
Tutorial on Using Verilog HDL in Logic Design

Developed for: COE-202 Students and Similar level

By: Dr. Abdelhafid Bouhraoua

1. Starting with Verilog:
Verilog-HDL is a standard hardware description language that is easy to use and learn. The expected
learning curve should be very fast.

A hardware description starts from defining the models you are going to use for your design. A model is a
construct similar to a block (hardware) or a user-defined type (in software). Designers will define all their
models then they will use them to build the whole circuit by using one or several instances.

2. Verilog module
A model is called module. The module constitutes the basic container for any Verilog description. A
module is defined as follows (key words are in bold and optional names are between < >)

module <module_name> (<port_list>);
...
endmodule

A module name should be unique for the same project. It is strongly recommended that you put every
module in a separate file with the file name being the same as the module name with the extension .v:
The module first_circ should be put is the file first_circ.v (use the .vl extension for the simulator we are
using).

3. Port list definition
The port list is the module interface to the external world of the module. It is in other terms, how the
module communicates with the outside world. The port list contains only a list of names. The direction and
wire width of each port will be defined after the module as shown in the example below:

module first_circ (X,
 Y,
 Z,
 F);

input X;
input Y;
input Z;
output F;

endmodule

From the description above it is clear that:
• X,Y and Z are three inputs with a width of a single wire (1 bit)
• F is a single wire output

4. Describing gates
Once the ports are defined, the next step is to describe the circuit itself in terms of gate connections so that
it can be simulated.

All the usual gates are predefined in the verilog language. All gates, except the inverters, have an arbitrary
number of inputs. Gates are instanciated (which means copied as instances from a model) as modules with
connections starting from the single output followed by all the inputs. Inputs and outputs are single wires.
The following illustrates the description of the following Boolean function:

F = X’YZ + XYZ’ + X’Y’

module first_circ(
 X,
 Y,
 Z,
 F);

input X;
input Y;
input Z;
output F;

// Internal Wire Definition
wire X_b;
wire Y_b;
wire Z_b;
wire O1;

// Instances
 not not1(X_b, X); // This is the inverter with one
 not not2(Y_b, Y); // input and one output
 not not3(Z_b, Z);

 and and1(O1, X_b, Y, Z); // Gate instances need to be given a name
 and and2(O2, X, Y, Z_b); // names like not1, and1 and and3 are
 and and3(O3, X_b, Y_b); // user-defined
 or or1(F, O1, O2, O3);

endmodule

The simplified syntax of the built-in gates is given below:

<gate_id> <gate_instance_name> (<output>, <input 1>, …, <input n>);

The predefined gates are given in the table below:

Gate Name Gate Id Equation
inverter not O = X’
and gate and O = XY
or gate or O = X + Y
xor gate xor O = X (+) Y
nand gate nand O = (XY)’
nor gate nor O = (X + Y)’

5. Simulation
To simulate any circuit the following operations and actions need to be carried out:

1. Place the circuit on a testing platform
2. Connect its inputs to some signal generators,
3. Program these signal generators to drive the inputs with certain values at different times,
4. Connect the output to signal capture and recording devices

5. Start the test
6. Look at the signal recordings

All these steps can be handled by the verilog language itself and by the simulation environment. Simulation
environments are Computer Aided Design (CAD) software tools that are developed to support the verilog
language and interpret it according to the specifications of the standard document of the IEEE Std 1364-
2001.

Commercially available tools are often parts of very expensive suites. Cadence and Synopsys are the world
leaders in the CAD for VLSI design. Other smaller companies have also simulators. Free of charge
simulators exist and we are going to use one of them in this tutorial. It is called the Icarus Verilog
simulator.

5.1. Testing platform or testbench
The testing platform is just another verilog module where the circuit we want to test is instanciated. In
general, because circuits are different, testbenches are developed for every circuit design. The testbench
development (part of the simulation setup) occurs in parallel with the design of the circuit itself.

Testbenches are modules that do not have inputs or outputs. The necessary drivers and capture devices are
declared as variables and are modified and/or tested within the definition of the testbench itself.

The testbench is started by defining the module and instantiating the circuit first_circ in it.

module first_tb;

reg XA;
reg YA;
reg ZA;
wire FO;

// Instanciate the circuit and Connect the I/Os
first_circ first1(
 .X (XA),
 .Y (YA),
 .Z (ZA),
 .F (FO));
endmodule

We notice that the module definition ends with a semicolon confirming the fact that a testbench does not
have input/outputs.

The different drivers of the inputs are declared with the keyword reg to allow the definition of the test
scenario to set values to them so that they can drive the circuit inputs with these values.
The output of the circuit is declared as wire which means that it is a wire that let us observe what value is
being driven by the circuit.

The circuit model is instantiated starting by its module name first_circ. The instance is given an instance
name first1 that immediately follows the model name. The inputs outputs are connected as follows:
 .<port> (<reg or wire variable>),
This means that to explicitly connect the port X of model first_circ to the testbench variable XA, the
following syntax is followed:

.X (XA),

5.2. Test Scenario
The circuit we want to test is a combinational circuit that is composed of regular gates. Any change on any
of the inputs will eventually cause a change on the output. To test all the combinations we should recreate
these combinations following the same procedures as in truth tables.

