Notes on Chapter 17

Commercial Batteries

A Battery is a galvanic cell or several galvanic cells in series. The following table summarizes information on some of the well known batteries.

Туре	Reaction	Comments
Lead storage	$Pb + HSO_4^- \rightarrow PbSO_4 + H^+ + 2e^-$	$\varepsilon_{cell} \approx 2$ V. Six cells in
	$PbO_2 + HSO_4^- + 3H^+ + 2e^- \rightarrow PbSO_4 + 2H_2O$	series yield about 12 V.
		Checked using H ₂ SO ₄
	Removable cap Anode Cathode	density. Rechargeable.
	H ₂ SO ₄ electrolyte Regative plates (lead grills filled with spongy lead) Filled with PbO ₂)	Figure 17.13
Dry Cell	$Zn \rightarrow Zn^{2+} + 2e^{-}$	$\varepsilon_{cell} \approx 1.5 \text{ V}. \text{ Zn corrodes}$
(Leclanche)	$2NH_4^++2MnO_2+2e^- \rightarrow Mn_2O_3+2NH_3+H_2O$	fast in NH4Cl (source of
		NH4 ⁺). Figure 17.14
	Paper spacer Moist paste of ZnCl ₂ and NH ₄ Cl Layer of MnO ₂ Graphite cathode Zinc anode	
Dry Cell	$Zn + 2OH^- \rightarrow ZnO + H_2O + 2e^-$	KOH (or NaOH) replaces
(alkaline)	$2MnO_2 + H_2O + 2e^- \rightarrow Mn_2O_3 + 2OH^-$	NH4Cl. Last longer than
		Leclanche as Zn corrodes
		much more slowly

Ag or Hg Cells	Both use Zn anode. An Ag cell uses Ag_2O	Often used in calculators.
	as an oxidizing agent in a basic medium.	Details in Figure 17.15
	An Hg cell uses HgO in a basic medium	
	Cathode (steel)	
	Insulation Anode (Zn can)	
	Electrolyte solution containing KOH and paste of Zn(OH) ₂ and HgO	
Ni –Cd	$Cd + 2OH^- \rightarrow Cd(OH)_2 + 2e^-$	Theoretically indefinitely
(Nicad)	$NiO2 + 2H_2O + 2e^- \rightarrow Ni(OH)_2 + 2OH^-$	rechargeable

Aluminium Production (see figure 17.22)

The reactions involved leading to the final product are believed to occur as follows. CATHODE: (1) $AlF_6^{3-} + 3e^- \rightarrow Al + 6F^-$ ANODE: (2) $AlOF_6^{2-} + 12F^- + C \rightarrow 4AlF_6^{3-} + CO_2 + 4e^-$ One of the products, AlF_6^{3} , is believed to react with Al_2O_3 as follows Reaction (3) $Al_2O_3 + 4AlF_6^{3-} \rightarrow 3AlOF_6^{2-} + 6F^-$ Multiplying (1) by 4 and (2) by 3 to balance the electrons and adding them to (3) multiplied by yields the following overall reaction.

Electro-refining

After Cu is obtained from its ore its still contains impurities like Fe, Zn, and other metals M. This impure Cu is used as anode and a very pure copper is used as a cathode.

Anode half reaction Cu \rightarrow Cu²⁺ + 2 e⁻

Cathode half reaction Cu²⁺ + 2 e⁻ \rightarrow Cu

Thus basically the Cu is transferred from the impure anode and collected pure on the cathode. The other impurities like Fe, Zn etc usually leave the anode as Fe²⁺ and Zn²⁺ and so on but remain as sludge and are not deposited on the cathode because their reduction potential is lower than that of Cu²⁺.

Metal Plating (see figure 17.24 b)

The metal (Ag in the case of figure 17.24 b) leaves the anode as Ag $^+$ and Ag $^+$ from the solution is deposited as Ag on the item to be plated (a silver spoon in the case of figure 17.24) which acts as a cathode.

Production of Na and Cl₂ in a Downs Cell (figure 17.25)

A molten NaCl / CaCl2 mixture is electrolyzed.ANODE $2 \text{ Cl}^-(aq) + 2 e^- \rightarrow \text{ Cl}_2(g)$ CATHODENa + (aq) + e^- \rightarrow Na (s)

Electrolysis of NaCl (aq) does not yield Na because H_2O which has a higher reduction potential than Na⁺ is preferentially reduced.

- (1) Na⁺(aq) + $e^- \rightarrow$ Na (s) $\epsilon^{\circ} = -2.71$ V
- (2) $2 H_2O + 2 e^- \rightarrow H_2 + 2 OH^- \epsilon^\circ = -0.83 V$

In the Hg cell (figure 17.26) a Hg electrode is used on which half-cell reaction (1) occurs because the production of H_2 on Hg requires a very high overvoltage. The NaHg amalgam forms then the Na is removed from it by the following reaction with water.

 $2 \operatorname{Na}(s) + 2 \operatorname{H}_2 O(l) \rightarrow 2 \operatorname{Na}^+(aq) + 2 \operatorname{OH}^-(aq) + \operatorname{H}_2(g)$

Using electrolysis of NaCl (aq) to get Cl_2 and Na is possible (done in Japan) by surrounding the cathode with a membrane that only passes the Na⁺ ions to it.