ARTICLE IN PRESS

ELSEVIER

Available online at www.sciencedirect.com

SPECTROCHIMICA ACTA PART A

Spectrochimica Acta Part A xxx (2006) xxx-xxx

www.elsevier.com/locate/saa

Ab initio and DFT studies of the molecular structures and vibrational spectra of succinonitrile

Yunusa Umar*, M.A. Morsy

Department of Chemistry, King Fahd University of Petroleum and Minerals, KFUPM Box 5048, Dhahran 31261, Saudi Arabia Received 29 January 2006; accepted 25 May 2006

Abstract

The Molecular structure, conformational stability and vibrational frequencies of succinonitrile NCCH₂CH₂CN have been investigated with ab initio and density functional theory (DFT) methods implementing the standard $6-311++G^*$ basis set. The potential energy surfaces (PES) have been explored at DFT-B3LYP, HF and MP2 levels of theory. In agreements with previous experimental results, the molecule was predicted to exist in equilibrium mixture of *trans* and gauche conforms with the *trans* form being slightly lower in energy. The vibrational frequencies and the corresponding vibrational assignments of succinonitrile in both C_{2h} and C₂ symmetry were examined theoretically and the calculated Infrared and Raman spectra of the molecule were plotted. Observed frequencies for normal modes were compared with those calculated from normal mode coordinate analysis carried out on the basis of ab initio and DFT force fields using the standard $6-311++G^*$ basis set of the theoretical optimized geometry. Theoretical IR intensities and Raman activities are reported.

© 2006 Elsevier B.V. All rights reserved.

Keywords: Density functional method; Ab initio; Vibrational frequencies; Infrared spectra; Raman spectra; Succinonitrile; 1,2-Dicyanoethane

1. Introduction

It is well established [1–5] that 1,2 di-substituted ethanes consist of equilibrium mixtures of two rotational isomers, trans and gauche. The symmetrical di-substituted ethane, 1,2dicyanoethane (succinonitrile) was also reported to exit as an equilibrium mixture of two rotational isomers. Fitzgerald and Jantz [6], as well as Fujiyama et al. [7] reported the existence of both the trans and gauche forms of succinonitrile, NCCH₂CH₂CN in liquid and solid states from infrared and Raman spectra measurements, but only the gauge form remains to exist when the solid is cooled to -50 °C. Fernolt and Kveseth [8], studied gaseous succinonitrile by electron diffraction and concluded the more stable conformer in the vapor is *trans*, contributing with about 74% at 170 °C. The X-ray analysis [9] and the infrared spectra [10] of the coordination compounds bis(succinonitrile)copper(1)-nitrate, [Cu(NCCH₂CH₂CN)₂]NO₃, and succinonitrile silver nitrate, [Ag(NCCH₂CH₂CN)]NO₃ show that the ligand succinonitrile takes the gauche and trans form, respectively.

1386-1425/\$ - see front matter © 2006 Elsevier B.V. All rights reserved. doi:10.1016/j.saa.2006.05.026

The infrared spectra of succinonitrile molecule have been investigated in some details [6,10,11]. However, the measured vibration and individual assignments are partially in disagreement. In order to get clear and unequivocal assignments, Fengler and Ruoff [12] recently reported a detailed discussion of the infrared and Raman spectra of succinonitrile along with three succinonitrile isotopomers at both room temperature and liquid nitrogen temperature. A detailed quantum chemical calculation of the structure and vibrational modes of succinonitrile will aid making definitive assignments to the fundamental normal modes and in clarifying the available experimental data for this important molecule. In this study, molecular geometry, infrared and Raman spectra of succinonitrile NCCH₂CH₂CN are investigated using the Gaussian 03 program package [13] and compared against available experimental geometry and vibrational data. The vibrational frequencies of NCCH₂CH₂CN were calculated using ab initio and DFT methods. In DFT method, Becke's three-parameter exchange functional [14] combined with Lee-Yang-Parr [15] correlation functional (B3LYP) methods were employed using the standard 6-311++G^{*} basis set [16,17]. The same basis set was used for Hatree Fock (HF) and second-order Møller-Plesset (MP2) perturbation theory [18]. A complete assignment of the fundamental vibrational modes was done on the

^{*} Corresponding author. Tel.: +966 5 02045518; fax: +966 3 8604277. *E-mail address:* uyunusa@kfupm.edu.sa (Y. Umar).

