
 1

DESIGN FEASIBILITY STUDY  
FOR A 500 GBITS/S AES CYPHER DECYPHER ENGINE 

 
Abdelhafid Bouhraoua 

Computer Engineering Department 
King Fahd University of Petroleum and Minerals 

P.O.Box 969, Dhahran, 31261 
Saudi Arabia 

Email: abouh@ccse.kfupm.edu.sa 
 
 

Abstract — A feasibility study for implementing the AES encryption algorithm in hardware achieving 500 Gbits/s is presented. The 
methodology followed in the process of obtaining the solution allowed us to reach a highly regular solution that is scalable.  
 

Index Terms — AES, High Throughput, ASICs, High Speed Architectures 
 
 



 2

DESIGN FEASIBILITY STUDY  
FOR A 500 GBITS/S AES CYPHER DECYPHER ENGINE 

1. INTRODUCTION 
In recent years the internet has become one of the top communication medium used by the general public. More and more 

services are available through the internet. Managing sensitive information and the need for security has become a major 
concern for the users as well as the providers. Global security threats, cyber attacks to cripple a network connection or 
unauthorized intrusions to access restricted information are nowadays network security concerns all over the world. Encryption 
is a mean by which information can be safely exchanged.  

Symmetric encryption is used to exchange high bandwidth sensitive data between users. In October 2000, the American 
National Institute for Standards and Technology (NIST) announced that the Rijndael algorithm was selected to become the 
Advanced Encryption Standard (AES) to replace the old Data Encryption Standard (DES). 

High speed exchange of secure data is becoming a trend. Large volume data servers and high capacity network routers are 
starting to implement encryption as part of their portfolio in order to address the need for security. The aim of this work is the 
demonstration of the feasibility of building a 500 Gbits/s AES encryption decryption engine.  

Section 2 briefly describe the AES algorithm and mentions the previous work. The proposed approach, followed in this work 
is presented in section 3. Section 4 describes the architecture of the building block of the AES implementation proposed in this 
paper. Section 5 proposes the architecture of the key schedule generation block. Section 6 shows how the 500 Gbits/s is 
achieved using the building block described in section 4. The interface building and the task scheduling are discussed 
respectively in sections 7 and 8. This section is followed by conclusions in Section 9. 

2. AES ALGORITHM AND PREVIOUS WORK 

 
Figure 1 – AES Algorithm 

The AES algorithm [1] processes data blocks of 128 bits. It can support a key size of 128, 192 and 256 bits. In our work, only 
128 bits keys are considered. Each data block consists of 16 bytes organized as a two dimensional array of 4 x 4 bytes called the 
State. The basic operations of the AES algorithm are performed on the State. After an initial round key bitwise addition (XOR), 
a round function consisting of four different transformations (sub-bytes, shift-rows, mix-columns, and add-round-key) is applied 
to the data block in the encryption procedure as shown in Figure 1 below. The round function is iterated 10 times for a key 
length of 128 bits. The sub-bytes operation is a nonlinear byte substitution that operates independently on each byte of the state 
using a substitution table (S-Box). The shift-rows and mix-columns operations are circular shifts on the rows and respectively 
columns of the state with different numbers of bytes (offsets). The mix-columns operation adds to the shifts a multiplication with 
a fixed polynomial modulo x4 + 1. The add-round-key operation is a XOR that adds a round key to the state. The round keys are 
a set of 11 32-bits words generated during the key expansion phase. Their generation depends solely on the key and does not 
depend on the data. 

