CHAPTER 23

Carbohydrates

1

Introduction

- Carbohydrates are naturally occurring compounds of carbon, hydrogen, and oxygen.
- Carbohydrates have the empirical formula CH₂O.
- Carbohydrates have the general formula $C_nH_{2n}O_n$ eg. Glucose: $C_6H_{12}O_6$

- Carbohydrates are defined as polyhydroxy aldehydes or ketones or substances that hydrolyze to yield polyhydroxy aldehydes and ketones.
- Monosaccharides are carbohydrates that cannot be hydrolyzed to simpler carbohydrates = simple sugars.
- Disaccharides can be hydrolyzed to two monosaccharides.
- Oligosaccharides yield 2 to 8 monosaccharides.

Polysacccharides yield >8 monosaccharides

Some important monosacharides

Glucose

- Blood sugar.
- Mammals

 convert sucrose,
 lactose, maltose,
 and starch to
 glucose which is
 then used for
 energy

Other monosaccharides

- Fructose → sweetest tasting sugar. It occurs in fruit and honey.
- Galactose → found bonded to glucose in the disaccharide lactose.
- Ribose and Hdeoxyribose → form part of the polymeric backbone of nucleic D acids.

an oxygen

Classification of Monosaccharides

- The suffix -ose is used to designate a carbohydrate. Carbohydrate names ending in -ose (eg. Glucose, galactose).
- Mononsacchrides that contain aldehyde group → Aldoses (aldehyde + ose) (glucose and ribose).
- Monosacchrides with ketone group →
 Ketoses (ketone + ose) (frctose)

 The number of carbon atoms are designated by tri, tetr-, etc (for example a triose is three carbons)

Ketones are often given the ending –ulose.
 example. Fructose,

Configuration of monosaccharides

- Mpnpsaccharides with the same number of carbons are structural isomers or diastereomers.
- Diastereomers are nonenentiomeric stereoisomers with two or more chiral centers but differ in the projection of at least one of them.
- If two diastereomers differ in the projection of only one chiral center → epimers

Examples

- D-glucose, Dgalactose, and Dfructose are all structural isomers (diastereomers).
- D-glucose and Dgalactose differ only in the projection at carbon 4 → epimers

The D and L System

- If the OH on the last chiral carbon is projected to the right → D
- If the OH on the last chiral carbon is projected to the left → L

Examples

D-lyxose

L-aldohexose

The D Family of Aldoses

Cyclization of Monosaccharides

glucose

glucopyranose

FURANOSE AND PYRANOSE RINGS

ANOMERS

HAWORTH PROJECTIONS

It is convenient to view the cyclic sugars (glucopyranoses) as a "Haworth Projection", where the ring is flattened.

HAWORTH PROJECTIONS

HERE ARE SOME CONVENTIONS YOU MUST LEARN

- 1) The ring is always oriented with the oxygen in the upper right-hand back corner.
- 2) The -CH₂OH group is placed UP for a **D-sugar** and DOWN for an **L-sugar**.
- 3) α -Sugars have the anomeric hydroxyl group *down*.
- β-Sugars have
 the anomeric hydroxyl group *Up* 20

SOME HAWORTH PROJECTIONS

CONVERTING FISCHER PROJECTIONS TO HAWORTH PROJECTIONS

CONVERTING TO HAWORTH PROJECTIONS

CONVERTING TO ACTUAL CONFORMATIONS

HAWORTH PROJECTIONS OF L-SUGARS

CONVERTING FISCHER TO HAWORTH PROJECTIONS

Genral rules

LEFT = UP RIGHT = DOWN	These rules are the same	The only difference when converting D- and L- sugars
$\beta = up$ $\alpha = down$	for both D- and L- sugars	IS : D-sugars -CH ₂ OH = UP L-sugars -CH ₂ OH = DOWN