Having three inputs, the truth table will show:

X Y Z F
0 0 0 ?
0 0 1 ?
0 1 0 ?
0 1 1 ?
1 0 0 ?
1 0 1 ?
1 1 0 ?
1 1 1 ?

To recreate a continuous scan of all these combinations we use a periodic change from 0 to 1 and from 1 to
0.

Suppose that:
• signal Z will change its value from 0 to 1 and from 1 to 0 every 5 units of time
• signal Y will change its value from 0 to 1 and from 1 to 0 every 10 units of time
• signal X will change its value from 0 to 1 and from 1 to 0 every 20 units of time

The timing diagram of these three signals will be as follows:

It clearly shows how all the combinations are covered (several times).

To do that, the signals should be:

• initialized first using the initial statement
• changed every n units of time using:

o The always statement that repeatedly does the same action
o The # operator used to add delay before executing an action

To set the simulation time unit to nano-seconds, the following compiler directive is used:
`timescale 1ns/1ns

X

Y

Z

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

1
1
1

0
0
0

0
0
1

0
1
0

0
1
1

1
0
0

1
0
1

1
1
0

0 5 10 15 20 30 3525 40 50 55 45

The testbench code becomes as follows:
`timescale 1ns/1ns
module first_tb;

reg XA;
reg YA;
reg ZA;
wire FO;

// Instanciate the circuit and Connect the I/Os
first_circ first1(
 .X (XA),
 .Y (YA),
 .Z (ZA),
 .F (FO));

// initialization of the variables
initial
begin
 XA = 0;
 YA = 0;
 ZA = 0;
end

always
 #5 ZA = ~ZA; // change ZA to its opposite every 5 ns

always
 #10 YA = ~YA; // change YA to its opposite every 10 ns

always
 #20 XA = ~XA; // change XA to its opposite every 20 ns

endmodule

5.3. Signal Capture
The capture of the changes on the output signal of the circuit under test is realized by two other verilog
directives that enable dumping all of the changes in a file.

These directives are inserted within another initial block. By the way, initial blocks should be defined only
in testbenches and not in designs. This is because a design’s aim is to be translated into hardware
components (gates) where initial statements are meaningless.

The initial block used to dump simulation signal values is:
initial
begin
 $dumpfile("first_wave.vcd");
 $dumpvars(0,first_tb);
end

The dump file or wave file should have the .vcd extension. The $dumpvars statement has two parameters:

• The first parameter indicates the level of hierarchy. A value of 0 means all levels; 1 means the
current level; 2 means the current and one level below etc… These levels correspond to modules.
For example, the first level in our case is the module first_tb and the second level is the module
instance first1.

• The second parameter is the module instance name from where the dump starts.

5.4. Ending the simulation
If simulated as is, the simulation will run forever unless stopped explicitly by the user. Some simulators can
handle unexpected stops from the users while some others cannot. Therefore, it is important to specify
when the simulation should end. A verilog directive has been defined for that purpose. It is the $finish
directive.
A statement with a delay corresponding to the amount of time the simulation needs to wait (from that point
where the $finish statement is inserted) before ending itself. The statement should always be part of a
initial block. The statement is:
 initial
 #<simulation_time> $finish;
The simulation time in our case should be sufficient for executing all the combinations of the input signals
which is approximately 50 ns.
The testbench final look is:

`timescale 1ns/1ns
module first_tb;

reg XA;
reg YA;
reg ZA;
wire FO;

// Instanciate the circuit and Connect the I/Os
first_circ first1(
 .X (XA),
 .Y (YA),
 .Z (ZA),
 .F (FO));

// initialization of the variables
initial
begin
 XA = 0;
 YA = 0;
 ZA = 0;
end

always
 #5 ZA = ~ZA; // change ZA to its opposite every 5 ns

always
 #10 YA = ~YA; // change YA to its opposite every 10 ns

always
 #20 XA = ~XA; // change XA to its opposite every 20 ns

initial
begin
 $dumpfile("first_wave.vcd");
 $dumpvars(0,first_tb);
end

initial
 #50 $finish;

endmodule

5.5. Compiling the design
Once the design and testbench finalized, they should be compiled. The installed verilog compiler that we
are using is used through a command line window. The following steps should be followed:

• Open a command line window (old DOS window) by typing cmd in the run prompt of the Start
menu in Windows.

• Go to the directory where your files are
• invoke the compiler by typing: iverilog <verilog files> -o <simulation output file>

The following screen capture shows the compilation step as it is done for the current design:

5.6. Executing the simulation
The previous step compiled the simulation file into a simulator executable file. This file is not directly
executable in Windows. It is executed by a simulation kernel called vvp.

The execution of the simulation file will generate the wave file first_wave.vcd

5.7. Viewing the waveform
Finally the waveform is viewed in a waveform viewer. The one available is called Wave. The window will
look like:

