Chapter 18

Amines

1

Classification of Amines

 Amines are classified as primary, secondary, or tertiary according to the number of alkyl or aryl groups bonded to the nitrogen.

Note: The designation of 1°, 2° and 3° amine does not depend in any way on the structure of the R group.

Examples

 $CH_3CH_2NH_2$

ethylamine (a 1º amine)

CH₃NHCH₂CH₃

Two alkyl groups attached to N (a 2° amine)

$(CH_3CH_2)_3N$

Three alkyl groups attached to N (a 3° amine)

Amine Salt

 If four groups attached to N → amine salt nitrogen is a positive ion

 $(CH_3)_2NH_2^+Cl^-$

dimethyl ammonium chloride

Salt of 2° amine

N-methylpipridinium bromide

Salt of 3° amine

Quaternary Ammonium Salts

 If all the four groups on N are alkyl or aryl (no H's on N) → the compound is quternary ammonium salt

 $(CH_3)_4 N^+ Cl^-$

tetramethylammonium chloride

N,N-dimethylpipridinium bromide

Nomenclature of Amines

- •*Primary amines* are named by replacing the -e of the corresponding parent alkane with *—amine (functional group system)*
- •Amines may also be named as alkylamines (substitutive system)

If more than one alkyl group is attached to the nitrogen, the largest group is considered the parent. A subsidiary alkyl group is designated by an N-Alkyl- prefix

 $(CH_3CH_2)_3N$

Triethylamine (*N*,*N*-diethylethanamine) CH₂CH₃ | CH₃NCH₂CH₂CH₃

N-ethyl-N-methyl propylamine

(N-ethyl-N-methyl-1-propanamine)

• Diamines are named by the name of the parent alkane followed by ending – diamine.

H₂NCH₂CH₂CH₂NH₂ 1,3-propanediamine

• The substitutent -NH₂ is called the *amino* group if present with a higher priprity functional group

H₂NCH₂CH₂OH **2-Aminoethanol** H₂NCH₂CH₂COH **3-Aminopropanoic acid** CH₃CHCO₂H **2-(N-methylamino)**propanoic acid

Nonaromatic Heterocylic Amines

Note: in numbering of the heterocyclic rings, the hetroatom is considered position 1. oxygen has a higher priority than nitrogen

9

Examples

2- methylpyrrolidine

3-ethyl-5methylmorpholine

Bonding in Amines

- •The nitrogen atom in an amine is sp^3 hybridized
 - -The three groups and the unshared electron pair around nitrogen result in a *tetrahedral* geometry
 - -If only the location of the groups (and not the unshared electron pair) are considered, the shape of the amine is *trigonal pyramidal*
 - -Partial negative charge is localized in the region of the nonbonding electrons

Structure of an amine

•It is usually impossible to resolve amine enantiomers that are chiral at nitrogen because they interconvert rapidly

 The interconversion occurs through a pyramidal or nitrogen inversion involving the unshared electron pair

Interconversion of amine enantiomers

- Quaternary ammonium salts can be resolved into enantiomers
 - Chiral quaternary ammonium salts cannot undergo nitrogen inversion because they lack an unshared electron pair on the nitrogen atom

Quaternary ammonium salts such as these can be resolved.

Spectral properties of Amines

Infrared Spectra

- Primary and secondary amines are characterized by N-H stretching vibrations in the 3300-3555 cm⁻¹ region
- Primary amines give 2 absorptions (from symmetric and asymmetric stretching); secondary amines give one absorption

Proton NMR

•¹H NMR

- –Primary and secondary amines have broad, uncoupled N-H peaks at $\delta~$ 0.5-5
- –N-H protons will exchange with D₂O and disappear from the ¹H spectrum
- –Protons on carbons adjacent to the nitrogen appear at δ 2.2-2.9

Preparation of Amines

A. Synthesis of Amines by Substitution Reactions

- 1.By Nucleophilic Substitution Reactions.
 - •Alkylation of Ammonia
 - Reaction of ammonia with an alkyl halide leads to an aminium salt
 - The salt is treated with base to give the primary amine

$$\overset{\bullet}{\mathbf{NH}_{3}} + \overset{\bullet}{\mathbf{R}} \overset{\bullet}{\longrightarrow} \mathbf{R} \overset{\bullet}{\longrightarrow} \mathbf{R}$$

• The method is limited because multiple alkylations usually occur.