Numerous proposals have addressed the high speed hardware implementation of the AES algorithm. Some of the proposals 
have focused on an ASIC implementation [2,3,4,8] while others have targeted FPGAs [5,9,11,12,13]. Many techniques have 
been used to implement the AES algorithm in hardware. The lookup table based approach, the pipelined approach, the loop-

Add Round Key 

Round == 10 

Sub-Bytes 

Shift Rows 

Mix Columns 

Add Round Key 

Sub-Bytes 

Shift Rows 

Add Round Key 

Output 

Input 



 3

unrolling and the sub-pipeline approaches are some of these techniques. Lookup table based designs have been explored in [9]. 
The idea of the lookup table implementation is to preprocess all the values that can possibly be encountered in a byte 
transformation and put the values in several lookup tables.  The main advantage is to avoid implementing complex operations in 
hardware. The idea is very attractive for low to medium speed FPGA implementation but is inefficient in the context of ASICs 
where lookup table implementations are generally slower than regular logic gates. Other FPGA implementations have chosen a 
memory-less approach where no lookup tables are used [11]. The pipeline approach increases the throughput by processing 
multiple blocks of data simultaneously. It is realized by inserting registers between blocks of combinational logic representing a 
single round or a single operation [18]. Several implementations have adopted the pipelined approach [2,11,20]. Sub-pipelining 
[3,18] is similar to pipelining. The main difference between sub-pipelining and pipelining is the division of a single round or a 
single operation, which is a single pipeline stage, into several sub-operations or sub-pipeline stages reducing the inter-stage gate 
delays and increasing the operating frequency of the sub-pipeline. Loop unrolling [5,7] is the opposite of pipelining where 
several operations and even rounds are sequentially processed using combinational logic within a single clock cycle. 

3. PROPOSED APPROACH 
The approaches cited above, except for the lookup table based approach, have produced optimized solutions. Often, these 

solutions are complex solutions in terms of flexibility of implementation, heavily relying on the technology. Most importantly, 
these solutions are not always scalable. Most of the proposals reach performance levels around few Gbits/s[8] to few tens of 
Gbits/s[4,11,20]. The lookup table approach relies on the intensive use of memories and therefore cannot be considered in our 
context. The loop unrolling approach leads to large combinational logic areas inducing a relatively low frequency, contradictory 
with the objective of achieving high throughput.  

In order to achieve our goal of efficiently building a 500 Gbits/s throughput AES engine, we need to fix some design 
guidelines on the path to the solution: 

• Modularity: the solution should be based on a collection of modules that can easily be re-implemented in a wide range of 
technologies without major changes; 

• Scalability: the throughput can be increased without modifying the architecture; 

• Reusability: the different modules composing the solution should be reused to confine the design/VLSI implementation 
complexity within controllable limits.   

• Local Clocking Strategy: In order to reduce or eliminate the negative effect of synchronization of a global clock, a Globally 
Asynchronous Locally Synchronous (GALS) design style should be adopted. 

After enumerating the design guidelines, let the objectives be stated and prioritized. The objectives are in order of importance: 

• Achievable throughput of 500 Gbits/s 

• Relatively acceptable area and power consumption 

• Low Latency 

Most of the approaches cited in the literature survey focus on single objectives which are either speed and/or area 
optimization. Trade-off design style encompasses speed, area and power consumption without neglecting the scalability, the 
reuse and the clock locality. An example of a work that followed such approach can be found in [14]. 

The main idea is to produce a highly regular implementation that will allow us to meet all the objectives stated above. 

4. THE ITERATIVE AES PROCESSOR 
Pipelined, sub-pipelined design and loop unrolling have aimed at increasing the throughput or decreasing the latency. In the 

context of high speed processing for networking architectures, the latency is not a critical factor especially when it amounts 
around the order of 100 ns. It will certainly take more time to retrieve the routing information of a packet or to just transfer 
to/from the storage areas.  

Based on the lower importance of the latency, we propose to implement the AES algorithm into an iterative processor. The 
processor can perform the four operations of the AES algorithm. One operation at a time is performed. This implies that the 
three hardware blocks implementing the other operations will be idle when one of the four operations is being performed. 
Therefore, in order to keep the hardware busy, the processor should be able to process four different data blocks simultaneously 
enforcing the reuse guideline. Each data block is called a flow. Four registers for storing the four different intermediate state 
values of the four different flows are then required. Moreover, because of the byte granularity of the AES algorithm, the size of 
data in the iterative processor is reduced to a single byte. 



