
A Fundamentally Secure Payment Device
Interfaced to Regular PCs

Abdelhafid Bouhraoua and Metub Al-Shammari

Computer Engineering Department
King Fahd University Of Petroleum and Minerals (KFUPM)

Dhahran, Saudi Arabia
Email: abouh@kfupm.edu.sa, almsafer9@hotmail.com

Abstract — The present contribution introduces a new way

for solving the issue of security for payments over the internet.
It particularly addresses the issues related to the PC
weaknesses like the combination of key loggers and spyware
software. The device uses exclusively symmetric encryption
(AES) that ties the device directly to the payment server base
at fabrication time. The device is connected to the PC through
the USB interface from which it takes its power. The platform
architecture is built around three entities: a I/O processor
(IOP) responsible for the communication and user interface
and a management of keys processor (MKP), responsible for
all of the messages processing. Encryption is assured by a
dedicated hardware engine for increased performance. The
device is made known to the payment server at fabrication
time through the assignment of a device ID. Both the server
and the device will use secret keys known only to the two
parties. This way, the authentication and security are
guaranteed at the source. The device ID along with the device
and server set of keys are assembled in a data storage packet,
scrambled, encrypted by a completely secret device internal
key, and stored on a local serial EEPROM. Moreover, the
EEPROM setting procedure is a one way procedure where no
way of reading back the clear device ID and set of keys is
available. The strength of this approach is the fact that the
device ID is associated with a set of device keys within the
payment server database.

Index Terms — Security, AES, Secure Trusted Device,
Payment Systems, Nonce

I. INTRODUCTION
The internet today has gained enormous ground in

people’s life that it is becoming a necessary tool for the
daily activities of many. E-commerce is not an exception in
this regard. Online commercial transactions requiring, by
essence, higher security levels than many other internet-
based activities, have nevertheless attracted the increasingly
growing number of cyber criminals who everyday are
trying to defeat the more and more complex infrastructure.

The development of the Secure Sockets Layer (SSL),
which was replaced by the Transport Security Layer (TSL)
has provided the necessary infrastructure that solved the
problem of sending a secure message from an anonymous
client to a trusted server. The Secure Electronic
Transaction (SET) [8] protocol was developed to
authenticate the servers by using authentication certificates
that provides means to make payments to merchants
without disclosing client credit card numbers to them.

However, SET has not been deployed massively yet due to
complex procedures[7]. The most widely used solutions in
online payment are based on sending credit card numbers
on the SSL secure channel. Some solutions provide a way
to authenticate the credit card holder by requiring users to
enter a password tied to the bank issuing the credit card.

All of these solutions are focusing on preventing
eavesdroppers from accessing sensitive information like
credit card numbers and client personal information. They
are also addressing man-in-the-middle attacks by
authenticating the servers. These solutions assume that the
personal computer is a safe an trusted device. In reality,
with the current security hazards, the PC can no longer be
considered as a trusted device[9]. For example, using a
combination of spyware software and keystroke logger
anyone can remotely access any information typed on the
PC keyboard[9]. The current effort aims at addressing this
particular issue of making secure payments online in the
context of the PC not being a fully trusted device. The
approach proposed here takes the path of a hardware device
that is connected to the PC and that takes care of processing
the payment in conjunction with a trusted server.

This paper is organized into nine sections starting with
the current introduction. Section II presents and discusses
the previous work focusing on the hardware solutions. The
next section details the principle of operation. The
transaction sequence is detailed in section IV while the
device’s processor architecture is presented in section V.
Section VI discusses the immunity to the most common
attacks. The implementation is presented in section VII.
Performance requirements are determined in section VIII.
Finally, section IX concludes this paper.

II. PREVIOUS WORK
Several approaches have been proposed to tackle the

problem of secure payment and transactions on the internet
through the PC.

The use of a secure display is a new trend in the arena of
secure trusted terminals. It is mainly based on providing a
secure display terminal that should be used in conjunction
with personal mobile phones or PDA to initiate the
transactions[2]. Other proposals recommend the use of
mobile phones for their ubiquitous nature[3][4][6]. These

solutions are based on the belief that mobile phones and
PDA are immune against malicious software. This
assumption is starting to be shaken with the appearance of
the first mobile phone viruses.

Another set of solutions is proposing to modify some of
the existing protocols like merging the SET protocol with
reputation systems to automatically and securely use the
merchant reputation information to add confidence in using
the SET protocol[7]. Another solution rely on increasing
the amount of information contained within key
certificates[10]. The solutions that focus on the protocols
are not immune to the PC weaknesses like key logging
software and spyware.

