CHAPTER 19

Polycyclic And Heterocyclic Aromatic Compounds

1

Nomenclature of Polycyclic Aromatic Compounds

Polycyclic aromatic compounds have two or more benzene rings fused together

Monosubstituted Naphthalene is often designated by Greak Letter

1-nitronaphthalene β-nitronaphthalene

2-naphthol β-naphthol

1,5-dichloronaphthalene

More Naming

9,10-dibromoanthracene

9,10-dimethoxy phenanthrene

Bonding in Polycyclic Aromatic Compounds

- In benzene, all C-C bond lengths are equal (equal distribution of *pi* electrons around the benzene ring).
- In the polycyclic aromatic compounds, the C-C bond lengths are not the same (e,g. the distance between carbon 1 and 2 =1.36 A° in naphthalene is smaller than the distance between Carbon 2 and 3 = 1.40 A°) → there is no equal distribution of *pi* electrons around naphthalene

Comparison of bond lengths in Naphthalene

- C-C in ethane: 1.54 A°
- C-C in ethylene: 1.34 A°
- C-C in benzene: 1.40 A°

Two out of three resonance structures show a carbon 1 carbon 2 double bond

The resonance energy per ring is less than that of benzene \rightarrow suggest

- the polycyclic aromatic compounds are more reactive than benzene.
- reaction at one ring loses less energy because the product still have one or more intact benzenoid rings.

The product still has two benzene rings ; it loses only 20 Kcal/mol

Oxidation of Naphthalene

• Naphthalene can be oxidized to products in which much of the aromaticity is retained.

9

Reduction of Polycyclic Aromatic Compounds

The polycyclic aromatic compounds (unlike benzene) can be hydrogenated without heat or pressure, or they can be reduced with sodium and ethanol

Na, CH₃CH₂OH

Na, CH₃CH₂OH

Na, CH₃CH₂OH

heat

heat

heat

no reaction

Hydrogenation of Polycyclic Aromatic Compounds

Hydrogenation of Polycyclic Aromatic Compounds requires heat and pressure just as it does for benzene

Electrophilic Aromatic Substitution of Naphthalene

Naphthalene undergoes electrophilic aromatic substitution predominately at the 1-position (α-position)

More Electrophilic Aromatic Substitution Reactions

1- acetylnaphthalene

Position of Substitution of Naphthalene

1-substitution Mechanism

Resonance structures for the 1- substitution intermediate

2-position mechanism

Not favored

Resonance structures for the2- substitution intermediate

Sulfonation of Naphthalene

1-naphtalenesulphonic acid vs2- naphtalenesulphonic acid

less repulsion H M SO₃H

1-naphtalenesulphonic acid

Less stable

2-naphtalenesulphonic acid

More stable

Kinetic vs Thermodynamic Control

Reactions Examples

The reaction occurs at the more activated ring

Heterocyclic Aromatic Compounds

- •Heterocyclic compounds have an element other than carbon as a member of the ring
- •Example of aromatic heterocyclic compounds are shown below
 - Numbering always starts at the heteroatom

Pyridine, a Six-Membered Aromatic Heterocycle

- Pyridine has an sp^2 hybridized nitrogen.
- The *p* orbital on nitrogen is part of the aromatic π system of the ring.
- The nitrogen lone pair is in an *sp*² orbital orthogonal to the *p* orbitals of the ring; these electrons are not part of the aromatic system.
- The lone pair on nitrogen is available to react with protons and so pyridine is basic

Pyridine contain an electronegative nitrogen \rightarrow polar

Because the nitrogen is more electronegative than carbon, the rest of pyridine ring is electron deficient \rightarrow carbon atoms on the ring carry a partial positive charge \rightarrow pyridine has a low reactivity toward electrophilic substitution compared to benzene

Reactions of Pyridine

Pyridine forms a cation with Lewis acids → the ring becomes even more electron deficient.

•Pyridine does not undergo Friedel- Crafts alkylation or Acylation.

•It does not undergo coupling with diazonium salts.

Bromination of Pyridine

 Bromination proceeds only at a high temperature in the vapor phase by free radical path → substitution occurs at the 3-position

Pyridine is basic

- pK_b of pyridine = 8.75. It is less basic than aliphatic amine (why?).
- It undergo many reactions typical of amines

Oxidation of alkyl pyridine

• The side chains in pyridine can be oxidized to carboxyl groups similar to alkyl benzene.

Nucleophilic Substitution on the Pyridine Ring

- Pyridine ring is electron deficient → it is susceptible to nucleophilc attack.
- Nucleophilic substitution proceeds readily at the 2-position followed by the 4-position but not at the 3-position.

2-bromopyridine

2-aminopyridine

Mechanism of substitution at the 2-position

 NH_2

Substitution at the 4-position

Nucleophilic Substitution of pyridine

 Pyridine undergo nucleophilic substitution at the 2-position with extremely strong bases e.g. RLi or NH₂⁻

Mechanism

Quinoline and Isoquinoline

quinoline

isoquinoline

Both quinoline and isoquinoline contain a pyridine ring fused to a benzene ring

The nitrogen containing ring behaves like the pyridine ring.

The other ring behaves like naphthalene

Electrophilic Substitution of Quinoline and Isoquinoline

• Both compounds undergo electrophlic substitution but in positions 5 and 8.

Reaction at the Nitrogen-Containing Ring of Quinoline and Isoquinoline

- 1. Both quinoline and isoquinoline (like pyridine) are weak bases ($pK_b = 9.1$ and 8.6 respectively.
- 2. Both compounds (like pyridine) undergo nucleophilc substitution at the position α to the nitrogen.

Examples

Br

H₂CH₃

More Examples

Five-membered Aromatic Heterocycle

In furan and thiophene an electron pair on the heteroatom is in a *p* orbital which is part of the aromatic system

Pyrrole

- * This p orbital contains two electrons and participates in the aromatic system
- * The lone pair of pyrrole is part of the aromatic system and not available for protonation; pyrrole is therefore not basic

Pyrrole Ring is Polar

- The nitrogen atom in pyrrole contributes two electrones to the aromatic pi cloud → the nitrogen is electron deficient (not basic).
- The pyrrole ring is electron-rich → partial negative (opposite to pyridine ring)

Electrophilic Substitution on the Pyrrole Ring

Because the ring carbon are the negative part
the carbon are activated toward electrophilic attack (pyrrole is more reactive than benzene)

Substitution at the 2-position is Favored over the 3-position

2-nitration

3 resonance structures for the intermediate of nitration at the 2-position

Nitration at the 3-position

The are only 2 resonance structures for the intermediate of nitration at the 3position as compared to 3-resonance structures at the 2-position \rightarrow substitution at 2-position is favored.

Other five-membered Hetercyclic Aromatic Compounds

• Furan and thiphene behave like pyrrole toward electrophilic substitution,

Porphyrins

- The porphyrin ring system is aromatic planar compound contains four pyrrole rings joined by =CH- groups.
- They are biologically important unit.

The highlighted hydrogen atoms can be replaced by metal ions

