

KING FAHD UNIVERSITY OF PETROLEUM AND MINERALS

CHEMISTRY DEPARTMENT

The First Major EXAM

COURSE

CHEM101 - 052

TEST CODE NUMBER 000

STUDENT NUMBER:

NAME :

SECTION NUMBER:

INSTRUCTIONS

- 1. Type your student number, name, and section number on the EXAM COVER page.
- 2. Type your student number, section number, and your name on your EXAM ANSWER form.
- 3. With your pencil, bubble your student number and your section number on the ANSWER form.
- 4. With your pencil, bubble your answer's selections on the *EXAM ANSWER* form. You must not give more than *ONE* answer per question.
- 5. Return the EXAM ANSWER form to the proctor of the exam when you have finished.
- 6. The dauration of the *EXAM* is 80 min.

Important constants

Gas Constant (R)	= 0.0821	L.atm/(mol.K)
	= 8.31	J/(mol.K)
	$= 8.31 \times 10^7$	g.cm ² /(sec ² .mol.K)
Planck's Constant (h)	$= 6.626 \text{ x } 10^{-34}$	J.sec/particle
	$= 6.626 \text{ x } 10^{-34}$	kg.m ² /(sec.particle)
Velocity of light (c)	$= 2.998 \text{ x } 10^8$	m/sec
Avogadro's number (N)	$= 6.022 \text{ x } 10^{23}$	particles/mole
Bohr's Constant (R _H)	$= 2.179 \text{ x } 10^{-18}$	J/particle
Faraday (F)	= 96485	Coulombs
Specific heat of H ₂ O	= 4.18	I/(g.ºC)

4 E			-1			-											_			-	_					
VIIIA	61	He 4 0076	0700-1	NP	20.180	10	10	AF 39.948	36	Kr	83.80	54	Xe	131.29	86	Rn	(222)	118			71	ЦЛ	174.97	103	Lr	(262)
	I	П			18.998	5	25	U 35.453	35	Br	79.904	53	I	126.90	85	At	(210)	117			70	Yh	173.04	102	No	(259)
		V I V	NIN O	• C	15.999	16	2 2	32.066	34	Se	78.96	52	Te	127.60	84	P_0	(209)	116			69	Tm	168.93	101	Md	(258)
		V A		- Z	14.007	15		F 30.974	33	As	74.922	51	\mathbf{Sb}	121.76	83	Bi	208.98	115			68	F.	167.26	100	Fm	(257)
		A VI	T A	οÇ	12.011	۲۲	± 2	28.086	32	Ge	72.61	50	Sn	118.71	82	Pb	207.2	114			67	Ho	165.93	66	Es	(252)
		V III	e III e	ר מ	10.811	12		AI 26.982	31	Ga	69.723	49	In	114.82	81	E	204.38	113			66	Dv	162.50	98	Cf	(251)
								ПВ	30	Zn	65.39	48	Cd	112.41	80	Hg	200.59	112	Uub	(277)	65	ЪЪ ЧТ	158.93	97	Bk	(247)
								IB	29	Cu	63.546	47	\mathbf{Ag}	107.87	79	Au	196.97	111	Uuu	(272)	64	Gd	157.25	96	Cm	(247)
								\int	28	Ż	58.693	46	Pd	106.42	78	Pt	195.08	110	Uun	(269)	63	Ru	151.96	95	Am	(243)
							VIII B	$\left\{ \right.$	27	C0	58.933	45	Rh	102.91	LL	Ir	192.22	109	Mt	(268)	62	Sm	150.36	94	Pu	(244)
									26	Fe	55.845	44	Ru	101.07	76	õ	190.23	108	Hs	265)	61	Pm	(145)	93	dN	$(23\overline{7})$
								VIIB	25	Mn	54.938	43	Tc	(86)	75	Re	186.21	107	Bh	(264)	60	PN	144.24	92	Ŋ	238.03
								VI B	24	Cr	51.996	42	\mathbf{M}_{0}	95.94	74	M	183.84	106	Sa	(263)	59	Pr	140.91	91	Pa	231.04
								VB	23	٧	50.942	41	βŊ	92.906	73	Ta	180.95	105	\mathbf{Db}	(262)	58	*Ce	140.12	90	4T *∗	232.04
								IV B	22	Ï	47.867	40	Zr	91.224	72	Ηf	178.49	104	Rf	(261)						
								III B	21	Sc	44.956	39	Y	88.906	57	La*	138.91	89	Ac**	(227)						
		V II		⁺ 4	9.0122	- -		Mg 24.305	20	Ca	40.078	38	Sr	87.62	56	Ba	137.33	88	Ra	(226)						
IA	- }	H 1 0079	C/00/1	o 🗖	6.941	-		Na 22.990	19	K	39.098	37	\mathbb{R}^{b}	85.468	55	S	132.91	87	Fr	(223)						
L	Ŧ	-	_	7	I	·	"	r		4			S			9			L							

