

- (b) $\vec{E} = \sum (m_3, m_5, m_6, m_7)$ $\vec{F} = \sum (m_0, m_1, m_3, m_4, m_5)$
- (c) The minking of Etf 1s the set of minking in E union the set of minking in F

 E+F = \(\text{(mo, m1, m2, m4, m6, m7)} \)

 The minking of \(\text{Ef} \) is the set of minking in in \(\text{intersected with the set of minking in } \)

 E, i.e. the minking common to both \(\text{E} \) and \(\text{F} \)

 EF = \(\text{(m2)} \)

(e)
$$x = \frac{1}{2} = \frac{1}{2$$

(i) F(A,B,c) = \(\text{m(3,5,6)} , d(A,B,c) = \(\text{m(0,7)} \)

Prime Implicants: BC, AC, AB All of them are essential F = BC +AC + AB = C(B+A) +AB

F(A, B, C, D) = [m(4,6,7,8,12,15) (ll)d(A,B,C,D) = 5. m(2,3,5,10,11,14)

48 CD	00	ठ।	П	<i>lo</i> _
<i>©</i>	0	0	X	X
<u>।</u>	1	*	Ī	回
11	回	0	Ix	团
10		0	X	X

Prime Implicants: C, AB, BD, AD

Essential prime implicants: C, AD

After selecting the essential prime implicante, only minksm my remains uncovered. This can be covered by selecting the prime implicant AB or BT. TRUS,

AB of BD.

$$F = C + A\overline{D} + \overline{AB}$$

$$F = C + A\overline{D} + B\overline{D}$$

$$F = C + A\overline{D} + B\overline{D}$$

$$= C + \overline{D}(A+B)$$

$$= C + \overline{D}(A+B)$$

$$= C + \overline{D}(A+B)$$

$$= C + \overline{D}(A+B)$$

Note that the 2nd expression is better since it can be factored. This results in a multitevel circuit

(III) F(A,B,C,D) = TM(1,3,5,6,7,9,10,11,14)= ZM(0,2,4,8,12,13,15)

AB CO	00	01	11	10
[00	M	٥	0	14
01	*1	٥	0	0
11	O	(1)	F)	0
10	Un	0	0	0

Prime implicants: ED, ABD, ABC, ABD

Essential prime implicants: 20, ABD, ABD

After selecting the essential prime implicants, all the minterns are covered.

23

(i) F(W, x, Y, Z) = Z m(0, 1, 2, 3, 7, 8, 10) d(W, x, Y, Z) = Z m(5, 6, 11, 15) sum of products:

Prime implicants: WX, XZ, WZ, WZ, WZ, XZ

Essential prime implicants: XZ

F = XZ + WZ

Product of sums à

WX YZ	රාය	اد_	11_	10_
o-2)	٥	0	2	0
ा	M	X	O	X
H	过	(1)	N	P
10	0	1+	[x]	2

Prime implicants: Xy, XZ, WX, WZ

Essential prime implicants: NUZ

((1)
$$F(A,B,C,D) = \sum_{i} m(3,4,13,15)$$

 $d(A,B,C,D) = \sum_{i} m(1/2,5,6,8,10,12,14)$

Sum of products:

ABED	00	01	ш	10_
$\int c^{\sigma} c$	0	X	1	X
91	M	14	0	X
11	N M	J	1*	Ø
10	×	2	9	×

Prime implicants: ABD, ABC, BC, BB, AB Essential prime implicants: AB

$$F = AB + B\overline{C} + \overline{A}\overline{B}D$$
or
$$F = AB + B\overline{D} + \overline{A}\overline{B}D$$
or
$$F = AB + B\overline{D} + \overline{A}\overline{B}D$$
or
$$F = AB + B\overline{D} + \overline{A}\overline{B}C$$

Product of sums;

F(A, B, C, D) = Z.M(0,7,9,11) d (A/B/C/D) = { m(1,2,5,6,8,10,12,14)

4B CD	00	ol_	11	10
6 ∞	仍	×	0	6
ا اه	0	X	0	X
u	×	0	0	×
10	13	Til	1*	B

Prime implicants: BC, BD, AB, ABD, ABC Essential prime implicants & A V

F = AB + BC + ABD => F = (A+B)(B+c)(A+B+D)

OF = AB+BC+ ABC OFF= (A+B)(B+c)(A+B+C) or F = AB + BD + ABD or F = (A+B)(B+D)(A+B+D)

F(A,B,C,D,E,F) = \(\Sigma\(6,9,13,18,19,25,27,29,41,45,69,61\) (33)

sum of products:

413=0=0

AB=01

CA EF	90 .	_01_	и_,	10
00	0	0	t	13
91	0	၁	0	3
u	0	(I)	10	0
10	0	O	M	0

AB = LO CD EF

, <,	ගා	ા .	11.	10
3,3	0	၀	0	0
31	3	O	Ċ	0
Ħ	0	M	S	3
10	Ó	17	0	0
		-		

Prime Implicants: CEF, ABODEF, ABODEF, ABODEF, ABODEF, ABODEF,

Essential prime implicants; CEF, ABODEF, ABODE

= CEF + ABODEF + ABODE + ABODE 8/ = CEF + ABODEF + ABODE + ABODEF

Product of sums ?

 $F(h,8,c,0,E,F) = \sum_{m(0,1)} 2,3,4,5,7,8,10,11,12,14,15,16,17,20,21,22,23,24,26,28,30,31,82,33,34,35,36,37,38,39,40,42,43,46,47,48,49,50,51,52,53,54,55,56,58,59,60,62,63)$

Prime implicants:

RCE, EF, BED, BEF, BEF, BEF, BEF, CDE, AZ, AE, AZD, BZD, AZF, BDE, DEF, BDE, DEF,

Essential prime implicants: ZE, AE

This is one possible minimal expression. There are also other possibilities.

F=F= (CHE)(A+E)(C+F)(B+E+F)(B+D+E)(B+D+E)

24

48 × (1	00	01		10
00				
10	1	Ti	T	7
Ŋ	1	X	1	×
10				
		E=	: 1	

The don't care conditions are: $d(A,B,C,D,E) = \sum m(22,27,29)$

\$ (1) WX + WXZ + WYZ + WXY + WXZ

Nand implementation

Nor implementation

UD XZ 4 x y Z + w X 8

wx y2	00	01.	11_	10
00	0	0	ø	0
01	0	F	M	5
11	0	<u> </u>	W	V
10	. To	V	10	0
	1-	_		1

Nand implementation

Nor implementation

F = ABCO + ABCO + ABCO + ABCO = AB(CO + CO) + AB(CO + CO) = (CO + CO)(AB + AB) = (CO)(AB) ABCO + ABCO + ABCO + ABCO

97 a. Nand implementation

b. NOR implementation

<u>Q8</u>

3-bit parity generator with even parity;

4-bit parity checker with even parity:

Note that an error occurs if c=1.

R9 A 7-input NAND gate can be implemented as follows:

a. Using 2-input NAND gates and NOT gates

b. Using 2-input NAND gates, 2-input NOR gates and NOT gates