III. PRINCIPLE OF OPERATION
The main idea of this proposal is to perform all the

transactions that contain sensitive information such as
payment amount, credit card numbers or merchant ID
within an external device attached to the PC. This device is
made known to the payment server at fabrication time
through the assignment of a device ID. Both the server and
the device will use secret keys known only to the two
parties. This way, the authentication and security are
guaranteed at the source. The encryption algorithm used is
the Advanced Encryption Standard, AES [] adopted by the
NIST in 2001. The AES algorithm is used for all the
encryptions. AES is a symmetric key algorithm which
means the same key is needed on both sides of the secure
channel to cipher and decipher the messages.

Figure 1 – Principle of Operation

The device comprises a display screen used to display
messages to the user and a keypad used to accept user’s
input securely instead of using the insecure PC keyboard.
The messages displayed on the device screen are simple
prompts inviting the user to enter credit card numbers or to
insert the credit card in the card readers for the versions
equipped with card readers. Other messages like

confirmation and acknowledge messages from the server
are also displayed on the device.

Communication with the PC is realized through simple
interface protocols such as USB or simple RS-232.
However, USB is preferred as most recent PCs do not
provide RS-232 ports. Another advantage of the USB
interface is its power capability. The device can therefore
be directly powered out of the USB interface reducing the
overhead and size.

The fact that a device may have a single secret key may
be sensitive to dictionary attacks. To remove such a
weakness, both the device and the server will be associated
to several keys. Every transaction, both the device and the
server will randomly select one of the key to cipher the
messages. Therefore, the device should memorize two lists
of keys: the device list and the server list. This will
introduce a little overhead since the deciphering of the
messages will try each key until it finds the proper one that
decrypts the message. For this reason messages will be
CRC protected and start with a fixed pattern so that the
successful deciphering will be easily identified on the
receiver’s side (device or server).

IV. TRANSACTION SEQUENCE
The transaction sequence starts when the user initiates

the process by checking out of a merchant store. Actually
after selecting one of the related methods of payment
(method that is tied to the use of the payment server that
uses the device), the browser starts by sending a first
message M1 to the payment server. Figure 2 shows the
transaction sequence showing the different messages sent
and the different entities involved.

Figure 2 – Transaction Sequence Chart

The following list details the content and the encryption
status and key of every message. The following notations
are used throughout this section and when needed in the
rest of the paper:

• E(M, K): represents a message M encrypted with
the key K. It actually represents a message M

Swipe Your
Credit Card
Please

USB
Interface

User Display Device PC Server

A1 M1

M2

M3

M4

D1
A2

M6

M7

A3
D2

M5

M8

already in its cipher text mode after it has been
encrypted with key K.

• KS represents a payment server key

• KD represents a device key

• KN represents a randomly generated key used once
and commonly referred to as nonce in the security
terminology. In the present scheme, the key is
generated by the server.

The list of messages shown in Figure 2 is defined below:

• A1 represents the user action that initiates the
payment transaction by selecting the payment
method on the merchant’s web site.

• M1 is a plain text message that contains a request
for transaction

• M2 is a plain text message that is used to ask for
device identification (and authentication)

• E(M3, KS). M3 contains the device ID.

• E(M4, KD). M4 generation: Using the device ID,
the server will look up the device key KD in its
device database. It will use the device key KD to
encrypt the nonce key KN.

• M5 is a plain text message that contains: the
merchant ID (within the server’s database) and
the total charge amount.

• D1 represents the display/input script
communicated by the PC to the device to ask the
user to enter its information. It will also display
the merchant name and amount. The user is asked
to confirm these choices.

• A2 represents the user series of input actions such
as: credit card swiping or amount confirmation

• E(M6, KN). M6 contains all the sensitive
information encrypted with the session key KN.

• E(M7, KN). M7 is a positive/negative
acknowledge message that is received from the
server to confirm/infirm the transaction.

• D2 displays the name associated with the
merchant ID.

• A3 represents the user action of selecting to
confirm or cancel the current transaction

• E(M8, KN). M8 contains either the confirmation or
the cancellation of the transaction as chosen by
the user after being prompted by D2.

Messages generated are not directly ciphered but are
embedded within a larger fixed size packet containing
randomly generated bulk data. This way, using the same
device key or server key to cipher these packets will not
result in an identical bitstream.

V. HARDWARE ARCHITECTURE

A. Overview
The device functionality can be divided into two

categories:

• User/PC interface category which relates to the
display, user input and communication with the
PC

• Encryption and key management category which
deals with all the aspects related to creating and
managing the messages and the different keys.

In this scope, the proposed architecture is built using
three main entities:

• I/O processor, depicted as IOP

• Message and key processor or MKP

• Encryption/Decryption engine or EDE

Figure 3 shows the block diagram of the SoC (System-
on-Chip) that implements these different entities. The idea
of having two different processors, each dedicated to a
particular set of tasks, is motivated by a security measure
that is to keep the message and key management firmware
inaccessible and hardwired while at the same time allowing
the IO software to be updated as needed.