ARTICLE IN PRESS

basis of comparison between the calculated and experimental results.

2. Computational methods

Gaussian 03 program package was used to optimize the structure, predict dipole moment and calculate the vibrational frequencies for succinonitrile, NCCH2CH2CN (Scheme 1). Calculations were performed at DFT-B3LYP, HF and MP2 levels of theory. The standard $6-311++G^*$ basis set was used to carryout the calculations utilizing the $C_{2h}\xspace$ and $C_2\xspace$ symmetry of NCCH₂CH₂CN. Some of the optimized bond lengths and bond angles of succinonitrile are listed in Table 1. Generation of potential energy functions from the experimental data is a difficult task, since only conformations near the minima are appreciably populated. The alternative is to carry out accurate ab initio calculations for an appropriate numbers of rotational angles. Therefore, to study different conformations of the molecule, potential energy surface (PES) for the internal rotation about the C–C single bond was performed at all the three levels of theory. Torsional angle ϕ (CC–CC) was varied over a range of 180° at an increment 15°. The saddle points were determined and full geometry optimization was carried out at the transition state. In addition, full geometry optimization at each of the fixed CC-CC torsional angle (ϕ) of 15°, 30°, 45°, 60°, 75°, 90°, 105°, 120°,

Scheme 1. Atom numbering for succinonitrile in the cis and trans form.

Fig. 1. Pontential energy surface of succinonitrile as a function of dihedral angle (ϕ) computed at B3LYP/6–311++G^{*}, MP2/6–311++G^{*} and HF/6–311++G^{*} levels of theory.

135°, 150°, and 165° were carried out at B3LYP/6–311++ G^* , HF/6–311++ G^* and MP2/6–311++ G^* levels of calculations.

Fig. 1 shows the potential energy surface of succinonitrile as a function of the dihedral angle (ϕ). All the reported minima along the potential energy surface were subjected to full geometry optimizations. The minima were confirmed using frequency calculations. The infrared data are reported, and the each of the vibrational modes was reliably confirmed by Gaussian view program. The vibrational infrared and Raman spectra were calculated as described previously [19,20]. The frequencies v_j , the scattering activities S_j , and the depolarization ratios ρ_j obtained from B3LYP/6–311++G^{*}, HF/6–311++G^{*} and MP2/6–311++G^{*} calculations were used to calculate infrared and Raman spectra at all the three levels of theory respectively. The calculated vibrational Raman and infrared spectra are shown in Figs. 2–7.

Table 1

Optimized parameters for the stable conformers of succinonitrile at DFT-B3LYP, MP2 and HF levels using 6-311++G* basis set

Parameter	B3LYP/6-311	++G [*]	MP2/6-311++	G^*	HF/6–311++G	1 '*	Expt ^a
	Trans	Gauge	Trans	Gauge	Trans	Gauge	
Bond lengths (Å)							
$C_1 - C_2$	1.460	1.461	1.464	1.465	1.469	1.469	1.465
C ₂ -C ₃	1.549	1.547	1.542	1.540	1.537	1.536	1.561
$C_3 - C_4$	1.460	1.461	1.464	1.465	1.469	1.469	1.465
C≡N	1.153	1.152	1.175	1.175	1.129	1.129	1.161
С–Н	1.093	1.093	1.093	1.094	1.082	1.082	1.092
Bond angles (°)							
CCC	111.4	113.3	110.6	111.8	110.9	113.0	110.4
CCN	179.1	179.3	178.4	178.9	179.4	179.2	
CCCC	180.0	68.3	180.0	64.3	180.0	68.7	
Dipole moment (Debye)	0.180	5.703	0.177	5.754	0.0	5.969	
Rotational constants (GHz)							
Α	25.6878	7.1974	25.2067	6.7022	26.0354	7.2765	
В	1.4802	2.2658	1.4770	2.4057	1.4968	2.2964	
С	1.4241	1.8461	1.4198	1.9003	1.4402	1.8709	

^a Experimental values taken from Ref. [8].

ARTICLE IN PRESS

Y. Umar, M.A. Morsy / Spectrochimica Acta Part A xxx (2006) xxx-xxx

Fig. 2. Calculated vibrational infrared spectra of succinonitrile for the *trans* and gauche mixture (top), pure *trans* (middle) and pure gauche (bottom) at $300 \degree$ C by the DFT-B3LYP/6–311++G^{*}.