 4

 
Figure 2 – Byte Datapath Internal Structure 

 
Figure 3 – Byte Datapath Black Box Representation 

 
Figure 4 – AES Encryption Engine 

r c 
Sr,c-i 

Sr,c+i 

S0,c S1,c S2,c S3,c 

Sr,c 

RKr,c 

S’r,c 

Byte Datapath 

r c 
Sr,c-i 

Sr,c+i 

S0,c S1,c S2,c S3,c 

Sr,c 

RKr,c 

S’r,c 

Byte Datapath 

r c 
Sr,c-i 

Sr,c+i 

S0,c S1,c S2,c S3,c 

Sr,c 

RKr,c 

S’r,c 

Byte Datapath 

r c 
Sr,c-i 

Sr,c+i 

S0,c S1,c S2,c S3,c 

Sr,c 

RKr,c 

S’r,c 

Byte Datapath 

r c 
Sr,c-i 

Sr,c+i 

S0,c S1,c S2,c S3,c 

Sr,c 

RKr,c 

S’r,c 

Byte Datapath 

r c 
Sr,c-i 

Sr,c+i 

S0,c S1,c S2,c S3,c 

Sr,c 

RKr,c 

S’r,c 

Byte Datapath 

r c 
Sr,c-i 

Sr,c+i 

S0,c S1,c S2,c S3,c 

Sr,c 

RKr,c 

S’r,c 

Byte Datapath 

r c 
Sr,c-i 

Sr,c+i 

S0,c S1,c S2,c S3,c 

Sr,c 

RKr,c 

S’r,c 

Byte Datapath 

r c 
Sr,c-i 

Sr,c+i 

S0,c S1,c S2,c S3,c 

Sr,c 

RKr,c 

S’r,c 

Byte Datapath 

r c 
Sr,c-i 

Sr,c+i 

S0,c S1,c S2,c S3,c 

Sr,c 

RKr,c 

S’r,c 

Byte Datapath 

r c 
Sr,c-i 

Sr,c+i 

S0,c S1,c S2,c S3,c 

Sr,c 

RKr,c 

S’r,c 

Byte Datapath 

r c 
Sr,c-i 

Sr,c+i 

S0,c S1,c S2,c S3,c 

Sr,c 

RKr,c 

S’r,c 

Byte Datapath 

r c 
Sr,c-i 

Sr,c+i 

S0,c S1,c S2,c S3,c 

Sr,c 

RKr,c 

S’r,c 

Byte Datapath 

0   0 

1   0 

2   0 

3   0 

0   1 

1   1 

2   1 

3   1 

0   2 

1   2 

2   2 

3   2 

r c 
Sr,c-i 

Sr,c+i 

S0,c S1,c S2,c S3,c 

Sr,c 

RKr,c 

S’r,c 

Byte Datapath 

r c 
Sr,c-i 

Sr,c+i 

S0,c S1,c S2,c S3,c 

Sr,c 

RKr,c 

S’r,c 

Byte Datapath 

r c 
Sr,c-i 

Sr,c+i 

S0,c S1,c S2,c S3,c 

Sr,c 

RKr,c 

S’r,c 

Byte Datapath 

0   3 

1  3 

2   3 

3   3 

AB

S0,c 

AB

S1,c 

AB

S2,c 

AB

S3,c 

M0,c M1,c M2,c M3,c 

Sr,c 

S’r,c 

MixCol 

Sbox 
ROM

SubByte

Sr,c-i Sr,c+i 

RKr,c 

AddRndKe

r,c D 

LDinr,c 

r c 
Sr,c-i 

Sr,c+i 

S0,c S1,c S2,c S3,c 

Sr,c 

RKr,c 

S’r,c 

Byte Datapath 



 5

 Figures 2 and Figure 3 show the internal diagram as well as the black box representation of the byte datapath. The different 
connections to the state registers are realized through 4-to-1 multiplexers to select where to store the result of each one of the 
four operations. Each operation input circuitry is also connected to 4-to-1 multiplexers to select which flow will be processed 
during the current clock cycle. 