Figure 3 – Hardware block diagram

Communication between the IOP and the MKP happens
through a mail box structure. Each processor writes into the
mail box of the other processor the message it intends to
send to the other processor. A small notification that
contains the message length, starting address and type of
message is sent separately into a notification register set

The IOP software is stored externally on a flash
EEPROM while the device ID and device keys are stored
on a serial EEPROM. Both processors are attached to
internal temporary storage memories used to execute the

MKP IOP

EDE

Firm
ware MBX

MBX

IOP
software

Device ID
and Keys

FlashSerial EEPROM

USB

Display Input

Device
ID and
Key
Setting
Interface

programs, to store temporary program variables and help
assemble the messages.

B. Securing the device ID and the keys
The contents of the serial EEPROM are encrypted with a

device internal key. This way, the device ID and the device
and server keys are protected from attempts to recover their
values by simply reading the contents of the EEPROM.

Figure 4 – Storage Data Packet Structure

Another protection barrier is put in the EEPROM by
encoding the storage data structure in a way that makes it
more difficult to recover in the case the internal key is
known. Figure 4 shows the structure of the storage data
packet that stores the device ID, the device keys and the
server keys on the EEPROM. The main idea is to embed
the critical information within a frame of randomly
generated data to completely hide it before encryption.
Another complexity is added furthermore when the device
ID and key list elements are not stored in an increasing
index order but are scrambled using a randomly generated
order. The right order is kept in an index table. For
example, if the list of server keys totals 16 keys, they are
not stored as key1 then key2 and so on but can be key7
then key3 then key16. In other terms, the sequential order
of the keys is violated on purpose for added protection.

The device ID and keys setting procedure is also
designed to protect from unauthorized readings of the
EEPROM. The setting procedure is a one-way procedure
that cannot read the EEPROM contents for verification. It
sends a CRC protected string of defined length. The string
is encoded, encrypted and written into the EEPROM. A
copy of the initial string is kept internally in the device
during the procedure. The EEPROM content is read back,
decrypted and decoded. The resulting string is compared
with the initial string for compatibility. The operation is
repeated several times to ensure a high level of confidence
in the data stored in the EEPROM. This verification is
completely carried out by the device internally. At the end
of the verification, a positive/negative notification is sent
back to the external setting equipment.

C. The Display, Keypad and Card Reader
The IOP is in charge of communication and user

interface. For added flexibility, the display uses simplified
HTML format to display the forms and fields to the user.
The HTML format is versatile and suitable for describing
language independent, customizable user interface.

VI. COUNTERING ATTACKS

A. Playback Attack
Playback attacks are prevented through the use of

sophisticated methods based on: message scrambling and
random key selection. These two measures will produce,
for example, a different message value when sending the
same device ID at different times which makes the task of
memorizing all the combinations unrealistic.

B. Man-in-the-middle Attacks
The proposed setting is immune to man-in-the-middle

attacks because it needs prior knowledge of the secret keys
needed to decipher the received messages in order to
provide answers.

C. Reverse Engineering Attack
The idea of reverse engineering poses many problems.

The level of technology to reverse engineer a chip in
today’s technology needed is way beyond the reach of
common hackers. The internal device key used to encrypt
the storage data packet is randomly generated and engraved
in the silicon, either through the use of randomly generated
metal or via masks or through the use of fuse PROMs.
Even if this step is achieved it will only give the pirates the
device IDs of the devices it can physically access after they
reverse engineer the scrambling methods and encryption
keys. For the other devices, the internal encryption key has
to be guessed if no reverse engineering is possible. It is
important to mention that the reverse engineering methods
are destructive methods where all the layers are removed
one by one and high precision photographs are taken at
every step. The process of recovering the functionality from
the transistor level may take years that are sufficient to
introduce modifications onto the architecture.

VII. IMPLEMENTATION
A preliminary implementation, which goal was mainly to

test the protocol and the transaction sequence, has been
achieved. This implementation was realized using the
Rabbit RCM3700 microprocessor core using the Dynamic
C1 specific programming language. The USB interface is a
simple USB-to-serial device that provides seamless
connectivity to the USB without dealing with the USB
protocol programming details. Figure 5 shows a glimpse of
the RCM3700 attached to the USB-to-serial converter
through which it interfaces to the host PC (not shown).

1 © Rabbit Semiconductor Corporation

CRC

Device ID, Device and Server
Keys and Indexes

Random Data

Data Packet End Data Packet Start

Index
Table

Device
ID and
Keys

Server
Keys

The implementation has been completed and tested along
with the server side application, developed using C# and
.NET. The transactions have been fully tested and verified.