Fig. 3. Calculated vibrational Raman spectra of succinonitrile for the *trans* and gauche mixture (top), pure *trans* (middle) and pure gauche (bottom) at $300 \degree$ C by the DFT-B3LYP/6–311++G^{*}.

Fig. 4. Calculated vibrational infrared spectra of succinonitrile for the *trans* and gauche mixture (top), pure *trans* (middle) and pure gauche (bottom) at $300 \degree C$ by the MP2/6–311++G^{*}.

Fig. 5. Calculated vibrational Raman spectra of succinonitrile for the *trans* and gauche mixture (top), pure *trans* (middle) and pure gauche (bottom) at 300 °C by the MP2/6–311++ G^* .

Fig. 6. Calculated vibrational infrared spectra of succinonitrile for the *trans* and gauche mixture (top), pure *trans* (middle) and pure gauche (bottom) at 300 °C by the HF/6–311++G^{*}.

Fig. 7. Calculated vibrational Raman spectra of succinonitrile for the *trans* and gauche mixture (top), pure *trans* (middle) and pure gauche (bottom) at 300 °C by the HF/6–311++G^{*}.

ARTICLE IN PRESS

Y. Umar, M.A. Morsy / Spectrochimica Acta Part A xxx (2006) xxx-xxx

3. Results and discussion

The geometry parameters optimized at DFT-B3LYP, MP2 and HF levels of theory for succinonitrile are presented in Table 1 along with reported electron diffraction data reported by Fernolt and Kveseth [8]. Computed total dipole moments and rotational constants are also presented therein. The standard basis set 6–311++G^{**} was utilized in all calculations. The calculated rotational constants R_A , R_B , and R_C for the two stable conformers are summarized in Table 1. The computed geometry parameters fairly agree well with the reported main experimental structural parameters obtained by electron diffraction [8]. The structural data suggests a repulsive interactions in the gauche forms, i.e. NC-C-C-CN torsional angles larger than 60° and C-C-CN angles are larger in gauche than trans conformers. The molecular symmetries of succinonitrile are C_{2v} and C_{2h} for the conformations corresponding to the C–C–C–C dihedral angles $\phi = 0^{\circ}$ and $\phi = 180^{\circ}$, respectively. The symmetry becomes C₂ for the intermediate angles. From steric considerations, and the polar nature of the cyano groups, the eclipsed conformers are predicted the least likely of the possible configurations. Total dipole moments obtained from geometry optimization of trans conformer at all the three levels of calculations were found to be smaller than those predicted from geometry optimization of gauche conformer. While the gauche conformer possesses a large dipole moment of about 5.7 Debye, the dipole moment of the trans conformer vanishes owing to its center of inversion.

The potential energy surface (PES) of succinonitrile have been explored at the B3LYP/6-311++G*, HF/6-311++G* and MP2/6–311++ G^* levels of theory. At a fixed value of torsional angle (ϕ), the other geometrical parameters were relaxed to their equilibrium values. Fig. 1 shows the potential energy curves of succinonitrile as a function of the dihedral angle (ϕ). The calculated PESs have the same skeleton, which clearly show two distinct minima at $\phi \approx 60^{\circ}$ and $\phi = 180^{\circ}$ at all levels of theory. All the reported minima along the potential energy surface were subjected to full geometry optimizations and the minimum was verified by calculating the vibrational frequencies that result in the absence of imaginary frequencies. The B3LYP and HF calculations gave the trans/gauche energy differences of 1.20 and 1.34 kcal/mol, respectively, but when electron correlation was included (MP2), the difference was found to be 0.47 kcal/mol favoring trans conformer. These results are in agreement with the reported electron diffraction experiment [8], where the trans was found to be more stable than the gauche conformer by 1.5(3) kcal/mol. Based on reaction field theory of Osernger, Fitzgerald et al. predicted vapor state of succinonitrile to be a mixture of the gauche and *trans* isomeric form with the energy difference of about 1 kcal/mol in favor of the trans conformer. Computed total energies of the two conformers and the transition state of the molecules calculated at MP2, B3LYP and BLYP are presented in Table 2. Relative energies, corrected relative energies and rotational barriers are also presented therein. The gauche-trans internal rotational barrier was predicted to be about 2.0-2.4 kcal/mol depending on the level of theory applied.