PERIODIC TABLE OF THE ELEMENTS

- 1. A thermometer readable to ± 0.001°C gave five readings of the room temperature as 25.345 °C, 25.347 °C, 25.342 °C, 25.346 °C, and again 25.345 °C. The 'true' temperature was 20.634 °C. The thermometer is:
 - A) not accurate but precise.
 - B) accurate but not precise.
 - C) neither accurate nor precise.
 - D) both accurate and precise.
 - E) without systematic errors.
- 2. An insoluble solid weighing 23.98 g was placed in a graduated cylinder with water inside. The water level with the solid fully immersed was 12.1 cm³; that without the solid was 1.3 cm³. What is the density of the material to the correct number of significant figures?
 - A) 2.22 g/cm³
 - B) 2.2 g/cm³
 - C) 2.220 g/cm^3
 - D) 0.5 g/cm^3
 - E) 0.45 g/cm³
- 3. The concentration of a solution is 2.34 mol/L. What is the concentration in mol/mm³?
 - A) 2.34 x 10⁻⁶ mol/mm³
 - B) $2.34 \text{ x } 10^{-4} \text{ mol/mm}^3$
 - C) $2.34 \times 10^6 \text{ mol/mm}^3$
 - D) $2.34 \ x \ 10^4 \ mol/mm^3$
 - E) 234 mol/mm^3

- 4. The burning of wood is a:
 - A) chemical change
 - B) physical change
 - C) Chromatographic process
 - D) Distillation process
 - E) Filteration process
- 5. Which of the following statements is NOT correct?
 - A) There can only be one compound formed by any pair of elements.
 - B) All samples of sodium chloride have the same composition, no matter what the source.
 - C) In chemical reactions the sum of the masses of the reactants equals the sum of the masses of the products.
 - D) The amount of sodium that will combine with one gram of chlorine to form sodium chloride is a fixed number.
 - E) In the group of compounds NO, N₂O and NO₂ each one is an example of the law of definite proportions.
- 6. Which of the following combinations of C, H_2 , and O_2 is NOT in the same proportions as in C_2H_4O ?
 - A) $2C + 4H_2 + O_2$
 - B) $12C + 12H_2 + 3O_2$
 - C) $8C + 8H_2 + 2O_2$
 - D) $4C + 4H_2 + O_2$
 - E) $16C + 16H_2 + 4O_2$
- 7. Which one of the following is named **correctly**?
 - A) aluminum nitride, AlN
 - B) ammonia, $NH_{4^{+}}$
 - C) calcium sulfide, Ca(HS)₂
 - D) iron(III) oxide, FeO
 - E) bromic acid, HBrO₂

CHEM 101 Maj-01-052

- 8. An element has 36 electrons and 44 neutrons. What isotope is it?
 - A) $^{78}_{34}Se^{2-}$
 - B) $_{36}^{80}Kr$
 - C) $^{78}_{34}Se^{-1}$
 - D) $^{78}_{34}Se$
 - E) $^{44}_{36}Kr$
- 9. A bromine atom is about four times heavier than a neon atom. How many grams of neon will contain about the same number of atoms as 1,000 g of bromine?
 - A) 250 g Ne
 - B) 4 g Ne
 - C) 400 g Ne
 - D) 1,000 g Ne
 - E) 4,000 g Ne
- 10. Which of the following is the molecular formula of a compound containing 85.6% C and 14.4% H by mass?
 - A) C_2H_4
 - B) CH₄
 - C) C_3H_4
 - D) C₂H₆
 - E) C₃H₈
- 11. What is the coefficient of H₂SO₄ when the following equation is properly balanced with the smallest set of whole numbers?