FRUCTOFURANOSES

Anomeric Effect

MUTAROTATION

Glycoside Formation

• Glycosides are acetals at the anomeric carbon of carbohydrates

 $\begin{array}{c} \text{Remember} & \text{OH} & \text{OR''} \\ | \\ \text{RCHOR'} + \text{R''OH} & \stackrel{\text{H}^+}{\Longrightarrow} & \stackrel{\text{OR''}}{\text{RCHOR'}} + \text{H}_2\text{O} \end{array}$

a hemiacetal

An acetal

Glycoside has two or groups attached to the anomeric carbon

Glycosides can be hydrolyzed in aqueous acid

Methyl β –D-glucopyranoside

Oxidation of Monosaccharides

 Aldoses and ketoses are easily oxidized when treated with Tollens' reagent

Reducing Sugars

 Carbohydrates with hemiacetal linkages are *reducing sugars* because they react with Tollens' reagent

Ketoses are also reducing sugars

D-fructose

Fructose is oxidized readily because it is in equilibrium with aldehydes through an endiol intermediate.

A ketone

An aldose

Glycosides are nonreducing sugars

Glycosides are not in equilibrium with aldehydes
 → nonreducing sugars

A glycoside

Aldonic Acids

 Bromine in water selectively oxidizes the aldehyde group of an aldose to the corresponding carboxylic acid

Example

Aldaric Acids

Dilute nitric acid oxidizes **both** the aldehyde and **primary hydroxyl** groups of an aldose to an aldaric acid

Example Η OH 0, CH₂OH OH H-H· OH HO $\xrightarrow{\text{HNO}_3}$ HO ·H HO HO ·H HO **WOH** Н-OH H-OH ЮH H-OH H-OH CH₂OH 0[<] OH **D-Glucose**

D-Glucaric acid

Uronic Acids

In biological systems, the terminal CH₂OH group can be oxidized without oxidation of the aldehyde group to uronic acid

D-glucose

D-glucoronic acid a uronic acid

Periodic Acid Oxidation: Oxidative Cleavage of Polyhydroxy Compounds

Compounds with hydroxyl groups on adjacent carbons undergo cleavage of carbon-carbon bonds between the hydroxyl groups

The products are aldehydes, ketones or carboxylic acids

- The carbonyl group is oxidized to a carboxyl group, while the hydroxyl group is oxidized to an aldehyde or ketone.
- With three or more contiguous hydroxyl groups, the internal carbons become formic acid

Cleavage also takes place when a hydroxyl group is adjacent to an aldehyde or ketone group

-An aldehyde is oxidized to formic acid; a ketone is oxidized to carbon dioxide

→No cleavage results if there are intervening carbons that do not bear hydroxyl or carbonyl groups

Reduction of Monosaccharides

 Aldoses and ketoses can be reduced to alditols

Example

Reaction at the Hydroxyl Groups

Acetate Formation

Carbohydrates react with acetic anhydride in the presence of weak base to convert all hydroxyl groups to acetate esters

Ether Formation

Reaction of monosaccharides with excess dimethylsulfate and NaOH produces multi methyl ether.

Cyclic Acetal Formation

Carbohydrates form cyclic acetals with benzaldehyde selectively between 1,3-diol.

Cyclic Ketal Formation

Carbohydrates form cyclic ketals with acetone selectively between cis-vicinal hydroxyl groups.

Disaccharides

A disaccharide is a carbohydrate compound of two units of monosaccharides joined together by glycoside link from carbon 1 of one unit to an OH of the other unit

Sucrose (Table sugar)

Sucrose is a disaccharide formed from Dglucose and D-fructose

-The glycosidic linkage is between C1 of glucose and C2 of fructose (both anomeric carbon atoms).

-Sucrose is a nonreducing sugar because of its acetal linkage

Polysaccharides

- A polysaccharide is a compound in which the molecule contain many units of monosaccharide joined together by glycoside link.
- Two important polysaccharides are starch and cellulose

Starch

•The two forms of starch are amylose and amylopectin

•Amylose consists typically of more than 1000 Dglucopyranoside units connected by α linkages between C1 of one unit and C4 of the next

Amylopectin

•Amylopectin is similar to amylose but has branching points every 20-25 glucose units

-Branches occur between C1 of one glucose unit and C6 of another