Table 2

Computed total energies (hartree) and/or zero-point corrections (kcal/mol), and relative energy and rotational barriers (kcal/mol) in succinonitrile at DFT-B3LYP, MP2 and HF levels using $6-311++G^*$ basis set

Level/parameter	B3LYP	MP2	HF
Total energy			
Trans	-264.373341	-263.607974	-262.750313
Gauge	-264.371495	-263.607447	-262.748261
TS ^a	-264.368119	-263.602623	-262.744279
Relative energy	1.158	0.330	1.288
Trans-gauche barrier	3.277	3.357	3.786
Gauge-trans barrier	2.119	3.027	2.499
Zero-point correction			
Trans	0.073561	0.073233	0.079174
Gauche	0.07362	0.073451	0.079259
TS ^a	0.073407	0.073226	0.079093
Corrected relative energy	1.195	0.467	1.341
Corrected <i>trans</i> -gauche barrier	3.180	3.353	3.736
Corrected gauge-trans barrier	1.985	2.886	2.395

^a Transition state energy, dihedral angle at the transition state was found to be 118.2° , 120.3° and 120.0° at B3LYP, MP2 and HF levels, respectively.

The optimized structural parameters were used to compute the vibrational frequencies of succinonitrile at, DFT-B3LYP, HF and MP2 levels of theory. Standard basis set $6-311++G^*$ was utilized in all calculations. Tables 3-8 present the calculated vibrational frequencies for the two stable conformers of succinonitrile computed at the DFT-B3LYP, HF and MP2 levels of theory respectively. These calculations result in 24 fundamental vibrations which span irreducible representations $\Gamma_{\rm vib} = 8$ Ag + 5Au + 4Bg + 7Bu and $\Gamma_{\rm vib} = 13$ A + 11B of the C_{2h} point group of the trans and C2 point group of the gauche, respectively. For the C₂ (gauge) isomer all the 24 fundamental modes are both Raman and infrared active while the C_{2h} (trans) form, the fundamental modes are mutually exclusive due to the C_{2h} symmetry. Thus the C_{2h} isomer has approximately half as many infrared active fundamental as the C2 form. The assignment of each normal mode is also given in each table. The high degree of the symmetry of the molecule was helpful in making vibrational assignments. The symmetry of each vibrational has been determined by using the standard procedures [21] where the traces of the symmetry operations for each vibrational mode were translated to into an irreducible representation under the C_{2h} and C₂ point groups. The normal modes associated with individual vibrations are graphically displayed using GaussView program. Combining the motions observed using the Gauss View program, Infrared band intensities and Raman line activities, with the experimental reported results, complete vibrational frequency assignments were made with high degree of confidence. Each vibrational mode was assigned to one of eleven types of motion (C–H stretch, C=N stretch, CH₂ bend, CH₂ wag, C–C stretch, C-CN stretch, C-C-C bend, C-C=N bend, CH_2 twist, CH_2 rock, torsion).

Comparison of the results of the calculated vibrational frequencies presented in Tables 3–8 with the experimental values reflects a reasonable agreement for the vibrational frequencies.

ARTICLE IN PRESS

Y. Umar, M.A. Morsy / Spectrochimica Acta Part A xxx (2006) xxx-xxx

Table 3 Calculated vibrational frequencies^a of *trans* succinonitrile (cm⁻¹) at the DFT (B3LYP) level of theory using the standard 6–311++G^{**} basis set

Symmetry	No.	Frequency	IR intensity	Raman activity	Expt ^b	v_{expt}/v_{calc}	Assignment
	ν_1	3060	Inactive	207.8	2947	0.96	C-H stretch
	ν_2	2359	Inactive	216.6	2254	0.96	C≡N stretch
	ν_3	1485	Inactive	14.0	1425	0.96	CH ₂ bend
•	ν_4	1392	Inactive	20.5	1359	0.98	CH ₂ wag
Ag	ν_5	1020	Inactive	12.7	1025	1.00	C-C stretch
	ν_6	971	Inactive	7.2	951	0.98	C-CN stretch
	ν_7	515	Inactive	6.9	508	0.99	C-C-C bend
	ν_8	224	Inactive	5.2	240	1.07	C–C≡N bend
	V9	3112	1.7	Inactive	2985	0.96	C-H stretch
	v_{10}	1231	0.0	Inactive	1232	1.00	CH ₂ twist
Au	v_{11}	773	2.8	Inactive	762	0.98	CH ₂ rock
	v_{12}	402	0.0	Inactive	388	0.97	C–C≡N bend
	v_{13}	79	22.8	Inactive	_	-	Torsion
	v_{14}	3093	Inactive	101.1	2982	0.96	C-H stretch
D	v_{15}	1333	Inactive	9.2	1178	0.88	CH ₂ twist
Dg	v_{16}	1045	Inactive	0.1	1005	0.96	CH ₂ rock
	v_{17}	364	Inactive	7.4	357	0.98	C−C≡N bend
	v_{18}	3670	3.9	Inactive	2965	0.81	C-H stretch
	v_{19}	2361	13.5	Inactive	2255	0.96	C-N stretch
	v_{20}	1494	17.2	Inactive	1431	0.96	CH ₂ bend
Bu	ν_{21}	1307	1.7	Inactive	1272	0.97	CH ₂ wag
	ν_{22}	934	5.7	Inactive	917	0.98	C-C stretch
	V23	531	1.6	Inactive	529	1.00	C-C-C bend
	v_{24}	132	23.4	Inactive	180	1.36	C–C≡N bend