Figure 5 – Implementation

VIII. PERFORMANCE REQUIREMENTS
On the terminal side the processing speed requirement

falls within the realization of the message processing and
encryption within few hundreds of milliseconds which is
enough for being unnoticed at the human level. This
requirement means a processor speed less than 10 MHz for
it to execute, at most, around one million instructions to
achieve that. Given the fact that the AES encryption is
performed within a dedicated hardware engine, this
requirement can be lowered significantly.

On the server side, the overhead lies within the fact that
to every device ID, an entire set of keys is associated. This
translates into multiple attempts to decipher received
messages by trying every key in the set until the used one is
found and the message is successfully deciphered. This
handicap can easily be addressed with the use of hardware
encryption/decryption engines. An example of such devices
can reach up to 500 Gbits/s[11] per chip. At these rates, a
single chip can easily accommodate transactions originating
from up to 64 million different devices with messages of
512 bits (64 bytes) and 16 keys per set.

IX. CONCLUSIONS AND FUTURE DIRECTIONS
A different approach for online payment systems has

been proposed. The approach is based on the use of an
external device, connected to the PC through USB, and
where all the transaction processing is performed. This
device uses secret server keys, set during fabrication, to
communicate with the servers. It also has a unique ID that
identifies it within the server. This ID is used by the server
to retrieve the set of keys associated with the device. It will
select one of the device keys to send a randomly generated
session key that will be the base for the subsequent steps of
the payment transactions.

The set of transactions has been defined in detail. A
series of additional countermeasures have been specified
for avoiding playback attacks. The device’s hardware
architecture has been presented showing the partitioning
between the I/O related tasks and the message processing
tasks. An external EEPROM is used to store the critical
device information (device ID, device key set and server
key set). The procedure to set these critical parameters has
been presented. The method for protecting the information
stored in the EEPROM has been presented. Different attack
scenarios have been envisaged and related risks have been
qualitatively evaluated.

An initial implementation has been realized that was
exclusively used to test the different transactions and to
show a demonstrator. In the future a more thorough
implementation using an FPGA platform will be carried
out. It will also constitute a test platform used to
experiment more types of attacks.

ACKNOWLEDGMENT
Facilities support by King Fahd University of Petroleum

and Minerals is highly appreciated by the authors.

REFERENCES
[1] Advanced Encryption Standard (AES), Nov. 26, 2001.
[2] S. Ghotra, B. Mandhan, S. Shang, C. Wei, Y. Song and C. Steketee,

“Secure Display and Secure Transactions Using a Handset”, In
Proceedings of the Sixth International Conference on The
Management of Mobile Business (ICMB 2007), Toronto, Canada,
July 2007, pp 51-58.

[3] A. Oprea, D. Balfanz, G. Durfee, et al., “Securing a Remote Terminal
Application with a Mobile Trusted Device”, Proceedings of the 20th
Annual Computer Security Applications Conference (ACSAC'04),
IEEE Computer Society.

[4] J. Porras, P. Jäppinen, P. Hiirsalmi, et al., “Personal Trusted Device
in Personal Communications”, 1st International Symposium on
Wireless Communication Systems Mauritius, 2004, pp. 388-392.

[5] Z. Djuric, “IPS – Secure Internet Payment System”, In Proceedings
of the International Conference on Information Technology, Coding
and Computing (ITCC’05), Seoul, Korea, May 2005, Vol. 1 pp 425-
430.

[6] B. Althen, G. Enste, B. Nebelung, “Innovative Secure Payments on
the Internet using the German Electronic Purse”, In Proceedings 12th
Annual Computer Security Applications Conference, San Diego,
USA, December 1996, pp 88-93.

[7] M. Kinateder and K. Rothermel, “Bringing Confidence to the Web –
Combining the Power of SET and Reputation Systems”, In
Proceedings of the First IEEE Consumer Communications and
Networking Conference, Las Vegas, USA, January 2004, pp 545-550.

[8] Visa International and Mastercard International, “SET Secure
Electronic Transaction Specification Book 3: Formal Protocol
Definition,” May 1997.

[9] D. Sullivan, The Definitive Guide to Security Management, 1 ed,
Realtimepublishers, Santa Rosa, 2004.

[10] Blerim Rexha, “Increasing User Privacy in Online Transactions with
X.509 v3 Certificate Private Extensions and Smartcards”,
Proceedings of the Seventh IEEE International Conference on E-
Commerce Technology (CEC’05), 19-22 July 2005, pp 293-300.

[11] A. Bouhraoua, “Design Feasibility Study For a 500 Gbits/s AES
Cypher/Decypher Engine”, Proceedings of the International
Conference on Microelectronics (ICM’06), 16-19 Dec. 2006, pp 190-
193.

