King Fahd University of Petroleum and Minerals

College of Computer Science and Engineering Computer Engineering Department

> COE 202: Digital Logic Design (3-0-3) Term 162 (Winter 2016) Major Exam 1 Saturday, March 11th, 2017

Time: 90 minutes, Total Pages: 6

Name:	ID:	Section:
Notes:		
Do not open the exam book unti	l instructed	
Calculators are not allowed	ed (basic, advanced, cell phones, etc.)	
Answer all questions		
All steps must be shown		
Any assumptions made must be	clearly stated	

Question	Maximum Points	Your Point
1	12	
2	17	
3	19	
Total	48	

Question 1: Fill in the Spaces: (Show all work needed to obtain your answer)

[14 marks]

- 1. The decimal number 15 is represented in **BCD** as **0001 0101** (Fill in the space). (1 Point)
- 2. Given $F(A, B, C) = \sum m(0,3,5,7)$ and $G(A, B, C) = \prod M(1,2,4,7)$, then $\bar{G} + F = \sum m(0,1,2,3,4,5,7)$ (write $\bar{G} + F$ as a sum-of-minterms) (2 Points)
- 3. The data **001010** (which contains **EVEN** parity for error detection) was sent **four** times. The received data (for these 4 times) are shown below from **a** to **d**, circle **ALL** the data that the receiver **can't detect** as being wrong: (2 Point)
 - a) 101010
- b) 001011

C) 110011

- d) 000000
- 4. What is the minimum number of bits required to represent the **360** Latitudes? **9-bits**. The number of unused codes will be **152** (Fill in the spaces) (**2 Point**)
- 5. Given that $(521)_{\mathbf{X}} = (337)_{10}$, then the Base **X** is (circle one):

(2 Point)

a) 4

b) 16

C) 8

d) 6

6. For the Logic Diagram Below:

a) The logic function F = ((B+C)D+A)(E+G)

(as in the logic diagram without any re-arrangement)

(1 Point)

b) This circuit has 4 number of logic levels (Fill in the space)

(1 Point)

c) Assuming that all gates have a delay of 1 (each), then the longest path's (i.e. critical path) delay = 4 (1 Point)

Question 2. (17 Points)

1. Convert the following numbers from the given base to the other uncrossed bases listed in the table (**if needed**, express fractions up to <u>4 bits</u> only). Show your solution steps below the table. (11 Points)

Decimal	Binary	Octal	Hexadecimal	BCD
105.25	1101001.01	151.2		
	11010.001	32.1	1A.2	
99.625	1100011.101	143.5	63.A	
96	1100000			10010110

2) Perform the following arithmetic operations in the specified number system. (6 Points)

Hexadecimal	Binary	Binary
Addition	Subtraction	Multiplication
B3 + 9A	100001 - 010011	1101 × 0101
14D	1110	1101
		1101
		1000001

Question 3. (19 Points)

1. Using Boolean Algebraic manipulations, **minimize** the following two functions to **minimum** number of literals in **sum of products** representation (**show your work clearly step by step**):

a)
$$F = B \bar{C} + \bar{A} D + A C + A \bar{B} \bar{C}$$
 (4 Points)

$$= C'(B+AB^2) + A'D + AC = BC' + AC' + A'D + AC = A(C'+C) + BC' + A'D$$

= A + A^2D + BC' = A + D + BC'

b)
$$F = (A + B)(\overline{A} + BC) + AC$$
 (4 Points)

$$= \frac{AA^2}{A^2} + A^3B + ABC + \frac{BBC}{AC} + AC = \frac{AC(1+B)}{AC} + \frac{A^3B}{AC} + \frac{$$

2. Find the **complement** of the following function F without performing any simplification: (2 Points)

$$F = (A + B\overline{C})(\overline{A} + BCD) + \overline{AC}$$

= [A'(B' + C) + A(B' + C' + D')]AC

- 3. Given the function F(A,B,C) represented in the given truth table: (4 Points)
 - a) Express F in algebraic form as a sum-of-minterms. (2 Points)
 - b) Express F in <u>algebraic form</u> as a <u>product of maxterms</u>. (2 Points)

a)
$$F(A,B,C) = A'B'C' + A'B'C + AB'C' + ABC'$$

b)
$$F(A,B,C) = (A + B' + C) (A + B' + C') (A' + B + C') (A' + B' + C')$$

A	В	C	F
0	0	0	1
0	0	1	1
0	1	0	0
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

4. Using <u>Canonical forms</u>, determine whether the following two functions are equivalent or not: (5 Points)

$$F_1(A,B,C) = \overline{A} \,\overline{B} + A \,B \,\overline{C}$$

$$F_2(A,B,C) = (A + \overline{B})(\overline{A} + B)(\overline{B} + \overline{C})$$

F1: A' B' -> 00- => m0, m1; A B C' => m6
Thus F1 =
$$\sum$$
m(0, 1, 6)

Thus,
$$F2 = \prod M(2, 3, 4, 5, 7) = \sum m(0, 1, 6)$$

Thus, F1 = F2 since they have the same set of minterms.