 $^a\,$ IR intensities and Raman activities are calculated in $km\,mol^{-1}$ and ${\rm \AA}^4\,amu^{-1},$ respectively.

^b Experimental values taken from Ref. [7].

Table 4	
Calculated vibrational frequencies ^a of <i>trans</i> succinonitrile (cm ^{-1}) at the HF level of theory using the standard 6–311++G ^{**}	basis set

Symmetry	No.	Frequency	IR intensity	Raman activity	Expt ^b	v_{expt}/v_{calc}	Assignment
	<i>v</i> ₁	3234	Inactive	190.0	2947	0.91	C-H stretch
	ν_2	2596	Inactive	169.0	2254	0.87	C≡N stretch
	ν_3	1609	Inactive	14.0	1425	0.89	CH ₂ bend
•	ν_4	1535	Inactive	8.8	1359	0.89	CH ₂ wag
Ag	ν_5	1105	Inactive	14.5	1025	0.93	C-C stretch
	ν_6	1032	Inactive	6.2	951	0.92	C-CN stretch
	ν_7	559	Inactive	7.3	508	0.91	C-C-C bend
	ν_8	249	Inactive	5.9	240	0.96	C–C≡N bend
	V9	3292	4.8	Inactive	2985	0.91	C-H stretch
	v_{10}	1331	0.1	Inactive	1232	0.93	CH ₂ twist
Au	v_{11}	835	2.2	Inactive	762	0.91	CH ₂ rock
	v_{12}	447	0.6	Inactive	388	0.87	C–C≡N bend
	v_{13}	86	25.7	Inactive	_	_	Torsion
	v_{14}	3271	Inactive	94.9	2982	0.91	C-H stretch
D	v_{15}	1442	Inactive	9.4	1178	0.82	CH ₂ twist
Dg	v_{16}	1144	Inactive	0.2	1005	0.88	CH ₂ rock
	v_{17}	408	Inactive	9.7	357	0.88	C–C≡N bend
	v_{18}	3241	6.8	Inactive	2965	0.91	C-H stretch
	V19	2597	25.3	Inactive	2255	0.87	C≡N stretch
	ν_{20}	1618	14.0	Inactive	1431	0.88	CH ₂ bend
Bu	v_{21}	1419	3.7	Inactive	1272	0.90	CH ₂ wag
	v_{22}	973	20.9	Inactive	917	0.94	C-C stretch
	ν_{23}	584	0.4	Inactive	529	0.91	C-C-C bend
	v_{24}	145	27.7	Inactive	180	1.24	C–C≡N bend

^a IR intensities and Raman activities are calculated in km mol⁻¹ and $Å^4$ amu⁻¹, respectively.

^b Experimental values taken from Ref. [7].

ARTICLE IN PRESS

Y. Umar, M.A. Morsy / Spectrochimica Acta Part A xxx (2006) xxx-xxx

Table 5 Calculated vibrational frequencies^a of trans succinonitrile (cm⁻¹) at the MP2 level of theory using the standard 6–311++G^{**} basis set

