- Ionic character is proportional to the difference in electronegativity values between the two 26. elements forming the bond. Using the trend in electronegativity, the order will be:

Br-Br < N-O < C-F < Ca-O < K-Fsmallest

b. Ga < B < O

ionic character ionic character

Note that Br-Br, N-O and C-F bonds are all covalent bonds since the elements are all nonmetals. The Ca-O and K-F bonds are ionic as is generally the case when a metal forms a bond with a nonmetal.

- 36.
- b.  $Cs^+ > Rb^+ > K^+ > Na^+$
- c.  $Te^{2-} > I^{-} > Cs^{+} > Ba^{2+}$

- e.  $Te^2 > Se^2 > S^2 > O^2$
- d. P3c. Sr24 b. none 32.
  - $\Delta H = 150. \text{ kJ}$ (sublimation) 42.  $Mg(s) \rightarrow Mg(g)$  $Mg(g) \rightarrow Mg^{+}(g) + e^{-}$  $\Delta H = 735 \text{ kJ}$  $(IE_1)$  $Mg^+(g) \rightarrow Mg^{2+}(g) + e^ \Delta H = 1445 \text{ kJ}$  $(IE_2)$  $\Delta H = 154 \text{ kJ}$ (BE)  $F_2(g) \rightarrow 2 F(g)$  $2 F(g) + 2 e^{-} \rightarrow 2 F(g)$  $\Delta H = 2(-328) \text{ kJ}$ (EA)  $Mg^{2+}(g) + 2 F(g) \rightarrow MgF_2(s)$  $\Delta H = -3916 \text{ kJ}$ (LE)  $\Delta H_f^o = -2088 \text{ kJ/mol}$  $Mg(s) + F_2(g) \rightarrow MgF_2(s)$
- 48. Sometimes some of the bonds remain the same between reactants and products. To save time, only break and form bonds that are involved in the reaction.

Bonds broken:

Bonds formed:

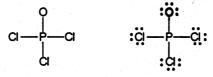
1 C = N (891 kJ/mol)1 C - N (305 kJ/mol) 2 C - H (413 kJ/mol) 2 H - H (432 kJ/mol) 2 N - H (391 kJ/mol)

 $\Delta H = 891 \text{ kJ} + 2(432 \text{ kJ}) - [305 \text{ kJ} + 2(413 \text{ kJ}) + 2(391 \text{ kJ})] = -158 \text{ kJ}$ 

Bonds broken:

Bonds formed:

1 N - N (160. kJ/mol) 4 H - F (565 kJ/mol) 4 N - H (391 kJ/mol)  $1 N \equiv N (941 \text{ kJ/mol})$ 2 F - F (154 kJ/mol)


 $\Delta H = 160. \text{ kJ} + 4(391 \text{ kJ}) + 2(154 \text{ kJ}) - [4(565 \text{ kJ}) + 941 \text{ kJ}] = -1169 \text{ kJ}$ 

60. 
$$NH_3(g) \rightarrow N(g) + 3 H(g); \Delta H^\circ = 3 D_{NM} = 472.7 + 3(216.0) - (-46.1) = 1166.8 kJ$$

$$D_{NH} = \frac{1166.8 \text{ kJ}}{3 \text{ mol NH bonds}} = 388.93 \text{ kJ/mol} \approx 389 \text{ kJ/mol}$$

 $D_{calc}$  = 389 kJ/mol as compared to 391 kJ/mol in the table. There is good agreement.

## 64. a. $POCl_3$ has 5 + 6 + 3(7) = 32 valence electrons.



This structure uses all 32 e while satisfying the octet rule for all atoms. This is a valid Lewis structure.

Skeletal structure

Lewis structure

 $SO_4^{2-}$  has 6 + 4(6) + 2 = 32 valence electrons.

Note: A negatively charged ion will have additional electrons to those that come from the valence shells of the atoms.

$$XeO_4$$
, 8 + 4(6) = 32 e<sup>-1</sup>

$$PO_4^{3}$$
,  $5 + 4(6) + 3 = 32 e^{-1}$ 

 $ClO_4$  has 7 + 4(6) + 1 = 32 valence electrons.

## 74. The Lewis structures for the various species are below:

CO (10 e -): : C===O:

Triple bond between C and O

CO<sub>2</sub> (16 e -): Ö==C==Ö

Double bond between C and O

Average of 1 1/3 bond between C and O

As the number of bonds increase between two atoms, bond length decreases and bond strength increases. With this in mind, then:

longest 
$$\rightarrow$$
 shortest C - O bond: CH<sub>3</sub>OH > CO<sub>3</sub><sup>2-</sup> > CO<sub>2</sub> > CO  
weakest  $\rightarrow$  strongest C - O bond: CH<sub>3</sub>OH < CO<sub>3</sub><sup>2-</sup> < CO<sub>2</sub> < CO

## For SO<sub>4</sub><sup>2</sup>, ClO<sub>4</sub>, PO<sub>4</sub><sup>3</sup> and ClO<sub>3</sub>, only one of the possible resonance structures is drawn.

- a. Must have five bonds to P to minimize formal charge of P. The best choice is to form a double bond to O since this will give O a formal charge of zero and single bonds to Cl for the same reason.
- b. Must form six bonds to S to minimize formal charge of S.

## 80. See Exercises 8.64 and 8.68 for the Lewis structures.

8.64 a. All are tetrahedral; 109.5°

b. All are trigonal pyramid; < 109.5°

c. All are V-shaped; < 109.5°

8.68 O<sub>3</sub> and SO<sub>2</sub> are V-shaped (or bent) with a bond angle ≈ 120°. SO<sub>3</sub> is trigonal planar with 120° bond angles.

All have polar bonds; in SiF<sub>4</sub> the individual bond dipoles cancel when summed together, and in PCl<sub>3</sub> and SCl<sub>2</sub> the individual bond dipoles do not cancel. Therefore, SiF<sub>4</sub> has no dipole moment (is nonpolar) and PCl<sub>3</sub> and SCl<sub>2</sub> have dipole moments (are polar). For PCl<sub>3</sub>, the negative end of the dipole moment is between the more electronegative chlorine atoms and the positive end is around P. For SCl<sub>2</sub>, the negative end is between the more electronegative Cl atoms and the positive end of the dipole moment is around S.

92. a.

ro—c≡n:

Polar; The bond dipoles do not cancel.

b.

s==c==0

Polar; The C-O bond is a more polar bond than the C-S bond. So the two bond dipoles do not cancel each other.