The different input/output connectors are mainly used to propagate the different intermediate values needed by the shift rows 
or the mix-columns operations. The byte datapath is further organized in a 4 x 4 array to implement the state as described in the 
AES algorithm [1].  Figure 4 shows the block diagram of the AES encryption engine using a 4 x 4 array of byte datapath blocks. 

 
Figure 5 – Shift Rows Operation Connections 

 

Figure 6 – Mix-Columns Operation Connections 

r c 
Sr c-i

Sr c+i
S0 cS1 cS2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath 

r c 
Sr c-i

Sr c+i
S0 cS1 cS2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath 

r c 
Sr c-i

Sr c+i
S0 cS1 cS2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath 

0  0  

1  0   

3  0 

r c
Sr c-i

Sr c+i
S0 cS1 cS2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

0 1  
r c

Sr c-i

Sr c+i
S0 cS1 cS2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

0 2  
r c

Sr c-i

Sr c+i
S0 cS1 cS2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

0  3   

r c
Sr c-i

Sr c+i
S0 cS1 cS2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

1 1  
r c

Sr c-i

Sr c+i
S0 cS1 cS2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

1 2  
r c

Sr c-i

Sr c+i
S0 cS1 cS2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

1 3  

r c 
Sr c-i

Sr c+i
S0 cS1 cS2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath 

2  0  
r c

Sr c-i

Sr c+i
S0 cS1 cS2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

2 1  
r c

Sr c-i

Sr c+i
S0 cS1 cS2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

2 2  
r c

Sr c-i

Sr c+i
S0 cS1 cS2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

2  3

r c
Sr c-i

Sr c+i
S0 cS1 cS2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

3  1   
r c

Sr c-i

Sr c+i
S0 cS1 cS2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

3 2  
r c

Sr c-i

Sr c+i
S0 cS1 cS2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

3 3  

r c 
Sr c-i

Sr c+i
S0 c S1 c S2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath 

r c 
Sr c-i

Sr c+i
S0 c S1 c S2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath 

r c 
Sr c-i

Sr c+i
S0 c S1 c S2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath 

r c 
Sr c-i

Sr c+i
S0 c S1 c S2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath 

r c
Sr c-i

Sr c+i
S0 c S1 c S2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

r c
Sr c-i

Sr c+i
S0 c S1 c S2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

r c
Sr c-i

Sr c+i
S0 c S1 c S2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

r c
Sr c-i

Sr c+i
S0 c S1 c S2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

r c
Sr c-i

Sr c+i
S0 c S1 c S2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

r c
Sr c-i

Sr c+i
S0 c S1 c S2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

r c
Sr c-i

Sr c+i
S0 c S1 c S2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

r c
Sr c-i

Sr c+i
S0 c S1 c S2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

r c
Sr c-i

Sr c+i
S0 c S1 c S2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

0   0 

1   0 

2   0 

3   0 

0   1

1   1

2   1

3   1

0   2

1   2

2   2

3   2

r c
Sr c-i

Sr c+i
S0 c S1 c S2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

r c
Sr c-i

Sr c+i
S0 c S1 c S2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

r c
Sr c-i

Sr c+i
S0 c S1 c S2 cS3 c

Sr c

RKr c

S’r c

Byte Datapath

0   3

1  3

2   3

3   3



 6

This highly regular structure is built using a single byte datapath block instantiated regularly. Each block is customized by 
adequately connecting its inputs and outputs. Hence, the (r,c) pair that identifies the position of each block in the array is set 
accordingly as shown in Figure 4. The shift- rows operation as well as the mix-columns operation both require the transfer of 
values from a state byte to another. Figure 5 and Figure 6 show the connections of the encryption engine for implementing the 
shift-rows and mix-columns operations respectively. 