Symmetry	No.	Frequency	IR intensity	Raman activity	Expt ^b	v_{expt}/v_{calc}	Assignment
	<i>v</i> ₁	3104	Inactive	197.3	2947	0.95	C-H stretch
	ν_2	2192	Inactive	126.6	2254	1.03	C≡N stretch
	ν_3	1508	Inactive	13.5	1425	0.94	CH ₂ bend
٨	ν_4	1405	Inactive	13.1	1359	0.97	CH ₂ wag
Ag	ν_5	1057	Inactive	10.1	1025	0.97	C-C stretch
	ν_6	976	Inactive	8.4	951	0.97	C-CN stretch
	ν_7	505	Inactive	5.4	508	1.01	C-C-C bend
	ν_8	214	Inactive	4.6	240	1.12	C-C=N bend
	V9	3172	0.2	Inactive	2985	0.94	C-H stretch
	v_{10}	1227	0.0	Inactive	1232	1.00	CH ₂ twist
Au	v_{11}	775	2.4	Inactive	762	0.98	CH ₂ rock
	v_{12}	365	0.0	Inactive	388	1.06	C–C≡N bend
	v_{13}	76	21.1	Inactive	-	_	Torsion
	v_{14}	3154	Inactive	90.5	2982	0.95	C-H stretch
р	v_{15}	1340	Inactive	9.1	1178	0.88	CH ₂ twist
Dg	v_{16}	1048	Inactive	0.1	1005	0.96	CH ₂ rock
	v_{17}	332	Inactive	6.1	357	1.08	C−C≡N bend
	v_{18}	3112	1.9	Inactive	2965	0.95	C-H stretch
	V19	2196	1.0	Inactive	2255	1.03	C≡N stretch
	ν_{20}	1512	18.7	Inactive	1431	0.95	CH ₂ bend
Bu	v_{21}	1301	0.7	Inactive	1272	0.98	CH ₂ wag
	v_{22}	940	4.8	Inactive	917	0.98	C-C stretch
	ν_{23}	507	2.1	Inactive	529	1.04	C-C-C bend
	v_{24}	126	21.2	Inactive	180	1.43	C–C≡N bend

 $^a\,$ IR intensities and Raman activities are calculated in $km\,mol^{-1}$ and ${\rm \AA}^4\,amu^{-1},$ respectively.

^b Experimental values taken from Ref. [7].

Table 6	
Alculated vibrational frequencies ^a of gauche succinonitrile (cm ⁻¹) at the DFT (B3LYP) level of theory using the standard 6–311++G [*] basis so	et

Symmetry	No.	Frequency	IR intensity	Raman activity	Expt ^b	v_{expt}/v_{calc}	Assignment
	111	3105	21	777	2085	0.96	C_H stretch
	V1 V2	3060	2.1	16.1	2965	0.90	C-H stretch
	V2 V2	2362	33	124.7	2254	0.95	C≡N stretch
	V3	1484	7.4	53	1420	0.96	CH ₂ scissor
	24 V5	1384	4.5	3.8	1322	0.96	CH ₂ wag
	25 V6	1234	0.1	1.1	1200	0.97	CH ₂ twist
А	20 V7	1022	2.3	2.0	1026	1.00	C–C stretch
	V8	990	2.6	0.5	963	0.97	CH ₂ rock
	Vg	807	1.0	9.1	818	1.01	C–CN stretch
	V10	483	1.3	3.2	480	0.99	C-C-C bend
	v ₁₁	393	0.1	5.1	387	0.98	C–C≡N bend
	v ₁₂	230	9.7	2.7	230	1.00	C–C≡N bend
	v ₁₃	78	5.7	4.0	-	-	Torsion
	v_{14}	3096	1.6	103.0	2985	0.96	C-H stretch
	V15	3062	5.9	243.1	2965	0.97	C-H stretch
	v_{16}	2361	5.4	47.1	2255	0.95	C≡N stretch
	V17	1486	13.4	11.3	1431	0.96	CH ₂ scissor
	v_{18}	1370	2.2	11.9	1339	0.98	CH ₂ wag
В	v_{19}	1276	0.1	5.6	1232	0.97	CH ₂ twist
	ν_{20}	1044	0.5	6.9	975	0.93	C-CN stretch
	ν_{21}	839	1.1	0.4	813	0.97	CH ₂ rock
	ν_{22}	607	3.8	0.9	604	1.00	C-C-C bend
	ν_{23}	361	0.4	0.8	358	0.99	C–C≡N bend
	v_{24}	179	0.8	2.0	247	1.38	C–C≡N bend

^a IR intensities and Raman activities are calculated in km mol⁻¹ and Å⁴ amu⁻¹, respectively.

^b Experimental values taken from Ref. [7].