–Using an excess of ammonia helps to minimize multiple alkylations

 $CH_3CH_2CH_2Br + excess NH_3 \longrightarrow CH_3CH_2CH_2NH_2$

1-bromopropane

propylamine

 Using an excess of Alkyl Halides → quaternary ammonium salt

 $\mathbf{NH_3} \xrightarrow{\mathbf{RX}} \mathbf{RNH_2} \xrightarrow{\mathbf{RX}} \mathbf{R_2NH} \xrightarrow{\mathbf{RX}} \mathbf{R_3N} \xrightarrow{\mathbf{RX}} \mathbf{R_4N^+ X^-}$

Example

¹⁹ NH₃ + excess CH₃CH₂I $\rightarrow \stackrel{^{-}OH}{\rightarrow}$ (CH₃CH₂)₄N⁺ I⁻

Examples

continued

3) Nucleophilic Aromatic Substitution

B. Synthesis By Reduction

1) Reduction of aromatic nitro compounds to aryl amines

2,4-dinitrotoluene

2,4-toluenediamine

2) Reduction of Nitriles

 Nitriles undergo hydrogenation or reduction with LiAlH₄ to yield primary amines

$$O - CH_2C = N + 2 H_2 \xrightarrow{\text{Raney Ni}}_{140^{\circ}C} O - CH_2CH_2NH_2$$

2-Phenylethanenitrile
(phenylacetonitrile) 2-Phenylethanamine

$$CH_{3}CH_{2}CH_{2}Br \xrightarrow{\mathbb{CN}^{-}} CH_{3}CH_{2}CH_{2}CH_{2}CN \xrightarrow{1} LiAlH_{4}$$

$$2) H^{+}, H_{2}O$$

CH₃CH₂CH₂CH₂NH₂

3) Reduction of amides

 Reduction of amides can yield primary, secondary or tertiary amines using LiAIH_{4.}

C. Synthesis by Amide Rearrangement

• An unsubstituted amide can be converted to a primary amine(*Hofmann rearrangement*)

$$\mathbb{R} \longrightarrow \mathbb{C} \longrightarrow \mathbb{R} + \mathbb{R} + 4 \operatorname{NaOH} \xrightarrow{H_2O} \mathbb{R} + 2 \operatorname{NaBr} + \operatorname{Na_2CO_3} + 2 \operatorname{H_2O}$$

1. The first two steps of the mechanism result in *N*-bromination of the amide.

2. The *N*-bromoamide is deprotonated and rearranges to an isocyanate.

3. The isocyanate is hydrolyzed to a carbamate which decarboxylates to the amine.

 \cap

Mechanism continued

The isocyanate undergoes hydrolysis and decarboxylation to produce the amine.

Notice: the amine contain one less carbon than the starting amide.

Exampels

$CH_{3}CH_{2}CH_{2}CH_{2}^{+}Br_{2} + _{4}OH^{-} \xrightarrow{H_{2}O} CH_{3}CH_{2}CH_{2}NH_{2}$

(R)-2-methylbutanamide

(R)-2-butylamine

Migration proceeds with retention of configuration

Basicity of Amines

Factors affect the relative base strength

1. An electron releasing group on the nitrogen increases basicity by dispersing the positive charge in the cation.

2. The cation is stabilized by increasing solvation (the solvent help disperse the positive charge)

 $(CH_3)_2NH > CH_3NH_2 > (CH_3)_3N > NH_3$

pK_b 3.27 3.34 4.19 4.75

The trimethylaminium ion is solvated less well (and therefore stabilized less) than the dimethylaminium ion due to steric hinderance.

CH₃CH₂NHCH₂CH₃ is weaker base than $\bigvee_{\substack{N \\ H}}$ pKb 3.01 $H_{\substack{I \\ H}}$

3. Hybridization of the nitrogen atom

An sp² orbital contain more s character than an sp³ orbital \rightarrow An sp²-hybridized nitrogen is less basic than sp³-hybridized because its unshared electrons are more tightly held

pyridine (sp²)

piperidine (sp³)

 $pK_{b} = 2.88$

The unshared electron pair on nitrogen of an arylamine is *delocalized* \rightarrow the lone pair is less available for protonation, *i.e.*, it is less basic

Amine Salts

The reaction of amine with acids → amine salts.