The datapath has been designed to both implement the cipher and decipher operations of the AES algorithm. The connections 
of Figure 5 reflect the support of both cipher and decipher shifts for the shift-rows operation.  

 

5. Key Expansion Unit 

The key schedule generation block is used to generate the key schedule for each key. Every iteration, a different set of 
generated key schedule values are used within the AddRoundKey operation. The key schedule generation block has been 
designed so that it produces the key schedule within a minimum number of clock cycles. It is capable of producing 4 round keys 
of 32-bits each every clock cycle. The produced round keys are stored in the key schedule memory that is part of the key 
schedule generation block. A dual port memory has been selected for implementing the key schedule memory. This allows 
simultaneous access from the key schedule generation and the iterative processor. Because the AES algorithm key schedule 
generation amounts a total of 10, 12 or 14 128-bits round keys, the mapping of the key schedule in the key schedule memory 
starts on a 16-word boundary. This makes the decoding, retrieval and allocation mechanisms trivial. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7 – Key Schedule Generation Block  

Figure 7 shows the key schedule operating on four round keys of 32-bits each in every iteration. The use of four instances of 
Sbox ROMs facilitates the implementation.  

SBox 

SBox 

RCON 

SBox

SBox 

8 

8 

32  
 

Rot 
Word 

32 
To

 K
ey

 S
ch

ed
ul

e 
M

em
or

y 
D

at
a 

In
pu

t 

K
ey

 



 7

6. 500 GBITS/S AES IMPLEMENTATION 
The iterative processor above can achieve a throughput of 4 data blocks every 4 x (10 + 2) = 48 clock cycles which means 

one flow every 12 clock cycles. Instantiating 12 iterative processor blocks operating on 12 x 4 different data blocks will achieve 
a throughput of one data block every clock cycle.  Following the same principle, an array of N x 12 iterative processors will 
yield a throughput of N data blocks per clock cycle. Figure 8 shows an N rows x 12 columns array of iterative processors. 
 

The iterative processor above can achieve a throughput of 4 data blocks every 4 x (10 + 2) = 48 clock cycles which means 
one flow every 12 clock cycles. Instantiating 12 iterative processor blocks operating on 12 x 4 different data blocks will achieve 
a throughput of one data block every clock cycle.  Following the same principle, an array of N x 12 iterative processors will 
yield a throughput of N data blocks per clock cycle. Figure 7 shows an N rows x 12 columns array of iterative processors. 

 
Figure 8 – Scalable AES Implementation 

Table 1 determines, for different values of the clock frequency, the corresponding values of N in order to achieve a 500 
Gbits/s throughput. Numbers are rounded to the upper integer value to keep N integer. 

The maximum number of logic levels within a single iterative processor is less than 10 gates. It implies that very high 
frequencies can be achieved. 

 
TABLE 1:VALUES OF N 

 
Clock Frequency (MHz) N # of Blocks 

100 40 480 

200 20 240 

300 14 168 

400 10 120 

500 8 96 

600 7 84 

800 5 60 

I/O
 In

te
rf

ac
e 

an
d 

B
lo

ck
 P

ar
tit

io
ni

ng
 a

nd
 

Sc
he

du
lin

g 

Key Expansion 

Iterative 

Key Expansion 

Iterative 

Key Expansion 

Iterative 

Key Expansion 

Iterative 

Key Expansion 

Iterative 

Key Expansion 

Iterative 

Key Expansion 

Iterative 

Key Expansion 

Iterative 

Key Expansion 

Iterative 

Key Expansion 

Iterative 

Key Expansion 

Iterative 

Key Expansion 

Iterative 



 8

The clock frequency values retained can easily be implemented in several technologies. A preliminary gate estimation gives a 
total of 25000 gates per iterative processor which produces a maximum of 12 million gates for the 100 MHz clock frequency 
and a minimum of 1,5 millions for the 800 MHz. These levels are acceptable within the ASIC implementation range. 