Y. Umar, M.A. Morsy / Spectrochimica Acta Part A xxx (2006) xxx-xxx

Table 7	
Calculated vibrational frequencies ^a of gauche succinonitrile (cm ^{-1}) at the HF level of theory using the standard 6–311++G ^{$*$}	basis set

Symmetry	No.	Frequency	IR intensity	Raman activity	Expt ^b	v_{expt}/v_{calc}	Assignment
	<i>v</i> ₁	3287	5.1	23.7	2985	0.91	C-H stretch
	ν_2	3233	3.7	18.9	2965	0.92	C-H stretch
	<i>v</i> ₃	2598	11.0	35.3	2254	0.87	C≡N stretch
	ν_4	1609	4.7	4.6	1420	0.88	CH ₂ scissor
	ν_5	1505	3.5	8.0	1322	0.88	CH ₂ wag
	ν_6	1332	0.2	1.0	1200	0.90	CH ₂ twist
А	ν_7	1091	4.4	3.7	1026	0.94	C-C stretch
	ν_8	1063	5.1	0.7	963	0.91	CH ₂ rock
	V9	854	4.3	10.8	818	0.96	C-CN stretch
	v_{10}	533	2.0	4.2	480	0.90	C-C-C bend
	v_{11}	439	0.5	6.9	387	0.88	C–C≡N bend
	v_{12}	254	13.8	2.8	230	0.91	C–C≡N bend
	v_{13}	86	6.6	3.3	-		Torsion
	v_{14}	3277	3.1	92.3	2985	0.91	C-H stretch
	v_{15}	3239	8.5	215.3	2965	0.92	C-H stretch
	v_{16}	2599	7.9	107.9	2255	0.87	C≡N stretch
	V17	1610	11.9	10.2	1431	0.89	CH ₂ scissor
	ν_{18}	1501	8.2	2.6	1339	0.89	CH ₂ wag
В	V19	1384	0.4	4.9	1232	0.89	CH ₂ twist
	v_{20}	1141	0.8	5.9	975	0.85	C-CN stretch
	ν_{21}	891	3.6	1.0	813	0.91	CH ₂ rock
	ν_{22}	661	3.1	1.4	604	0.91	C-C-C bend
	V23	405	1.4	1.0	358	0.88	C–C≡N bend
	v_{24}	197	0.9	2.0	247	1.25	C-C=N bend

^a IR intensities and Raman activities are calculated in km mol⁻¹ and Å⁴ amu⁻¹, respectively.
^b Experimental values taken from Ref. [7].

Table 8	
Calculated vibrational frequencies ^a of gauche succinonitrile (cm ⁻¹)) at the MP2 level of theory using the standard $6-311++G^*$ basis set

Symmetry	No.	Frequency	IR intensity	Raman activity	Expt ^b	v_{expt}/v_{calc}	Assignment
	v_1	3165	0.5	30.0	2985	0.94	C-H stretch
	ν_2	3104	1.3	15.3	2965	0.96	C-H stretch
	ν_3	2192	1.5	72.1	2254	1.03	C≡N stretch
	ν_4	1509	8.1	5.2	1420	0.94	CH ₂ scissor
	ν_5	1388	2.8	2.6	1322	0.95	CH ₂ wag
	ν_6	1235	0.3	1.2	1200	0.97	CH ₂ twist
А	ν_7	1031	2.5	2.1	1026	1.00	C-C stretch
	ν_8	996	2.1	0.9	963	0.97	CH ₂ rock
	V9	826	1.0	9.4	818	0.99	C-CN stretch
	v_{10}	467	1.0	2.3	480	1.03	C-C-C bend
	v ₁₁	380	0.0	4.2	387	1.02	C–C≡N bend
	v_{12}	220	8.1	2.6	230	1.05	C–C≡N bend
	v_{13}	80	4.4	3.3	-	-	Torsion
	v_{14}	3156	0.5	88.0	2985	0.95	C-H stretch
	v_{15}	3104	4.2	230.4	2965	0.96	C-H stretch
	v_{16}	2195	0.8	26.2	2255	1.03	C≡N stretch
	v_{17}	1509	14.5	10.2	1431	0.95	CH ₂ scissor
	v_{18}	1383	1.4	8.2	1339	0.97	CH ₂ wag
В	V19	1278	0.5	5.6	1232	0.96	CH ₂ twist
	ν_{20}	1071	0.1	5.7	975	0.91	C-CN stretch
	ν_{21}	839	0.9	0.4	813	0.97	CH ₂ rock
	ν_{22}	601	4.4	0.7	604	1.00	C-C-C bend
	ν_{23}	335	0.1	0.8	358	1.07	C–C≡N bend
	v_{24}	175	0.9	1.7	247	1.41	C–C≡N bend

^a IR intensities and Raman activities are calculated in km mol⁻¹ and Å⁴ amu⁻¹, respectively. ^b Experimental values taken from Ref. [7].