(CH₃)₃N: + HCI → (CH₃)₃NH⁺CI⁻
triethylamine triethylammonium
chloride
(triethylamine hydrochloride)

CH₃CH₂NH₂ + CH₃CO₂H → CH₃CH₂NH₃⁺ O₂CCH₃ ethylamie ethylammonium acetate (ethylamine acetate)

Applications of Quaternary Ammonium Salts

- 1. Quaternary Ammonium Salts with along hydrocarbon chain are used as detergents.
- 2. Quaternary Ammonium Salts can act as phase-transfer agents.
- $(C_4H_9)_4N^+CI^- + CN^- \rightarrow (C_4H_9)_4N^+CN^- + CI^-$ Soluble in organic phase

 $S_N 2$ reaction in the organic phase

41 $CH_3(CH_2)_7CI + (C_4H_9)_4N^+CN^- \rightarrow CH_3(CH_2)_7CN$

Reactions of Amines

1) Substitution Reactions with Amines

1. $S_N 2$ (alkyl halides + amines)

 $RNH_2 + R'CI \rightarrow RR'NH_2^+CI^- + RR'_2NH^+CI^-$

2. Acylation of amines (amine + acid chloride) → synthesis of amides

Amines can be used to synthesize other amines by conversion to amides followed by reduction

Reactions of Amines with Sulfonyl Chlorides

Primary and secondary amines react with sulfonyl chlorides to produce *sulfonamides*

The Hinsberg Test

- This test can distinguish between 1°, 2° and 3° amines.
- A benzenesulfonamide from a *primary amine* is soluble in basic solution, but precipitates upon acidification

(clear solution)

(precipitate)

46

- A secondary amine forms a precipitate directly because an *N*,*N*-disubstituted sulfonamide remains insoluble in basic solution.
- There is no acidic hydrogen in an *N*,*N*-disubstituted sulfonamide

A tertiary amine will not react to form a sulfonamide, but will dissolve upon acidification.

Acidification converts the amine to a water soluble amine salt

Imines and Enamines

• Amines react with aldehydes and ketones to form imines or enamines.

An enamine

Reactions of Amines with Nitrous Acid

• Primary amines undergo *diazotization* with nitrous acid.

General Reaction

$$R - NH_{2} + NaNO_{2} + 2 HX \xrightarrow{(HONO)}_{H_{2}O} \begin{bmatrix} R + \sqrt{N} \equiv N: X^{-} \end{bmatrix} + NaX + 2 H_{2}O$$
1° Aliphatic
amine
Aliphatic diazonium salt
(highly unstable)
$$| -N_{2}(ie_{1}:N=N:)$$

$$\int -N_2 (i.e., :N \equiv N:)$$

$$R^+ + X^-$$

$$\int$$

Alkenes, alcohols, alkyl halides

Example

$$(CH_3)_2CHNH_2 \xrightarrow{NaNO_2}_{HCl, 0} (CH_3)_2CHN_2^+ Cl^- \xrightarrow{-N_2}_{-Cl}$$

$$[(CH_3)_2CH^+] \xrightarrow{H_2O}_{-CH_3} (CH_3)_2CHOH + CH_3CH=CH_2$$

Secondary amines yield N-nitrosoamines when treated with nitrous acid

$$\bigvee NHCH_3 \xrightarrow{NaNO_2} \bigvee \bigvee N-NO_{LH_3} \xrightarrow{N-NO}$$

An N-nitrosoamine

The Hofmann Elimination

- An E2-type reaction occurs when a quaternary ammonium hydroxide is heated.
- An amine is a relatively good leaving group

$$\begin{array}{cccc} H & & \\ & - & & \\ C & - & & \\ & - & & \\ & &$$

A quaternary ammonium hydroxide

an alkene

a tertiary amine

Formation of Quaternary Ammonium Hydroxides

A quaternary ammonium hydroxide can be made from a quaternary ammonium halide using silver oxide

$$2 \operatorname{RCH}_2\operatorname{CH}_2\overset{+}{\operatorname{N}}(\operatorname{CH}_3)_3 \operatorname{X}^- + \operatorname{Ag}_2\operatorname{O} + \operatorname{H}_2\operatorname{O} \longrightarrow 2 \operatorname{RCH}_2\operatorname{CH}_2\overset{+}{\operatorname{N}}(\operatorname{CH}_3)_3 \operatorname{OH}^- + 2 \operatorname{AgX} \downarrow$$

A quaternary ammonium halide

A quaternary ammonium hydroxide

Example

• Hofmann elimination proceeds to give the least substituted double bond

$$\begin{array}{c} \operatorname{CH_3CH_2CHCH_3OH^-} \xrightarrow[150^\circ C]{} \\ N(\operatorname{CH_3})_3 \end{array} \xrightarrow{} \end{array}$$

 $CH_3CH = CHCH_3 + CH_3CH_2CH = CH_2 + (CH_3)_3N$ (5%)
(95%)
+ H_2O