A) 3 B) 5 C) 6 D) 2 $Ca_3(PO_4)_2 + \underline{H}_2SO_4 \rightarrow \underline{CaSO_4} + \underline{H}_3PO_4$

E) 4

12. When octane (C_8H_{18}) is burned in a particular internal combustion engine according to the equation:

 $2 C_8 H_{18}(l) + 25 O_2(g) \rightarrow 16 CO_2(g) + 18 H_2O(l)$ the yield of carbon dioxide and water is 93%. What mass of carbon dioxide will be produced in this engine when 15.0 g of octane is burned with 15.0 g of oxygen gas? A) 12 g

- B) 13 g
- C) 21 g
- D) 54 g
- E) 43 g

13. In which of the following does the chlorine atom (Cl) have an oxidation number of +5?

- A) ClO₃-
- B) HCl
- C) ClO⁻
- D) HClO₄
- E) ClF₃
- 14. The oxidation-reduction reaction,

$Cl_2(g) \rightarrow Cl^-(aq) + OCl^-(aq)$

occurs in a basic medium. On balancing this reaction the sum of the stoichiometric coefficients of all the reactants and products is:

- A) 6
- B) 4
- C) 8
- D) 5
- E) 7

15. In the reaction,

 $16H^{+} + 2MnO_{4}^{-} + 10Br^{-} \rightarrow 5Br_{2} + 2Mn^{2+} + 8H_{2}O$ The reducing agent is: A) Br⁻ B) Br₂ C) MnO₄⁻ D) H⁺ E) Mn²⁺

- 16. A solution of 0.13110 g of potassium hydrogen phthalate (KHC₈H₄O₄) in water required 27.2 mL of a calcium hydroxide (Ca(OH)₂) solution to be neutralized. The molarity of the Ca(OH)₂ solution is:
 - A) 0.0118 M
 - B) 0.0236 M
 - C) 0.0472 M
 - D) 0.00590 M
 - E) 0.118 M
- 17. Consider separate 1.0 L samples of $UF_6(g)$ and He(g) containing the same number of moles. What temperature (*Kelvin*) ratio for the UF_6 sample to the He sample would produce the same root mean square velocity?
 - A) 87.93
 - B) 0.01137
 - C) 15.00
 - D) 2.5
 - E) 5.5
- 18. The partial pressure of $O_2(g)$ is 0.250 atm and that of $CH_4(g)$ is 0.175 atm in a mixture of the two gases. If the mixture occupies a volume of 10.5 L at 65 °C, the number of grams of $O_2(g)$ in the mixture would be,
 - A) 3.03
 - B) 1.06
 - C) 5.22
 - D) 12.4
 - E) 8.24

- 19. Air contains 78 % N₂, 21% O₂, and 1% Ar, by volume. What is the density of air (in g/L) at 1000. torr and -10 °C? (Assume ideal gas behavior)
 - A) 1.8
 - B) 6.1
 - C) 0.67
 - D) 1.0
 - E) 2.4
- 20. If equal masses of $O_2(g)$ and HBr(g) are in separate containers of equal volume and temperature, which one of the following statements is TRUE?
 - A) The pressure in the O_2 container is greater than that in the HBr container.
 - B) There are more HBr molecules than O_2 molecules.
 - C) The average velocity of the O₂ molecules is less than that of the HBr molecules.
 - D) The average kinetic energy of HBr molecules is greater than that of O_2 molecules.
 - E) The pressures of both gases are the same.

Answer Key

- 1. A
- 2. A
- 3. A 4. A
- 4. A 5. A
- 6. A
- 7. A
- 8. A
- 9. A
- 10. A
- 11. A
- 12. A
- 13. A
- 14. A 15. A
- 15. A 16. A
- 17. A
- 18. A
- 19. A
- 20. A