ARTICLE IN PRESS

Y. Umar, M.A. Morsy / Spectrochimica Acta Part A xxx (2006) xxx-xxx

The calculated frequencies are usually higher than their experimental counterparts and the difference can be accounted for by including scale factor for each level of theory. There are different ways of finding scaling factor but this has not been considered in this paper. However, the ratios of the experimental and calculated vibrational frequencies were computed and presented in Tables 3–8. These ratios reflect the highly level of conformity between the harmonic frequencies obtained from all the three levels of calculation and the observed fundamental frequencies. The vibrational infrared and Raman spectra were calculated as described previously [19,20]. The frequencies v_i , the scattering activities S_i , and the depolarization ratios ρ_i obtained from B3LYP/6-311++G^{*}, HF/6-311++G^{*} and MP2/6-311++G^{*} calculations were used to calculate infrared and Raman spectra at all the three levels of theory, respectively. The calculated vibrational Raman and infrared spectra are shown in Figs. 2-7.

4. Summary and conclusion

Ab initio and DFT theoretical studies were performed to obtain the molecular structures of *trans* and gauche rotational isomers of succinonitrile. The molecular geometries were optimized at the B3LYP/6–311++G^{*}, HF/6–311++G^{*} and MP2/6–311++G^{*} levels of theory. The potential energy surfaces were obtained for the internal rotation about the C–C single bond at all the three levels of theory. The normal modes and corresponding vibrational assignment of succinonitrile were theoretically examined using Gaussian 03 package. A complete assignment of the fundamental vibrational modes is proposed based on the GaussView visualization program and experimental results. Theoretical infrared and Raman spectra are reported. Symmetry of the molecule, Infrared and Raman intensities were helpful in making the assignments of the fundamental vibrational modes.

Acknowledgment

The support of King Fahd University of Petroleum and Minerals, Dhahran Saudi Arabia is gratefully acknowledged.

References

- S. Mizushima, Structure of Molecules and Internal Rotation, Academic Press, NY, 1954.
- [2] W.F. Edgell, G.J. Glocker, J. Chem. Phys. 9 (1941) 375.
- [3] D.W. Axford, D.H. Rank, J. Chem. Phys. 17 (1949) 430.
- [4] J.T. New, F. Gwinn, J. Chem. Phys. 18 (1950) 1642.
- [5] J.K. Brown, N. Sheppard, Trans. Faraday Soc. 50 (1954) 1164.
- [6] W.E. Fitzgerald, G.J. Jantz, J. Mol. Spectrosc. 1 (1957) 49.
- [7] T. Fujiyama, K. Tokumaru, T. Shimanouchi, Spectrochim. Acta 20 (1964) 415.
- [8] L. Fernolt, K. Kveseth, Acta Chem. Scand. A 33 (1979) 335.
- [9] Y. Kinoshita, I. Matsubara, Y. Saito, Bull. Chem. Soc. Jpn. 32 (1959) 741.
- [10] I. Matsubara, Bull. Chem. Soc. Jpn. 34 (1961) 1710.
- [11] G.J. Jantz, W.E. Fitzgerald, J. Chem. Phys. 23 (1973) 1955.
- [12] O.I. Fengler, A. Rouff, Spectrochim. Acta A57 (2001) 105.
- [13] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, Jr., T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian Inc., Pittsburgh, PA, 2003.
- [14] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
- [15] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785.
- [16] R. Krishnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys. 72 (1980) 650.
- [17] T. Clark, J. Chandrasekhar, G.W. Spitznagel, P.V.R. Schleyer, J. Comp. Chem. 4 (1983) 294.
- [18] C. Moller, M.S. Plesset, Phys. Rev. 46 (1934) 618.
- [19] G.W. Chantry, in: A. Anderson (Ed.), The Raman Effect, vol. 1, 1971 (chapter 2).
- [20] J.R. Durig, G.A. Guirgis, A. Krutules, J. Mol. Struct. 328 (1994) 97.
- [21] F.A. Cotton, Chemical Application of Group Theory, Wiley-Interscience, New York, 1971.