  

7. I/O Interface 

Several choices are available to implement the I/O interface. All of the solutions are based on the use of low voltage 
differential serial links. The following possibilities are: 

• 200 differential serial links running at 2.5 Gbits/s will require a total data pins of 1000 pins. 

• 12 different SPI-5 interfaces from the OIF consortium [21]. Each SPI-5 interface uses 38 pins in both directions requiring 
a total of  456 pins 

• 160 differential serial links running at 3.125 Gbits/s which requires a total of 640 pins 

• More choice will be at hand with the availability of faster low power, low voltage, differential serial links. 

 

8. Task Distribution and Scheduling 

The flow of data in and out of the iterative processors is inherently parallel and needs a structure that allows the seamless 
distribution of the load while keeping the throughput at its maximum values. In order to avoid congestion, a distributed 
scheduling model should be followed otherwise congestion will introduce delays that will lower the throughput.  

The distributed model suggested here is based on the use of an internal network on a chip that connects the iterative 
processors, the key generation blocks and the scheduling elements.  

The scheduling elements are two kinds. The first layer that is responsible for receiving the requests from the different 
interface ports and mapping them onto the iterative processors. As the interface is multiple ports by construction, each 
scheduling element, in the first layer, should be responsible for receiving and processing the requests received from one port. 
The second layer is responsible for scheduling the received requests for a single (or a group) of iterative processors. This second 
layer will be able to accept or reject new jobs sent by elements in the first layer implementing a de-facto load-balancing. The 
generation of periodic status messages broadcast to the first layer will certainly reduce jitter and delay in processing requests. 

9. CONCLUSION 
In this paper a novel approach for implementing the AES encryption algorithm has been presented. This approach showed 

how to achieve a very high throughput of 500 Gbits/s while keeping the complexity of the design relatively low by using a 
regular design. Trading off power consumption with area is possible by selecting the appropriate pair of clock 
frequency/Number of rows opening the door for implementations targeting a wide range of technologies. Simulations and 
tentative implementations will be carried out in the future to determine the actual performance numbers in terms of speed and 
area. The interface feasibility has been discussed and proved feasible in nowadays technologies. For the task distribution and 
scheduling, the overall approach, based on the use of a network-on-chip has been presented. 

ACKNOWLEDGMENT 
Facilities support by King Fahd University of Petroleum and Minerals is highly appreciated by the author. 

REFERENCES 
[1] Advanced Encryption Standard (AES), Nov. 26, 2001. 

[2] Kotturi, D.; Seong-Moo Yoo; Blizzard, J.; “AES Crypto Chip Utilizing High-Speed Parallel Pipelined Architecture”,  IEEE 
International Symposium on Circuits and Systems, ISCAS2005. 23-26 May 2005 Page(s):4653 - 4656 Vol. 5 

[3] Xinmiao Zhang; and K.K. Parhi, “High-Speed VLSI Architectures for the AES Algorithm”, IEEE Transactions on VLSI 
Systems, Volume 12,  Issue 9,  Sept. 2004 Page(s):957 – 967 

[4] S. Morioka, S. and A. Satoh,;  “A 10 Gbps Fu11-AES Crypto Design with a Twisted-BDD S-Box Architecture”IEEE 
International Conference on Computer Design: VLSI in Computers and Processors, 2002. Proceedings. 2002, 16-18 Sept. 
2002 Page(s):98 – 103 



 9

[5] A. J. Elbirt, W. Yip, B. Chetwynd, and C. Paar. An FPGA implementation and performance evaluation of the AES block 
cipher candidate algorithm finalist. presented at Proc. 3rd AES Conf. (AES3). 
Available:http://csrc.nist.gov/encryption/aes/round2/conf3/aes3papers.html 

[6] V. Fischer and M. Drutarovsky, “Two methods of Rijndael  Implementation in reconfigurable hardware,” in Proc. CHES 
2001, Paris, France, May 2001, pp. 77–92. 

[7] K. Gaj and P. Chodowiec. Comparison of the hardware performance of the AES candidates using reconfigurable hardware. 
presented at Proc. 3rd AES Conf. (AES3).  

[8] H. Kuo and I. Verbauwhede, “Architectural optimization for a 1.82 Gbits/sec VLSI implementation of the AES Rijndael 
algorithm,” in Proc. CHES 2001, Paris, France, May 2001, pp. 51–64. 

[9] M. McLoone and J. V. McCanny, “Rijndael FPGA implementation utilizing look-up tables,” in IEEE Workshop on Signal 
Processing Systems, Sept. 2001, pp. 349–360. 

[10] A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. R. Rao, and P. Rohatgi, “Efficient implementation of Rijndael encryption 
with composite field arithmetic,” in Proc. CHES 2001, Paris, France, May 2001, pp. 171–184. 

[11] K. U. Jarvinen, M. T. Tommiska, and J. O. Skytta, “A fully pipelined memoryless 17.8 Gbps AES-128 encryptor,” in Proc. 
Int. Symp. Field-Programmable Gate Arrays (FPGA 2003), Monterey, CA, Feb. 2003, pp. 207–215. 

[12] G. P. Saggese, A. Mazzeo, N. Mazocca, and A. G. M. Strollo, “An FPGA based performance analysis of the unrolling, 
tiling and pipelining of the AES algorithm,” in Proc. FPL 2003, Portugal, Sept. 2003. 

[13] F. Standaert, G. Rouvroy, J. Quisquater, and J. Legat, “Efficient implementation of Rijndael encryption in reconfigurable 
hardware: Improvements & design tradeoffs,” in Proc. CHES 2003, Cologne, Germany, Sept. 2003. 

[14] S. Mangard, M. Aigner, M. and S. Dominikus, “A highly regular and scalable AES hardware architecture”, IEEE 
Transactions on Computers, Volume 52,  Issue 4,  April 2003 Page(s):483 - 491 

[15] C. Paar, “Efficient VLSI architecture for bit-parallel computations in Galois field,” Ph.D. dissertation, Institute for 
Experimental Mathematics, University of Essen, Essen, Germany, 1994. 

[16] M. H. Jing, Y. H. Chen, Y. T. Chang, and C. H. Hsu, “The design of a fast inverse module in AES,” in Proc. Int. Conf. Info-
Tech and Info-Net, vol. 3, Beijing, China, Nov. 2001, pp. 298–303. 

[17] C. C. Lu and S. Y. Tseng, “Integrated design of AES (advanced encryption standard) encrypter and decrypter,” in Proc. 
IEEE Int Conf. Application Specific Systems, Architectures Processors, 2002, pp. 277–285. 

[18] X. Zhang and K. K. Parhi, “Implementation approaches for the advanced encryption standard algorithm,” IEEE Circuits 
Syst. Mag., vol. 2, no. 4, pp. 24–46, 2002. 

[19] X. Zhang, Parhi, K.K., “An efficient 21.56 Gbps AES implementation on FPGA”, Conference Record of the Thirty-Eighth 
Asilomar Conference on Signals, Systems and Computers, 2004. Volume 1,  7-10 Nov. 2004 Page(s):465 - 470 Vol.1 

[20] A. Hodjat, I. Verbauwhede, “Minimum area cost for a 30 to 70 Gbits/s AES processor”, Proceedings of the  IEEE Computer 
Society Annual Symposium on VLSI, 2004, 19-20 Feb. 2004 Page(s):83 – 88 

[21] The Optical Internetworking Forum at www.oiforum.org    

 


